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Abstract 

The internally closed-loop molecular architecture without chain ends of ring polymers overall makes a 

significant influence on structural and dynamical properties of ring systems. In particular, ring polymer 

melts is known to exhibit a collapsed chain structure in the limit of long chain length. This is ascribed to 

an effective pressure acting on individual ring molecules via intermolecular topological interactions under 

the unknotted and uncrossability (or nonconcatenation) conditions. In addition, there has been a 

supposition in the community on the effect of interchain penetration on the rheological behaviors of ring 

melts. These two factors may play a key role in determining ring polymer rheology.  

In this study, we investigated a direct correlation between the topological influence leading to a 

compact structure and dynamics of ring polymers, separately from the interchain penetration effect. To 

this, we first analyzed the structural and dynamical properties of ring polymer melts in 3-dimensional 

(3D) space by using molecular dynamics (MD) simulations implemented with an accurate united-atom 

model and a well-known coarse-grained Kremer-Grest model. These results show the general rheological 

behaviors of ring polymers in the melt. Second, we conducted 2-dimensional (2D) MD simulations of 

ring melts to exclude the interchain penetration effect, with all other conditions being preserved similar to 

the 3D melt systems. The topological effect resulting in a collapsed structure was found to become much 

more prominent for 2D systems, as compared to 3D systems: Flory’s scaling exponent approaches to 1/2 

and 1/3 for 2D and 3D systems, respectively.   

2D ring polyethylene melts ranging from C50H100 to C500H1000 of molecular weight have been subjected 

to extensive atomistic MD simulations while the chain length in the Kremer-Grest 2D systems ranges 

from 30 beads up to 400 beads. We found that the 2D ring melts display distinctive scaling behaviors in 

dynamical properties; e.g., the longest relaxation time N


  with 2   and the chain center-of-

mass diffusion coefficient 
cmD N


 with 1   , as compared with the corresponding results 2   

and 2.4 1     for 3D ring melts which have intermediate length. On the basis of the results of 2D 

ring systems possessing considerably collapsed structures even at moderate chain lengths, we may further 

predict the rheological behaviors of 3D ring melts of large chain lengths. 
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I. Introduction 

Polymers generally have a broad spectrum of intrinsic time and length scales. These characteristics make 

polymeric materials possess both solid-like behaviors in short time scales and liquid-like behaviors in long 

time scales, i.e., viscoelastic properties. These peculiar characteristics of polymers have attracted a wide 

scientific and industrial interests.1-4 

As the microscopic molecular approaches to predict various rheological properties of polymer, the Rouse 

model well described the rheological properties of short-chain polymer melts.5,6 In contrast, rheological 

behaviors of long, entangled polymer melt systems have been successfully predicted by the reptation or 

tube theory originally developed by de Gennes, Edwards, and Doi.1 Owing to tremendous research efforts7-

10 over the years, a significant progress in the knowledge of entangled polymer melts has been achieved. 

However, as the reptation theory requires the existence of chain ends, it cannot describe the dynamics of 

ring polymers which have no chain ends, thus raising a new challenge in the field of polymer rheology. 

 There appeared numerous experimental and simulation works to understand the dynamics of ring polymers 

and quantify their rheological properties. Obtaining a pure unknotted and unconcatenated ring melt is very 

challenging in experiment due to an extreme difficulty to completely remove a linear contamination, thus 

having led to controversial experimental results in the past.11-13 This problem can be overcome in computer 

simulations, as one can perfectly control the molecular architecture. Suzuki et al.14 observed Flory’s 

exponent 1/3 for long ring polymers with bond fluctuation model (BFM). Hur et al.15 and Halvrson et al.16 

simulated up to C1500 atomistic ring polyethelyene (PE) melts and 1600 Kremer-Grest ring bead melts, 

respectively. However, the dynamics and molecular mechanisms of ring polymers have not yet been well 

understood. 

 In this work, we studied in detail the general characteristics of ring dynamics in 2D as well as 3D systems. 

The paper is organized as follows: In Sec. II, we describe the molecular models and simulation methodology. 

