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Inertial Sensor Based Fall Risk Assessment and System

Development for the Community-dwelling Older People

Hai Qiu

ABSTRACT

Along with the global trend of population ageing, falls present a substantial public health problem among

elderly people over the age of 65. The objective of this research was to develop a low-cost, portable and

inertial sensors based tool for assessing falls risk in the older people. To achieve this goal, three stages

of studies have were conducted. The first stage aimed to design a test protocol based on the human

balance system for assessing the risk of falling. The test protocol consisted of seven main tests, i.e.,

sensory integration test, limits of stability test, sit-to-stand five times test, timed up and go test, motor

function test, reaction test, and short falls efficacy scale international. Another study was also conducted

to examine the effectiveness of developed reaction test APP (application) on assessing cognitive function

and fall risk in elderly people. The second stage aimed to conduct large-scale experimental studies to

examine the effectiveness of the test protocols on classifying fallers and non-fallers and identifying the

underlying causes of high risk of falling. The final stage aimed to develop an inertial sensor-based

fall-risk assessment prototype system to assess fall risk for future use with elderly people.

In terms of classifying fallers and non-fallers, we found that the fallers had worse performances than non-

fallers on physiological, psychological and integrated functions of the human balance system. Among

all fall-risk measures, ten most important measures were the information processing speed in the reac-

tion test, short falls efficacy scale international score in fear of falling test, power density spectral (PSD)

of acceleration medio-lateral (ML) for the vision system, angular velocity anterior-posterior (AP) for

the vision system, PSD of angular velocity AP for postural stability, sit-stand jerk in the sit-to-stand five

times test, PSD of angular velocity AP for the vision system, sit-stand duration in sit-to-stand five times

test, angular velocity AP in timed up and go test, and maximal turning angular velocity in timed up and

go test. Furthermore, six typical models were developed to classify fallers and non-fallers based on sig-

nificant measures, including logistic regression (LR), linear discriminant analysis (LDA), classification

and regression tree (CART), boosted tree (BT), random forest (RF), and support vector machine radial

basic function (SVMRBF) models. The results indicated that the BT, RF, and SVMRBF models had

excellent accuracy (>85%). The CART model had good accuracy (>75%), but the LDA and LR models

had relatively low accuracies of about 70%. In order to identify the underlying causes of high fall risks,
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the CART-PA method, which integrated the CART model and profile assessment method, was proposed

to identify the factors of high risks of falling. The CART-PA method could generate reinforced results

from these two methods, which not only identifies the main factors but also possible factors of high fall

risks. Therefore, the CART-PA method could be a useful complementary tool for identifying underlying

causes of high fall risks. Fall assessment prototype system included two parts, i.e., hardware and soft-

ware. The hardware contained five wireless inertial sensors and one wireless data transmission device.

The software was developed to filter and process the data, derive the measures, and assess the risk of

falling. Compared with available systems in the market, our inertial sensor based prototype system was

very promising in terms of powerful functions, portability and low-cost on assessing fall risk of the older

people.

The findings from this study and the developed prototype system could be incorporated into clinical

practice to reliably identify “at-risk” individuals and to diagnose the underlying risk factors of falls in

advance so that appropriate interventions can be implemented to reduce elderly people’s risk of falling.

Such a system could improve their quality of life and reduce costs in the healthcare system.
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Chapter 1

Introduction

1.1 Research Background

Falls present a substantial public health problem in older population (Kim and Robinson, 2005). Ap-

proximately one third of those aged 65 or over experience at least one fall per year (Rubenstein, 2006).

As the age increases from 65 to 85 years old, fall rate increases from 30% to 50% and fall frequency

increases from 1 to 3 or more (Lord et al., 1993). Falls are a leading cause of non-fatal injury and death

in older people (Yu et al., 2013). They accounted for 95% of hip fractures (Parkkari et al., 1999), 40% of

injury-related deaths (Lord et al., 2007) and 70% of accidental deaths in persons aged 75 years and over

(Fuller, 2000). Falls not only result in serious consequences on physiological functions such as mobility,

but also induce the fear of falling (Bell et al., 2000). The fear of falling causes old people to limit their

activities, which will consequently enhance the loss of mobility and physical fitness, and in turn increase

their risks of falling (Vellas et al., 1997). Furthermore, the average treatment cost of a fall ranges from

$3476 per fall to $10749 for an injurious fall and $26483 for a fall requiring hospitalization. The annual

cost of non-fatal and fatal falls was around $23.3 billion (2008 prices) in the US (Davis et al., 2010).

Fall-related injuries have been considered as an outgrowing economic burden (Sartini et al., 2010) and

parts of ’Global Burden of Disease’ by World Health Organization (Mathers et al., 2008).

Fall prevention and management, which aims to reduce the risks of falls and to avoid or mitigate fall-

related injuries, includes three areas. These areas are fall prevention (before a fall event), fall detection

1
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and monitoring (fall tracking), and post-fall management (after a fall event) (Taylor et al., 2005). Before

a fall occurs, fall prevention intends to predict fall risk, identify the risk factors of falls, and design an

intervention strategy. Fall detection concerns issuing an alert once a fall occurs, to request immediate

help from family members or health care service center (Gurley et al., 1996). Post-fall management

involves careful evaluation and investigation to identify risk factors and to prevent future incidents after

a fall occurs (VA National Center for Patient Safety, 2015). The negative consequences resulting from

falls are always irreversible. Fall prevention provides the methods to avoid the related injuries before a

fall occurs. Therefore, compared with fall detection and post-fall management, fall prevention is a more

effective way to reduce fall-related injuries and injury-related health care cost. In this regard, a great

number of studies have been done to assess fall risks and design interventions to prevent falls before

a real fall happens (Hamacher et al., 2011; Howcroft et al., 2013; Piirtola and Era, 2006; Rubenstein,

2006).

Fall prevention comprises fall risk assessment and fall intervention (Rubenstein, 2006). Fall risk assess-

ment aims to predict the fall risks of a person and then identify important risk factors of falls if the person

is at a high risk. Once the risk factors are determined, fall intervention will be utilized to improve the

physiological performance of the person through therapeutic approaches or rehabilitation programs. A

great number of measures were found to be useful on distinguishing fallers and non-fallers (Hamacher

et al., 2011; Howcroft et al., 2013; Piirtola and Era, 2006). For example, the temporal measures of swing

and stance in gait patterns were the most effective in distinguishing fallers and non-fallers (Hamacher

et al., 2011). Amplitudes of acceleration and angular velocity from inertial sensors also showed signifi-

cant differences between fallers and non-fallers (Greene et al., 2012). In addition, Michael et al. (2007)

indicated that many falls could be prevented through customized multi-component interventions. They

also found that exercise programs, rehabilitation, medication management, and treatment of vitamin D

deficiency were some of the most effective single interventions.

Therefore, this research would mainly focus on fall risk assessment. The outcomes from this research

are expected to be useful for identifying the high risk individuals and identifying the underlying causes

so that proper interventions can be developed to efficiently prevent falls.
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1.2 Literature Review

1.2.1 Fall risk factors

A fall is usually defined as ”an event which results in the person coming to rest inadvertently on the

ground or other lower level, and other than as a consequence of the following: sustaining a violent

blow, loss of consciousness, sudden onset of paralysis, or an epileptic seizure.” (Kennedy, 1987). The

occurrence of a fall is a multi-factor phenomenon among the elderly (Kenny et al., 2011). A large

number of risk factors of falling (Masud and Morris, 2001) have been identified among the old people.

These factors are broadly classified into two major categories (Lajoie and Gallagher, 2004): intrinsic

and extrinsic factors.

Intrinsic factors include characteristics of the individual. Some are demographic factors, such as age

and gender. As the age increases, human’s physiological abilities declines, which results in high fall

risks of old adults. The Center for Disease Control and Prevention (CDC) reported that fall injuries rate

among people aged 75 or over was four or five times higher than people aged between 65 and 70 in Unite

State (Centers for Disease Control and Prevention, 2015). Women were reported to be 58% more likely

than men to suffer a nonfatal fall injury (Dunlop et al., 2002). Other factors are related to physiological

function, such as vision, vestibule, cognitive function, muscle strength and gait pattern. Impaired depth

perception was found to be one of the strongest visual risk factors for multiple falls (Salonen and Kivelä,

2012). Vestibular dysfunction could result in impairments in posture and gait, characterized by postural

instability and a broad-based, staggering gait pattern with unsteady turns (Sturnieks et al., 2008). More-

land et al. (2004) found that for lower extremity weakness, the combined OR is 1.76 (95% CI=1.31-2.37)

for any fall and 3.06 (95% CI=1.86-5.04) for recurrent falls. In a meta-analysis of 27 studies, Muir et

al. (2012) found that many measures of cognitive impairment were associated with increased fall risk

(OR=2.13 CI=1.56-2.90). Gait disorders have been considered as one of strongest risk factors of falls in

multiple review studies (Deandrea et al., 2010; Hamacher et al., 2011). Additionally, psychological char-

acteristics also were important intrinsic factors, such as depression and fear of falling. The depression

are common in certain neurological conditions such as stroke, Parkinson’s disease, Alzheimer’s disease,

and dementia (Boswell and Stoudemire, 1996; Wang et al., 2012). As a result, these patients would have

limited mobility and poor balance ability, and thus predispose to falls. The fear of falling also has been

identified as one of the key symptoms of ’past-fall syndrome’ (Legters, 2002). Individuals with fear of
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falling intended to avoid activities that could result in movement restriction and loss of independence.

(Legters, 2002).

Extrinsic or environmental factors comprise all influences external to a subject, such as poor lighting,

obstacles, slippery floor or loose rugs, lack of support such as stair railings or grab bars, poor fitting

footwear (Ambrose et al., 2013; Hamacher et al., 2011). Poor lighting and obstacles inside the house,

such as loose rugs may increase the risk of falls, especially for individuals with a visual impairment

(Menz et al., 2006). Footwear is another import factor that affects postural stability and hence results

in accidental falls (Menz et al., 2006). A large number of older adults tend to wear slippers while they

are at home (Koepsell et al., 2004). In a systematic review, Menant et al. (2008) reported that older

people who wore slippers had a higher fall risk score than those whom walked barefoot or with fastened

shoes. Walking barefoot or with socks can also increase the risk of falling by up to 11 fold compared

with walking with athletic or canvas shoes (Menant et al., 2008; Tencer et al., 2004).

Until now more than 400 risk factors of falls have been proposed in previous studies (Hamacher et al.,

2011). Thus, the next important step is to identify the factors of high importance among all these factors.

In a recent review of 12 studies, Inouye et al. (2007) identified older age, functional impairment, use

of assistive device such as a walking aid, cognitive impairment or dementia, impaired mobility or low

activity level, and balance abnormalities as the main causes of falls in older adults. Ganz et al. (2007)

also reported that the most consistent predictors of future falls were clinically abnormal gait or balance

disorders (likelihood ratio range: 1.7-2.4). Two more recent systematic reviews also found that gait and

balance were major factors that were the most highly correlated with fall risk (Ambrose et al., 2013;

Tinetti and Kumar, 2010). According to these studies, almost important factors were intrinsic factors.