Various dynamic and structural properties of ring polymer in 3D systems are presented in Sec..III 1 and the 

corresponding analysis of 2D systems is given in Sec. III 2. We provide a prediction of large ring dynamics 

in 3D systems in Sec. III 3. Section IV summarizes the present work. 
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II.  Simulation method 

2.1 United-atom model 

 

 

Figure 2.1.1 (a) Red atom represents united-atom1 (CH2) and blue atom represents united-atom2 (CH3). (b) 

Polymer chains are connected by bonded and non-bonded interactions such as bond-stretching, bond-

bending, bond-torsional, and 6-12 Lennard-Jones potentials. 

 

Canonical (NVT) MD simulations were carried out based on Newton’s equations of motion implemented 

with the Nosé–Hoover thermostat.17-20 These equations of motion have the following form:6 

ia
ia

iam


p
q    

          i a i a i a  p F p                                (2-1) 

     
p

Q


  , 

2

 ia
B

i a
ia

p dNk T
m

   
p

, 
2

BQ dNk T            (2-2) 

 

 

(a) (b)
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In eq 1, qia, pia, Fia, and mia are the position vector, momentum vector, force vector, and mass of atom a of 

the ith-molecule. d indicates the dimension of space and N is the total number of atoms of system. Q , 

 , and p


 are the mass, position, momentum variables of the Nosé–Hoover thermostat.   

For efficiency and accuracy in the simulation, the equations of motion were integrated using the 

reversible Reference System Propagator Algorithm (r-RESPA), allowing for two different time scales in 

simulation step: 2.35 fs for bond-stretching, bond-bending, and bond-torsional interactions, and 0.47 fs 

for non-bonded Lenard-Jones (LJ) interactions.21  

The SKS united-atom model22 was employed in all the simulations. Figure 2.1.1 (a) shows 

visualization of the united-atom and polymer chain which use united-atom model and intramolecular 

potentials. The 6-12 LJ potential was adopted for non-bonded atom-atom interactions as follows.  

12 6

LJ ( ) 4
ij ij

ij ij

ij ij

U r ε
r r

     
             

                         (2-3) 

The LJ parameters for the united-atoms are set as σ = 3.93 Å and /kB = 47 K for united-atom1 (CH2) , 

and σ = 3.93 Å and /kB = 114 K for united-atom2 (CH3). The parameters ijε  and ij  were calculated 

by the Lorentz-Berthelot mixing rule: 

1/2( )ij i jε ε ε , 
( )

2

i j
ij

 



                            (2-4) 

The three bonded (bond-stretching, bond-bending, and bond-torsional) interactions are described as 

follows. The bond-stretching interaction is represented by a harmonic potential function: 

2str
str eq( )  ( )

2

k
U l l l                                (2-5) 

where the equilibrium bond length leq = 1.54 Å  and the bond-stretching spring constant kstr/kB = 452,900 

K/Å 2. The bond-bending interaction is also expressed by a harmonic potential: 

2ben
ben eq( )  ( )

2

k
U                                 (2-6) 
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where the equilibrium bending angle is θeq = 114° and the bending constant kben/kB = 62,500 K/rad2. The 

bond-torsional potential was originally developed by Jorgensen et al:23 

3

0

( ) cosm

torsional m

m

U a 


                            (2-7) 

where a0/kB=1010K, a1/kB=2019K, a2/kB=136.4K, and a3/kB=-3165K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

2.2 Kremer-Grest model 

 

 

Figure 3.2.1 (a) Purple bead represents a Kremer-Grest bead accounting for 3~4 CH2 united atoms in 

polyethylene molecule. (b) A Kremer-Grest chain is connected through the FENE and WCA potentials. 

 

The NVT MD simulations were further carried out in both 3D and confined 2D systems using Newton’s 

equations of motion with the Disspative Partcle Dynamics (DPD) thermostat.24,25 These equations of 

motion were described by following expressions: 

ia
ia

iam


p
q  

               
c d r

i a i a i a i a  p F F F                             (2-8) 

In eq 1, qia, pia, and mia are the position vector, the momentum vector, and the mass of atom a of the ith- 

molecule, respectively. In the Kremer-Grest model26, 
c

iaF  consists of both the shifted LJ (WCA) and the 

finitely extensible nonlinear elastic (FENE) potentials. A Kremer-Grest coarse-grained bead represents 

about 3 ~ 4 united atoms. Figure 2.2.1 (a) shows the visualization of coarse-graining. These equations of 

motion were integrated using the velocity Verlet method with a time step 0.01 . 