Therefore, intrinsic factors (particularly gait and balance) can not only be quantified, but also have

consistently been considered as the major risk factors of falls.

1.2.2 Fall related factors based on human balance system

Human balance refers to the ability of a person not to fall (Pollock et al., 2000). As human being are

bipeds with both feet on the ground during standing, one foot in contact when walking, and no feet

in contact during running, it is a major challenge to keep balance. Since two-thirds of our body mass

is located two-thirds of body height over the ground, we are in an inherently unstable status unless
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a control system is continuously acting to achieve balance. This control system is also called human

balance system (Watson and Black, 2008; Winter, 1995).

The human balance system involves complex components of sensorimotor-control systems (Figure 1.1),

which includes sensory inputs from the vision, somatosensory system, and vestibular system; integra-

tion of sensory inputs; and motor output to the appropriate body segment (Winter, 1995). In sensory

systems, vision is a system which is primarily involved in planning our locomotion, and in avoiding

obstacles along the way. The vestibular system is our ’gyro’, which senses linear and angular acceler-

ations. The somatosensory system is a multitude of sensors that sense the position and velocity of all

body segments, their contact (impact) with external objects (including the ground, and the orientation of

gravity). The information from the sensory systems is sent to the central nervous system (CNS) in the

brain stem. There, it is sorted out and integrated with learned information contributed by the cerebellum

(the coordination center of the brain) and the cerebral cortex (the thinking and memory center). As sen-

sory integration takes place, the brain stem transmits impulses to the muscles that control movements of

the eyes, head and neck, trunk, and legs, thus allowing a person to both maintain the balance and also

have clear vision while moving.

FIGURE 1.1: Components of human balance control system for achieving balance (Watson and Black,
2008) .

In addition, balance control is very complex process and involves many different underlying systems
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(Horak, 2006; Horak et al., 1989; Kandel et al., 2000). Horak et al. (2009) proposed six underlying

balance control systems based on the tasks in the Balance Evaluation Systems Test (BESTest). These

underlying systems are biomechanical constraints, stability limits/Verticality, anticipatory postural ad-

justments, postural response, sensory orientation, and stability in gait. Each underlying system was

found to be controlled by independent neural mechanisms (Horak et al., 1989, 2009). Many different

tests have been designed to evaluate these underlying systems, for example center of mass alignment

test in biomechanical constraints, functional reach test in stability limits, sit to stand five times test in

anticipatory postural adjustment, in-place response test in postural responses, sensory integration test in

sensory orientation, and timed up and go test in stability in gait (Horak et al., 2009).

Therefore, fall related factors are associated with three main system functions: the physiological func-

tion, psychological function and integrated function. The physiological function is about the function

of individual components of the balance control system (Watson and Black, 2008). In addition to the

physiological function, the psychological function was also found to affect fall risks, such as fear of

falling. Fear of falling has been identified as one of the key symptoms of ‘past–fall syndrome’ and it has

been recognized as a specific health problem among older persons (Legters, 2002). Integration function

is related to the underlying systems in human balance control. It can be classified into six categories:

biomechanical constraints, sensory orientation, stability limits, anticipatory postural adjustments, postu-

ral response, and stability in gait (Horak et al., 2009).

1.2.3 Fall risk assessment methods

Many different tools and technologies have been applied to assess fall risk. These methods can be

classified into subjective and objective evaluations. Subjective evaluation is related to rate the subject’s

performance based on human judgment. Due to the low cost and convenience in practice, subjective

evaluation tools are quite popular among the existing clinical methods. For example, the Berg Balance

Scale (BBS) was a widely used clinical test to measure a person’s static and dynamic balance ability

(Berg et al., 1992). The test comprises a set of 14 simple balance related tasks, ranging from standing

up to standing on one foot. BBS was found to be one of the effective fall predictors for falls within

old adults (Shumway-Cook et al., 1997). Falls efficacy scale-international (FES-I), which evaluates

how much concerns of falls affect activities of daily living, is a commonly used tool measuring fear of
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falling (Yardley et al., 2005). FES-I also showed a good ability on differentiating fallers and non-fallers

(Helbostad et al., 2010).

However, subjective evaluation is always influenced by observer’s personality and experience. On the

other hand, objective evaluation qualifies a subject’s performance by the equipment and is impartial

without bias or prejudice. Based on the equipment, it includes some clinical tools such as timed up and

go test using a stopwatch, posturography using force plate, optical motion capture system, and inertial

sensors. Some objective clinical assessment tools are very popular due to the simplicity and convenience.

For example, timed up and go test is a simple test that is used to assess a person’s mobility (Podsiadlo

and Richardson, 1991). In the test, a person is asked to rise from a chair, walk three meters, turn around,

walk back to the chair, and sit down. Previous studies showed that the timed up and go (TUG) test was

a useful tool for distinguishing fallers and non-fallers (Beauchet et al., 2011). But clinical assessment

tools have limited measures. For example, duration is the main objective measure in the TUG. Many ad-

vance equipment based methods were also utilized to assess fall risks. Posturography is the quantitative

assessment of postural sway during standing using a force plate. It contains static and dynamic condi-

tions. Static posturography consists of assessing postural control while subjects maintain their stance

in a relatively unperturbed state. Dynamic posturography consists of assessing the subject’s postural

control in the presence of experimentally induced external perturbations. This can be done by means of

a foam cushion, a special apparatus with a movable support surface, or by applying external perturba-

tions directly to the body, for example by pushing/pulling the trunk, shoulders or pelvis (Visser et al.,

2008). For example, sensory perturbation is to separate the sensory inputs for postural control by using

foam cushion or movable support surface. In the Balance Master Pro (Neurocom Inc.), a commercially

available system, the Sensory Organization Test (SOT) is designed to measure the visual, vestibular, and

somatosensory systems (Baker, 2003). Different from posturogarphy using the force plate, optical mo-

tion capture system is commonly used to assess the mobility and gait stability. Gait stability measures,

such as walking velocity, step width, swing and stance time, were found to be significant measures on

distinguishing fallers and non-fallers (Hamacher et al., 2011).