 

 

(a) (b)



14 

 

The WCA potential is given as 

12 6

1/6

1/6

4 2
( )

0, 2

ij

ij ijWCA ij

ij

ε ε,     r
r rU r

                                       r

 




     
                 




                   (2-9) 

 

The FENE potential is described as 

2

2

0 0

0

0

0.5 ln 1
( )

,

ij

ij

FENE ij

ij

r
kR ,     r R

RU r

                                       r R

   
     

    

 

                    (2-10) 

Where 230 /k   , 0 1.5R  . In this model, bond length of equilibrium 0l  is about 0.96 . 

The standard reduced units were used in simulation: All physical quantities were expressed in terms of 

 , m , and  . All beads interact with each other via the WCA and FENE potentials as shown in figure 

2.2.1 (b). 
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2.3 Simulation details 

Table 1 Description of the simulated systems. Here M denotes the number of molecules in 

system, N the number of atoms (or beads) per molecule. Each system consists of 

monodisperse polymer chains. 

Systems M N Box length X Box length Y Box length Z 

United-atom model 

in monolayer 

100 50 189.51 Å  189.51 Å  6.48 Å  

100 100 260.84 Å  260.84 Å  6.48 Å  

100 150 317.10 Å  317.10 Å  6.48 Å  

100 250 407.64 Å  407.64 Å  6.48 Å  

100 500 575.55 Å  575.55 Å  6.48 Å  

Kremer-Grest in 

linear (ring) 3D 

400 30 31.67(31.55)   21.11(21.03)   21.11(21.03)   

160 50 21.11(21.03)   21.11(21.03)   21.11(21.03)   

160 70 29.56(29.44)   21.11(21.03)   21.11(21.03)   

120 100 31.67(31.55)   21.11(21.03)   21.11(21.03)   

80 150 31.67(31.55)   21.11(21.03)   21.11(21.03)   

135 200 31.67(31.55)   31.67(31.55)   31.67(31.55)   

Kremer-Grest in 

ring 2D 

30 30 38.73   38.73   0 

50 50 64.55   64.55   0 

70 70 90.37   90.37   0 

100 100 129.10   129.10   0 

150 150 193.65   193.65   0 

200 200 258.20   258.20   0 

 



16 

 

.

 

Figure 2.2.2 (a) Realistic wall where wall atoms are successively connected to each other at a specified 

distance. (b) Ideal smooth wall where wall atoms are connected to each other at an infinitely short distance. 

(c) Polymer chains are confined in-between the top and the bottom ideal smooth walls. 

 

Initial configurations of systems were prepared using the Materials Studio software package.27 We 

imposed the WCA potential in both the upper and bottom z-axes which act as ideal smooth wall. Figure 

2.2.2 shows the feature of the ideal smooth wall in comparison with the realistic wall. After being confined 

by two ideal smooth walls, the initial configuration of system was prepared in an isothermal-isobaric(NPT) 

statistical ensemble using the Nosé–Hoover thermostat and barostat.  

After equilibration of the initial system configuration, the system density was converged and selected for 

subsequent NVT MD simulations. Figure 2.3.1 shows the converged density profile as a function of chain 

length. These results were also used for choosing a proper density for 2D Kremer-Grest model systems. 

Each system was simulated more than 10 times longer than its longest relaxation time. To make unknotted 

and unconcatenated ring configurations with the Kremer-Grest model of 3D systems, we built a system 

configuration in 2D and stack up the 2D configuration until the simulation box was completely filled with 

chains at the specified density. For efficient equilibration, we applied a soft potential26 whose strength 

became increased gradually during a initialization step. After equilibration, the soft potential was replaced 

by the actual WCA potential. A similar procedure was used in constructing 2D ring systems. 

(a) (b)(b)
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Figure 2.3.1 Density of the simulated ring melts. 2D ring systems converge between 0.5~0.6 values 

which are smaller than those of 3D systems. 

 

 For NVT MD simulations for ring systems with the Kremer-Grest model, we adjusted the system density

as corresponding to that based on the united-atom model. Both the linear and ring systems using 3D Kremer-

Grest model used the same density as  = 0.85 3   while the ring systems using 2D Kremer-Grest model 

adopted  = 0.6 3  . Simulation details are described in Table 1. Snapshots of atomic configurations of the 

Kremer-Grest 2D model system were displayed in figure 2.3.2. 
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Figure 2.3.2 Snapshots of projected onto (a) xy-plane and (b) xz-plane for a ring melt using the united-atom 

model. Corresponding ones of (c) xy-plane and (d) xz-plane for a ring melt using Kremer-Grest model in 

2D. 

 

Figure 2.3.3 Ring configurations: (a) Knotted structure, (b) concatenated structure, (c) collapsed structure, 

and (d) penetrated structure. 

(a)

(b)

(c)

(d)

(a)

(c) (d)

(b)
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The Knotted and concatenated structures are presented in Figure 2.3.3 (a) and (b). These configurations 

were completely excluded in the simulations. Respecting unknotted and unconcatenated ring structures, we 

picture two different ways in molecular arrangement for ring melts, distinct from the linear analogues: One 

is a collapsed configuration and the other one is a penetrated configuration. 

III.  Results and discussion 

3.1 Static and dynamic properties in 3D comparing with linear polymer 

 

The mean square chain radius of gyration of polymer can be described by a scaling behavior with 

respect to the number of atoms (beads) in the form of 

2 ~gR N                                  (3-1) 

 

where   is Flory’s scaling exponent.1,2,6,14 Regardless of the molecular architecture, both the linear and 

ring polymer melts have =1/2 when chain lengths are short enough for applying the Rouse model.1,5,6 As 

the chain length increases, ring polymer’s   value becomes smaller than 1/2 value due to the constraints 

of ring topology. Cate and Deutsch34 showed that   value for ring polymer would converge to 2/5 based 

on a Flory-like self-consistent theory. Suzuki et al. reached a conclusion that the   value approaches 1/3 

with a modified self-consistent theory.14 

 

 

 

The modified self-consistent theory in 3D evaluates the free energy per ring polymer in melt systems by 

taking into account an entropic penalty of polymer chain and an osmotic pressure from the neighboring 

chains. For simplicity, we denote 
2

gR   as R . The free energy ( , )F N R  per ring polymer in melt 

systems is described as: 

( , ) ~ ( , ) ( , )osm entF N R F N R F N R                       (3-2) 

2

3 2

2 2

1 1 4
~

3

N
R N R

N R R

  
   

  
               (3-3) 



20 

 

We can obtain the minimum value of the free energy at ( , ) / 0dF N R dR  , leading to 

 

2 3

2

( , ) 64 4 8
~ 0

9 3

dF N R R N

dR N R

 
                         (3-4) 

 

From equation (3-4), we can obtain a scaling relationship between R and N : 

1/3~R N                                     (3-5) 

 

From this result, we can conclude that Flory’s exponent of ring systems in 3D will approach to1/3.  

 

 

Figure 3.1.1 Results14 for <Rg
2>linear and <Rg

2>ring in NVT MC simulations. Ring polymers ranging from 

10 to 1000 beads and linear polymers ranging from 10 to 512 beads. 

 

Figure 3.1.1 shows the results of Suzuki et al.14 This results were calculated using NVT Monte Carlo 

simulation with the bond fluctuation model (BFM). 28-30 The   value of ring polymer approaches 0.365 

when the number of beads is equal to 1000. 

 

 

Figure 3.1.2 (a) <Rg
2>linear and <Rg

2>ring in NPT MD simulation; ring polymers ranging from C78 to C400 
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and linear polymer ranging from C50 to C400 (united-atom model) (b) <Rg
2>linear and <Rg

2>ring in NVT MD 

simulation; both ring and linear polymers range from 30 to 200 (Kremer-Grest) beads. 