Recently, researchers have showed a great interest in using wireless wearable inertial sensors to assess

fall risks (Howcroft et al., 2013). The inertial sensor is a combination of an accelerometer, a gyro-

scope and a magnetometer that can measure the accelerations and angular velocity of body movement.
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Compared with the force plate and optical motion capture system, the wireless sensors have big ad-

vantages on low cost, small size, and portability. Additionally, inertial sensors can be used to measure

postural stability during the standing, as well as gait stability during walking or running. Mancini et al.

(2011) have demonstrated that postural sway measures derived from sensor data can generate similar

sway characteristics as measures from the force plate. Inertial sensor based postural stability measures

also showed significant differences between fallers and non-fallers during quite standing (Greene et al.,

2012). Furthermore, gait stability measures could be extracted from the sensor raw data, such as stride

velocity, stride width, cadence, swing time and stance time (Zijlstra and Hof, 2003). These measures

also demonstrated the significant differences between fallers and non-fallers during timed up and go test

(Greene et al., 2010a).

1.3 Research Rationale

The literature review showed that many studies have designed different tasks and utilized different tech-

nologies to assess fall risks. However, there are still some gaps in the current fall risk assessment methods

that need to be filled.

Firstly, since falls are multifactorial phenomenons, more than 400 risk factors were found to be associ-

ated with falls from previous studies (Hamacher et al., 2011; Oliver et al., 2004). However, many factors

used to assess fall risk were uncontrollable or unmodifiable. Some environmental factors are generally

uncontrollable, such as lighting, surface roughness, obstacle or external perturbations (Hamacher et al.,

2011). Other factors are inherent properties of human being, for example demographic factors such as

age and gender (Ambrose et al., 2013). Additionally, many studies used only parts of factors to assess

fall risks. For example, the study of physiological profile assessment (PPA) only focused on the individ-

ual components of physiological systems that were associated with falls (Lord et al., 2003b). Horak et

al. (2011) argued that integration functional ability was not only dependent on individual components of

physiological system function, but also had compensations between the systems, remaining resources,

experience and other factors. PPA was limited to individual function evaluation, so Horak et al. (2009)

proposed BESTest methods to assess integration function of systems in different tasks. However, both

PPA and BESTest did not consider the psychological characteristics of a person such as fear of falling,

which had been found as a common problem in fallers even non-fallers (Legters, 2002). Even though
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PPA included many physiological factors and BESTest developed the approaches to assess integration

system functions, few studies selected fall risk factors systematically, which could include individual

physiological function, psychological function and integration function. Consequently, if the selected

factors were not systematic, the underlying reasons of falls may be not identified due to the absence

of some factors. Among risk factors, central nervous system (CNS) integrates the inputs from sensory

systems (vision, vestibular and somatosensory systems) and responds as adjusting muscles and joints

to achieve balance (Horak, 2006; Winter, 1995). It has been documented that cognitive processing was

the required resource for postural balance control (Horak, 2006). Neuropsychological testing assesses a

range of cognitive abilities such as memory, attention and concentration, information processing speed,

executive function, reasoning, etc (Harvey, 2012; Kulas and Naugle, 2003). The literature showed that

reaction time has been widely used to measure the information processing speed (Lajoie and Gallagher,

2004). Previous studies of older people found that increased simple reaction time (SRT) and choice

reaction time (CRT) were significant risk factors for falls (Grabiner and Jahnigen, 1992; Lord and Clark,

1996; Woolley et al., 1997). SRT used a light as the stimulus and pressing of a switch by the hand as

the response (Lord and Clark, 1996). In CRT task, the participant was required to kick a 10×10 target

beneath one of the three stimulus lights that were illuminated (Woolley et al., 1997). They also reported

that fallers were significantly slower than non-fallers in SRT and CRT tests. A new test of choice step-

ping reaction time (CSRT) was also proposed to assess fall risks and the results showed that fallers had

significantly increased CSRTs compared with non-fallers (Lord and Fitzpatrick, 2001). However, some

studies (Jensen and Munro, 1979; Mahurin and Pirozzolo, 1993) argued that reaction time may fail to

measure the information processing efficiently since reaction time contains not only the time of percep-

tion and information processing but also motor planning time. All these tests involved motor functions

to respond to the stimulus, such as SRT task using the hand to press a switch as the response to the

stimulus of a light (Lord and Clark, 1996), simple and choice resisted knee extension response times

using the lower leg to kick the target below the stimulus lights that illuminated (Woolley et al., 1997),

and CSRT involving the balance of the whole body to step on the illuminated panel as the response to

the stimulus light. As a result, longer reaction time may result from worse motor functions due to weak

muscle strengths or other motor deficits. Therefore, reaction time in these tasks could be inadequate to

assess information processing efficiency.

Secondly, many assessment approaches or models have been developed to classify fallers and non-fallers,
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but they lack of ability to further identify the underlying reasons. Tromp et al. (2001) constructed logistic

regression model to predict falls using the predictors of previous falls, visual impairment, urinary incon-

tinence, use of benzodiazepines,and functional limitations. In another study, Stalenhoef et al. (2002)

also used logistic regression model to develop fall prediction model and found that postural sway, pre-

vious falls, hand grip strength, and depressive state of mind were strong predictors of recurrent falls.