 

MD simulations were also carried out to understand dynamics of ring polymers in melt. We simulated 

both the united-atom model and the Kremer-Grest model systems. The chain length was in intermediate 

regimes so the   value is higher than 1/3. The results displayed in Figure 3.1.2 shows that   slightly 

decreases with increasing chain length. Other studies using MD simulations show a similar behavior to our 

result.15,16 The longer chains would be necessary for analyzing large ring polymer dynamics. 
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Figure 3.1.3 (a) Linear polymer int ( )erg r  of C78 and C400 (united-atom model) using NVT MD 

simulations. (b) Ring polymer int ( )erg r  of C78 and C400 (united-atom model) using NVT MD simulations. 

(c) Linear polymer int ( )erg r  ranging from 30 to 150 (Kremer-Grest model) using NVT MD simulations. (d) 

Ring polymer int ( )erg r  ranging from 30 to 150 (Kremer-Grest model) using NVT MD simulations. 

Figure 3.1.3 represents the intermolecular radial distribution function int ( )erg r  for linear and ring 

polymer melts based on the united-atom model and the Kremer-Grest models. The two models employed 

the same number of atoms (beads) for the corresponding linear and ring analogues. int ( )erg r of ring 

polymers is found to be always smaller than that of the linear analogues.  

 

These results show that ring polymers have strong correlation in individual chain structure. The gap 
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between different chain lengths of intermolecular radial distribution are more sharply changed in ring 

melts with both united-atom model and Kremer-Grest model. These results may be evidence for a 

collapsed structure of ring polymers in melt. 

 

 

Figure 3.1.4 (a)Relaxation time in NVT MD simulation; ring polymers ranging from C78 to C400 and 

linear polymers ranging from C50 to C400 (united-atom model). (b) Relaxation time in NVT MD 

simulation, both ring and linear polymer range from 30 to 200 (Kremer-Grest bead) 

 

The longest relaxation time of system is related with stress relaxation and viscosity. Long entangled 

linear polymers are well-known to exhibit a plateau regime in stress relaxation and 3.4 power law in 

viscosity and the longest relaxation time. 

 

 These results had proven by many experiments and simulations. Our simulation data also confirm this 

behavior in the case of linear polymers. Both linear and ring polymers follow the Rouse model in a short 

chain length regime. Beyond this regime, linear polymers follow the general feature of 3.4 power law. 

However, ring polymer systems do not exhibit the same behavior as linear systems. Ring polymers 

maintain the Rouse-like behavior with a slight larger value than 2.0 of the scaling exponent. These well-

known ring properties were also proved by measuring stress relaxation.12,13 
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Figure 3.1.7 (a) Diffusion coefficient in NPT MD simulations by Hur et al.15 for ring polymers ranging 

from C40 to C1500 and linear polymer ranging from C40 to C512 (united-atom model). (b) Diffusion 

coefficient in NVT MD simulation for ring and linear polymers range from 30 to 200 (Kremer-Grest 

bead). 

 

Linear polymers in melt systems exhibit a relation between the chain center-of-mass diffusion 

coefficient and stress relaxation time from the Rouse to the reptation regimes. The diffusion coefficient 

can be described by the following relations: 

2~ /cm g longestD R                                        (3-6) 

2 1~ / ~cmD N N N 
,    For Rouse regime                   (3-7) 

3.4 2.4~ / ~cmD N N N 
,  For entangled regime                (3-8) 

 

These relations cannot be applied to ring polymers. While the stress relaxation of ring system follows a 

Rouse-like behavior, the chain center-of-mass diffusion coefficient follows the scaling of entangled linear 

systems. 

 

The chain length was not long enough to analyze dynamics of very large ring polymers with being 

characterized as 1/3 for the   value. These results match with ring polymer of intermediate chain 

lengths. In the intermediate regime in chain length, penetration between ring chains is considered to make 

an important effect in ring dynamics.31 
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3.2 Structural and dynamic properties in monolayer and strict 2D 

 

Figure 3.2.1 Probability distribution of the mean square chain radius of gyration for ring and linear melts: 

(a) C50 to C500 ring, (b) C300 to C500 ring, (c) C50 to C500 linear, (d) C50 to C500 linear polymers, 

based on the united-atom model in monolayers. The corresponding results for (e) 30 to 200 ring and (f) 30 

to 200 linear polymers, based on the Kremer-Grest model in confined 2D 
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We designed MD simulations in monolayer and confined 2D systems for understanding the collapsed 

structural effect with excluding the ring penetration effect. Several properties were calculated for the 

systems. We maintain other properties being same for 3D system. We calculated proper densities for each 

simulation and simulated NVT MD using both United-atom model with monolayer and Kremer-Grest model 

in 2D. 

 

Figure 3.2.1 show Probability distribution of the mean square chain radius of gyration for linear and ring 

polymers in monolayer and confined 2D. Linear and ring polymers of short chain length in monolayer show 

a non-Gaussian distribution. On the other hand, linear and ring polymers in confined 2D show nearly similar 

distribution regardless of chain length except for 30 ring system. There are several reasons for these results. 

First, the monolayer systems adjusted by NPT MD simulations find an appropriate density for (T=450K 

and P=1 atm), so short chain systems have lower density. Second, chains are stiffer by restriction of the 

bond-bending and bond-torsional interactions, so a longer length scale between atoms are needed for 

eliminating a correlation between atoms. We selected chains which have a similar distribution for 

understanding ring polymer dynamics in 2D collapsed system. 
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Figure 4.2.2 (a) Torsional Auto correlation (b) distribution of bond length (c) distribution of bond bending 

(d) distribution of torsional angle, in NVT MD with monolayer 

 

We eliminated the z-dimension in confined 2D Kremer-Grest model systems. In contrast, the monolayer 

systems with the united-atom model were allowed for moving in the z-direction. We checked the system 

properties in small length and time scales for justifying the validity of our simulation systems. Figure 

3.2.2 shows torsional auto correlation functions of 2D systems which exhibit a similar behavior to that of 

the 3D systems. As chain length increases, the relaxation time is shown to decrease and converge in about 

5ps in ring polymers. Distributions of bond length, bond angle, and bond torsional appear very close to 

3D simulation. These result demonstrates that the monolayer does not influence behaviors of polymer in 

very small length and time scales. 
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For calculating the   value when the collapsed effect reaches a maximum like 1/3 in 3D, we slightly 

changed the modified self-consistent theory14 for 2D. We calculated the free energy per ring polymer in 

melt systems with considering only an osmotic pressure from the neighboring molecules. The total free 

energy ( , )F N R  for ring polymer in melt systems as: 

( , ) ~ ( , )osmF N R F N R                                  (3-9) 

 
2

21 1
~ R N R

N R


 
 

 
                       (3-10) 

We can obtain the minimum value of the free energy at ( , ) / 0dF N R dR  , as described by: 

 

2

2

( , ) 6
~ 2 0

dF N R R N

dR N R


                         (3-11) 

From equation (3-11), we can obtain the R and N relationship: 

1/2~R N                                     (3-12) 

From theis result, we can conclude the maximum   value as 1/2 in 2D 

 

 

Figure 3.2.3 (a) <Rg
2>ring in NVT MD with monolayer; ring polymer ranging from C50 to C500 (united-

atom model). (b) <Rg
2>ring in NVT MD in confined 2D; ring polymer range from 30 to 400 (Kremer-Grest 

bead) 
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Figure 3.2.3 shows both monolayer systems and confined 2D systems. Confined 2D systems exhibit 1/2 

for  . Monolayer systems are not perfect 2D system, so these systems have slightly lower value than 

1/2. The   values were converged in very short chain length regime as compared with 3D systems. This 

result presents that 2D systems has more dominant collapsed effect than 3D systems. All chains in 2D can 

be considered 100% collapsed, so the analysis of 2D ring systems may show a similar behavior of very 

long 3D 100% collapsed ring polymers. 

 

Figure 3.2.4 (a) Linear polymer int ( )erg r  of C50 and C250 (united-atom model), NVT MD with monolayer. 

(b) Ring polymer int ( )erg r  of C50 and C250 (united-atom model), NVT MD with monolayer. (c) Linear 

polymer int ( )erg r  ranging 50 to 150 (Kremer-Grest model) ,NVT MD in strict 2D. (c) Ring polymer

int ( )erg r  ranging 50 to 150 (Kremer-Grest model) , NVT MD in strict 2D 
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Monolayer and confined 2D intermolecular radial distributions are displayed in figure 3.2.4. The two 

model systems use the same number of atoms (beads) for comparing between linear and ring polymers. The 

intermolecular radial distribution of 2D systems exhibits a different shape than that of 3D case. The curves 

of ring polymers are shown to be below those of the counterpart linear ones as 3D systems. In 2D systems, 

the collapsed effect appears regardless of molecular architecture, so the gap in the intermolecular radial 

distribution between different chain length polymers are found to be similar for both linear and ring systems. 