Although many published studies in this research area (Bongue et al., 2011; Chen et al., 2005; Lajoie

and Gallagher, 2004; Mackintosh et al., 2006; Pluijm et al., 2006; Shumway-Cook et al., 1997; Stel

et al., 2003b; Swanenburg et al., 2010) succeeded in figuring out the important measures for discriminat-

ing fallers and non-fallers, the models used in these studies were unable to identify the underlying causes

of high fall risks. In an effort to identify the causes of high fall risks, two approaches have been proposed

in previous studies. Lord et al. (Lord et al., 2003b) proposed profile assessment to identify the causes of

high fall risks. The reference ranges of normal performance for test results can be generated from large

scale data. A subject’s test results were compared with the reference range to determine whether related

functions were impaired or not. The other method was to use tree based models including tree-structured

survival analysis (Stel et al., 2003a), classification and regression trees (Delbaere et al., 2010), and lo-

gistic regression tree analysis (Yamashita et al., 2012). However, the factors in their studies were not

systematic and included many unmodifiable items, such as age (Yamashita et al., 2012) and education

(Stel et al., 2003a).

Lastly, by using a force platform, posturography which includes static and dynamic conditions was

popular in assessing static and dynamic balance during standing (Piirtola and Era, 2006). The optical

motion capture system was also used to analyze the gait patterns for assessing fall risks (Hamacher

et al., 2011). However, force plate and optical motion capture system are expensive, heavy and/or

required large space. Additionally, when standing on a forceplate, center of pressure based body sway

measures were reported to fail to distinguish fallers and non-fallers (Qiu and Xiong, 2015). On the

other hand, recently inertial sensors are frequently used to assess fall risk in many studies (Howcroft

et al., 2013) due to the low-cost and portability of the sensors. Hence, compared with force plate and

optical motion capture system, the inertial sensor technology was more convenient to assess fall risks.

Since most falls occur during dynamic activities such as walking (Granata and Lockhart, 2008), inertial

sensors were also efficient on evaluating dynamic activities, such as gait patterns during timed up and go

test (Greene et al., 2012). Furthermore, in previous studies, many inertial sensor based measures were
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found to be capable of separating fallers and non-fallers and were classified into six categories (Howcroft

et al., 2013). They were position and angle variables such as peak to peak amplitude in anterio-posterior

(AP) direction (Ishigaki et al., 2011), angular velocity variables such as maximal angular velocity in AP

direction (Greene et al., 2010a), linear acceleration variables such as peak acceleration in AP direction

(Weiss et al., 2011), spatial variable such as number of steps, temporal variables such as gait speed

(Marschollek et al., 2009), and energy variables such as sway frequency when during (Greene et al.,

2012). Furthermore, fall risk assessment models have also been developed to assess fall risks using those

significant measures, such as support vector machine (SVM) (Greene et al., 2012), radial basis function

neural network, support vector, k-nearest neighbor, and Naive Bayesian classifiers (Caby et al., 2011).

However, as far as we know, no previous studies have developed inertial sensor based fall assessment

system for identifying the underlying causes of high fall risks.

1.4 Research Objectives

This research aimed to develop a low-cost and portable tool that can not only predict fall risks but also

identify underlying causes of high fall risks among the older people. There were three stages in this

research.

The first stage of the research aimed to design a human balance system based test protocol for fall

risk assessment and evaluate the effectiveness of a new test on assessing fall risks. First, measurable,

modifiable and important fall related factors were summarized based on human balance system and an

extensive literature review. The first study was to design a human balance system based test protocol

that was corresponding to these fall related factors for assessing risks of falls. Many useful tests on

fall assessment in previous studies were selected and directly included into the test protocol. But some

limitations still existed in current studies of reaction tests on assessing the central nervous system of

cognitive function. So we developed our own reaction test AP based on Hick’s law in test protocol.

Thereby another study was to examine the effectiveness of developed reaction test APP on assessing

cognitive function and fall risk in old people.

• Study I: Design of a new test protocol (Chapter 2).

• Study II: Validation of a reaction test APP on assessing fall risks (Chapter 3).
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The second stage aimed to conduct large-scaled experimental studies to check the effectiveness of the

test protocols on classifying fallers and non-fallers, and identifying the underlying causes of high fall

risks. After the experiment, significant measures that were associated with fall risk factors in the tests

were used as independent variables and fall history was used as dependent variables to construct fall

classification models. Six typical models including logistic regression (LR), linear discriminate analysis

(LDA), classification and regression tree (CART), boosted tree (BT), random forest (RF), and support

vector machine radial basic function (SVMRBF) were built to classify fallers and non-fallers. Further-

more, CART model and the profile assessment were integrated and utilized to identify the underlying

causes of high fall risks.

• Study III: Fall classification (Chapter 4).

• Study IV: Fall evaluation (Chapter 5).

The final stage aimed to develop an inertial sensor based system for realizing the fall risk assessment

methods in the second stage for future application.

• Study V: An inertial sensor based fall risk assessment system development.

1.5 Thesis Organization

The overall structure of this dissertation is presented in Figure 1.2. Below is the summary of the seven

chapters contained in this dissertation.

Chapter 1 introduces research background, literature review, research rationale, and research objectives.

This chapter also provides the structure of this dissertation.

Chapter 2 involves the design of a new test protocol based on human balance system by mainly using

inertial sensors for fall risk assessment. The design considerations and general principle were explained

and the details of tests in the test protocol were described.

Chapter 3 investigates the effectiveness of the reaction test APP based on Hick’s law on assessing

cognitive function and fall risk in old people. This chapter presents the design and work mechanism of
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reaction test APP, the experimental design and the detail procedures of the experiment. The experimental

results are also presented and discussed.

Chapter 4 is to develop the models for classifying fallers and non-fallers. In this chapter, the exper-

imental procedures, data processing to generate measures from the tests and the construction of fall

classification models are presented and followed by the results. Then the results are discussed.

Chapter 5 is about the methods to identify the underlying causes of high fall risks. This chapter presents

the methods of fall evaluation and followed by the results. Then the results are discussed.

Chapter 6 presents the development of inertial sensor based fall risk assessment system. This chapter

first explains the principle of designing the system and then presents the hardware and software of

system. The performance of the system is discussed.

Chapter 7 concludes the dissertation by summarizing the main findings and re-addressing the research

objectives, followed by a discussion on the limitations and future works of the current study.
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FIGURE 1.2: The dissertation outline.



Chapter 2

Design of a human balance system based

test protocol for fall risk assessment

2.1 Introduction

Many tests have been developed to assess fall risks factors related to the human balance system. Con-

tarino et al. (2003) used a test to evaluate the performance of the sensory system. The test consists of

four conditions: (1) stand on a firm surface with the eyes open; (2) stand on a firm surface with the eyes

closed; (3) stand on a compliant surface (foam) with the eyes open; and (4) stand on a compliant surface

(foam) with the eyes closed. A modified clinical test of sensory interaction and balance also includes

these four conditions (Whitney and Wrisley, 2004). In the test, a stop watch is used to measure the

maximal time (a maximum of 30 seconds) for maintaining the standing position. Similarly, a commer-

cial system, Balance Master Pro (NueroCom Inc.), also contains this test, which is called the modified

sensory integration test to evaluate the performance of the sensory system based on interaction with a

force plate. In the system, the center of gravity (COG) is generated by the system to measure the per-

formance. Recently, using the sensory related test, inertial sensor based measures have been proposed

to assess postural sway (Mancini et al., 2012). O’Sullivan et al. (2009) found a significant difference in

acceleration RMS for condition 3 between fallers and non-fallers. Greene et al. (2012) also indicated

that fallers had significantly higher accelerations and angular velocity than non-fallers during conditions

1 and 2.

15
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Reaction time was defined as the duration measured between the presentation of an unexpected stimulus

and the onset of a response to that stimulus (Schmidt and Debû, 1993). It has been widely used to

measure the information processing speed of the central nervous system (Lajoie and Gallagher, 2004).

Simple Reaction Time (SRT) is a test that measures the simple reaction time through delivery of a known

stimulus to a known location to elicit a known response. Choice Reaction Time (CRT) is a 2-choice

reaction time test which is similar to the (SRT) test, except the stimulus and response uncertainty are

introduced by having two possible stimuli and two possible responses. Increased simple reaction time

(SRT) and choice reaction time (CRT) were significant risk factors for falls in older people (Grabiner

and Jahnigen, 1992; Lord and Clark, 1996). A new test of choice stepping reaction time (CSRT) was

also proposed to assess balance ability and fall risks(Lord and Fitzpatrick, 2001).

In motor function, poor muscular strength is one important factor resulting in falls (Horlings et al., 2008).

In a review of 30 studies, Moreland et al. (2004) concluded that grip strength was the most common

measure used for the assessment for the upper extremity strength. Lower extremity weakness was a

statistically significant risk factor for falls. Hand held dynamometry was considered as a convenient and

reliable tool on measuring the muscular strength (Kelln et al., 2008; Spink et al., 2010). In addition,

range of motion that reflects the flexibility of joints was also associated with fall (Tinetti et al., 1993)

and fallers showed a significantly lower range of motion than non-fallers (Kerrigan et al., 2001; Tinetti

et al., 1986).

In relation to psychological aspects, a questionnaire of falls efficacy scale international (FES-I) is com-

monly used to assess fear of falling (Tinetti et al., 1990). It consists of sixteen items that are related

to daily activities such as going up or down stairs. Participants answer about how much they are con-

cerned about falling in these various activities. The options range from 1 to 4: 1=not at all concerned,

2=somewhat concerned, 3=fairly concerned, and 4=very concerned. Recently, a short version of FES-I

was also proposed to assess fear of falling (Kempen et al., 2008). Short FES-I only contained 7 of 16

items in FES-I and was found to be a good, feasible and valid measure to assess fear of falling in older

adults (Kempen et al., 2008; Ruggiero et al., 2009). FES-I used a short and verbal phrase to state the

overall context or activity, but does not specify more detailed contextual elements. Due to this, Delbaere

et al. (2011) developed the Iconographical Falls Efficacy Scale (Icon-FES), which includes a broad

range of activities and uses pictures to provide clear, unambiguous contexts. Icon-FES has been found
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to be a feasible, reliable, and valid tool for accessing fear of falling (Delbaere et al., 2013, 2011). Sim-

ilarly, a questionnaire that is the activities-specific and balance confidence (ABC) scale was developed

to measure the psychological impact of balance impairment and/or falls (Powell and Myers, 1995). It

is a 16-item self-report measure in which patients rate their balance confidence for performing activi-

ties. Each item is stated as: ”How confident are you that you will not maintain your balance or become

unsteady when you...”. Items are rated on a rating scale that ranges from 0-100, where a score of zero

represents no confidence and a score of 100 represents complete confidence. Compared with FES-I,

ABC has a wider continuum of item difficulty and is more suitable for moderate to high functioning

older adults (Myers et al., 1998). Fallers also showed significantly higher falls efficacy scale scores than

non-fallers (Delbaere et al., 2010; Friedman et al., 2002).