 

 

 Figure 3.2.5 (a) Relaxation time in NVT MD simulation; ring polymer ranging from C78 to C400 and 

linear polymer ranging from C50 to C400 (united-atom model). (b) Relaxation time in NVT MD simulatiosn, 

both ring and linear polymer range from 30 to 400 (Kremer-Grest bead) 

 

Figure 3.2.5 presents results of the longest relaxation time for both monolayer and confined 2D systems. 

These results follow the Rouse-like scaling. 3D ring polymers in an intermediate range of chain length show 

a similar behavior with slightly larger scaling exponent. The scaling of the longest relaxation time in 2D 

ring polymers exhibits the following form: 

N , 2                                (3-13) 
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Figure 3.2.6 (a) Diffusion coefficient in NVT MD with monolayer; ring polymer ranging from C50 to C500 

(united-atom model). (b) Diffusion coefficient in NVT MD in confined 2D; ring polymer ranging from 30 

to 400 (Kremer-Grest bead) 

 

The chain center-of-mass diffusion coefficient is shown in figure 3.2.6. While the diffusion coefficient of 

monolayer systems does not require a special treatment, the confined 2D systems need to account for the 

finite size effect.35 Both diffusion coefficients show a similar behavior. The scaling of these coefficients is 

significantly different from an intermediate 3D scaling. The relation between atoms (beads) and self-

diffusion coefficient can be expressed as: 

 

cmD N 
, 1                         (3-14) 
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3.3 Expectation of 3D large ring polymer dynamics 

 

Figure 3.3.1 (a) C400 (united-atom model) in NVT MD; a blue chain gets tangled by surrounding chains. 

(b) After 3.76 ns, the blue chain has escaped from the surrounding chains 

 

The results of 2D ring polymer in melt show significantly different behavior in the chain center-of-mass 

diffusion behavior. We do not yet understand a detailed molecular mechanism of ring polymer in 

intermediate and very long regimes of chain length. Penetration effect is also considered to be important 

for the intermediate regime of chain length as mentioned above. Figure 3.3.1 (a) shows that a ring (blue) 

chain is tangled with other surrounding chains. Figure 3.3.1 (b) shows that the blue chain has escaped from 

the surrounding chains after a certain time. The time required for the escape was found to be widely varied. 

The quantification of the penetration time scale is challenging, so additional works are needed.32,33 

The collapsed effect makes a contribution to decreasing Flory’s exponent   value and penetration effect 

makes a contribution in the opposite way to the collapsed effect. The result of 3D ring polymer in melt 

systems show that Flory’s exponent   value would reach 1/3 as the chain length increases. At this length 

regime, the penetration effect is nearly negligible and dynamics of ring polymers is determined only by the 

collapsed effect. As such, the 2D simulation results can be useful in making a prediction for very long 3D 

ring polymer dynamics. 
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I.  Conclusions 

 

The molecular architecture differences of ring polymer gives rise to the topological constraint effects. 

These topological effects make ring polymer dynamics different from linear polymer dynamics. The present 

work can be summarized into three main findings. First, the Flory’s exponent value for collapsed structures 

is 1/2 in 2D melt systems even for small chain lengths. Second, the longest relaxation time has a Rouse-

like scaling behavior of N , 2  . Finally, the self-diffusion coefficient has an abnormal scaling 

behavior of
cmD N 

, 1    

In future work, we will focus on the collapsed effects in 3D system by considering several different 

systems. We can easily make collapsed 3D systems by using modified bond repulsive potential which 

prevents penetration between chains. Adding an additional collapsed potential toward the chain center of 

mass is also a good way of making an effective collapse. Quantifying the effect of collapse on the self-

diffusion coefficient would be important. Simple 2D systems can be useful in studying molecular 

mechanisms of ring polymers in melts. 
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