In addition to individual functions in a human balance system, the integrated function is about different

control mechanisms when performing different tasks. As shown in Figure 2.1, the integrated function

contains six aspects: biomechanics constrains, stability limits, anticipatory postural adjustments, pos-

tural responses, sensory orientation, and stability in gait (Horak et al., 2009). Many tests have been

used to measure these functions. A sensory related test (Contarino et al., 2003) was associated with

biomechanics constrains and sensory orientation. Duncan et al. (1990) developed a function reach test

to measure stability limits, in which participants were required to reach forward as far as possible with

their arm. The test was used to assess dynamic balance (Duncan et al., 1990; Franzen et al., 1999) and

fall risk (Behrman et al., 2002; Franzen et al., 1999). Multi-direction reach tests that include forward,

backward, left and right reach tests were also developed to assess fall risks (Newton, 2001). The sit-to-

stand five times (STS5) test requires participants to do a sit-to-stand task five times as fast as possible,

which measures anticipatory postural adjustments and postural responses. Total duration was found to be

significantly associated with fall risk (2008). Doheny et al. (2011) found that fallers had a significantly

longer sit-to- stand time, smaller jerk and higher spectral edge frequency than non-fallers in the STS5

test. Buatois et al. (2008) also indicated that the time needed to complete STS5 was a significant predic-

tive value for recurrent falls in a population of community-living older participants aged 65 and older.

A timed up and go test that measures mobility and gait stability was used to assess fall risks (Greene

et al., 2010a,b). In the timed up and go test, fallers showed a significantly longer walk time and smaller

angular velocity than non-fallers (Greene et al., 2010a). Gait pattern measures could be also generated

based on inertial sensors (Greene et al., 2010b; Zijlstra and Hof, 2003). Fallers had significantly more
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gait cycles and steps, and longer step time than non-fallers (Greene et al., 2010a). Clinical tests also used

a series of tests to assess fall risks. The Berg Balance Scale (BBS) was developed to measure standing

balance by assessing the performance of functional tasks (1989). Previous studies showed BBS was a

useful tool for assessing fall risks (Muir et al., 2008; Thorbahn and Newton, 1996).

FIGURE 2.1: Components of integrated function in a human balance system (Horak et al., 2009).

Although numerous tests or measures showed significant differences between fallers and non-fallers,

most of these tests or protocols were unable to identify the underlying reasons for high fall risks. There-

fore, the objective of this section was to develop a human balance system based test protocol that could

be effective on assessing risks of falling and identifying the underlying causes of high risks of falling.
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2.2 Design consideration and general principle

In order for our developed risk assessment system to be practical and convenient for the older people,

individual tests should meet the following criteria: (1) simple and quick to administer; (2) feasible

for older people to undertake; (3) valid and reliable tests for assessing corresponding risk factors; (4)

quantitative measures, which should be mainly obtained from wearable inertial sensors of accelerometers

and gyroscopes. Based on the above criteria and the list of fall risk factors, seven tests (Figure 2.2) were

proposed to assess those identified risk factors using related measures. Seven tests were generally widely

reported and they were briefly as follows.

FIGURE 2.2: Relationships between the new test protocol and fall risk related factors

According to the human balance system, fall related factors included physiological, psychological and
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integrated functions (Figure 2.2). Physiological functions were associated with functions of individual

systems within a human balance system. These systems included the sensory system consisting of

the visual, vestibular and somatosensory systems, the central nervous system, and the motor control

system. Psychological function was related to fear of falling. Integrated functions were associated with

integration of physiological and psychological functions while performing different tasks.

In order to evaluate a sensory system, a sensory integration test (Details were described in Section

2.3.1) was used in this study. It was simple, easy, effective test, and was commonly used in previous

studies (Whitney and Wrisley, 2004). The test satisfied our test criteria and was also able to evaluate the

performance of sensory systems. Generally, a sensory system contained three main sub-systems, which

are visual (VIS), vestibular (VES), and somatosensory (SOM) systems. During postural control, VIS are

more influential than VES and SOM (Lee and Lishman, 1975; Soechting and Berthoz, 1979). When VIS

is blocked, SOM is more important than VES at a stable condition (firm surface) but VES becomes more

critical for postural control than SOM at an unstable condition (sway-reference or foam surface) (Horak

and Hlavacka, 2001; Mergner and Rosemeier, 1998). Therefore, sensory system can be evaluated from

the test measures in four conditions of a sensory integration test. These conditions are: (1) eyes open

and stable surface; (2) eyes closed and stable surface; (3) eyes open and unstable surface; and (4) eyes

closed and unstable surface. In order to measure each sensory system, Eliana et al. (2009) summarized

the contributions of subsystems as follows:

SOM =
condition2
condition1

×100

V IS =
condition3
condition1

×100

V ES =
condition4
condition1

×100

Therefore, sensory integration test was used to assess the sensory system.

The central nervous system (CNS) dealt with the stimuli from the sensory system and sent signals to

the motor system to control muscles and joints for achieving the balance. Prior studies have widely

used reaction time measures to assess human cognitive abilities such as information processing and

executive functions (Lord and Fitzpatrick, 2001; Pijnappels et al., 2010). Increased simple reaction

time (SRT), choice reaction time (CRT), and choice stepping reaction time (CSRT) were reported as
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significant risk factors for falls in older people (Lord and Clark, 1996; Lord and Fitzpatrick, 2001).

However, some researchers (Jensen and Munro, 1979; Mahurin and Pirozzolo, 1993) argued that reaction

time may fail to efficiently measure the information processing since it contains not only the time of

perception and information processing but also motor planning time. Most tests involved motor functions

to respond to the stimulus, such as SRT task using the hand to press a switch as the response to a light

stimulus (Lord and Clark, 1996), and CSRT task involving the balance of the whole body to step on

the illuminated panel as the response. As a result, longer reaction time may result from worse motor

functions due to weak muscular strengths or other motor deficits. Therefore, reaction time alone in

these tasks could be inadequate to assess human performance of the information processing. Taking into

account limitations of the direct use of reaction time, Mahurin and Pirozzolo (Mahurin and Pirozzolo,

1993) applied Hick’s law to examine the age-related neurological cognitive dysfunction in people with

Alzheimer and Parkinson diseases. Hick’s law describes the relationship between reaction time and task

complexity (Hick, 1952; Hyman, 1953), and it states that human reaction time increases with a linear

function to the logarithm of the number of alternatives. In the study of Mahurin and Pirozzolo (Mahurin

and Pirozzolo, 1993), they used a timed card-sorting task and derived information processing speeds

from the linear function based on Hick’s law. They reported that Parkinson and Alzheimer patients

showed significantly slower information processing speeds compared with healthy controls. However, to

the best of our knowledge, no study has been conducted on applying Hick’s law to measure information

processing speeds for assessing the risk of falls in older people. Therefore, we developed a reaction test

APP based on Hick’s law for assessing cognitive function and falls risk in older people.

The motor system was related to the control of muscular strength and joints. As such, maximal muscular

strengths and flexibility of lower extremities were measured directly in a motor function test. Fear of

falling was examined by a questionnaire of short falls efficacy scale that measures how much a person is

concerned about falling while performing some daily life tasks.

In the integrated functions, biomechanical constrains were related to postural stability and sensory ori-

entation was about the overall performance of the sensory system. Both functions could be evaluated

by the sensory integration test. Stability limits were assessed by limits of stability test, which evaluated

the performance during the functional reaches in different directions. Anticipatory postural adjustments

and postural response were about dynamic postural control ability while performing some tasks. These
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abilities were assessed in sit-to-stand five times test. Stability in gait was assessed by the timed up and

go test, which required the participant to walk for 6 meters.

Most tests were common, simple, and easy to administer. Recently, sensing technology has become quite

popular in the research area (Howcroft et al., 2013). Compared with traditional equipment such as force

plate (Piirtola and Era, 2006) and optical motion capture system (Hamacher et al., 2011) for assessing

fall risks, inertial sensors were much cheaper and more portable. Compared with qualitative assessment

some clinical tests such as a clinical test of balance interaction test (Whitney and Wrisley, 2004) and

Berg balance scale (Muir et al., 2008), inertial sensors provided more reliable and high quality data for

various data analysis. Additionally, most tests could be measured by inertial sensors. In our experiment,

five Xsens sensors, made by Xsens Inc, were utilized for data collection while participants performed

these tests in the protocol. Sensors were attached on the body segments of the pelvis, left and right upper

legs, and left and right lower legs (Figure 2.3).

FIGURE 2.3: Sensor locations in the experiment. Xsens system requires at least seven sensors for data
collections. In our experiment, only raw data from five sensors were utilized for further data analysis:
pelvis, left and right upper legs, and left and right lower legs, but 2 sensors on foot were disabled.

In total, there were seven principal tests consisting of a sensory integration test, limits of stability test,

sit-to-stand five times test, timed up and go test, motor function test, reaction test, and short falls efficacy
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scale. The new test protocol systematically covers fall related factors (Figure 2.2). Each function in the

balance system was evaluated through the test. The overall performance in tests could be used to assess

fall risks and also be applied to identify the causes of high risks of falling. (Demura and Yamada, 2007;

Duncan et al., 2011; Greenberg, 2011; Herman et al., 2011; Khattar and Hathiram, 2012).

2.3 Details of the new test protocol

2.3.1 Sensory integration test

A sensory integration test (SIT) was designed to measure the sensory system, biomechanics constrains

and sensory orientation. In the test (Figure 2.4), participants were asked to stand with bare feet as still as

possible for 30 seconds, with arms at the side and looking straight ahead at a visual reference with eyes

open in the following four conditions (O’Sullivan et al., 2009):

Condition 1: Eyes open with firm surface;

Condition 2: Eyes closed with firm surface;

Condition 3: Eyes open with a compliant foam mat (Airex Balance Pad Elite: 20×16.4×2.5 inch);

Condition 4: Eyes closed with a compliant foam mat (Airex Balance Pad Elite: 20×16.4×2.5 inch).

Each task was performed twice, during which the feet were positioned 10 cm apart. The visual reference

was a black spot of 10 cm diameter and was 150 cm away from the participant.
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FIGURE 2.4: Experimental setting of sensory integration test.

2.3.2 Limits of stability test

The limits of stability (LOS) test was designed to measure stability limits during standing. It includes

functional reach tasks in three directions: forward, left and right (Figure 2.5). In functional reach for-

ward, a participant stood comfortably (feet width the same as shoulder width) with the right arm close

and parallel to a wall but not touching. The right arm was positioned at 90 degrees of flexion with el-

bows and hands extended. The operator recorded the starting position at the third metacarpal head on

the yardstick. Then the participant was instructed to reach as far as possible without taking a step. At

this point, the operator located the third metacarpal as the end position. Subsequently, the participant

returned to the start position. During the test, the left hand should be kept as close as possible to the

body and both feet should fully touch the ground. Each participant was given at least one practice trial

prior to the test, and three test trials were recorded later (Duncan et al., 1990). Functional reach left and

right were similar as functional reach forward.
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FIGURE 2.5: Experimental setting of limits of stability test. (a) forward reach; (b) left reach; (c) right
reach.

2.3.3 Sit-to-stand five times test

The sit-to-stand five times test was designed to measure the ability of postural adjustment and response.

In the test (Figure 2.6), a participant sat with arms folded across the chest and with their back against the

chair in a standard chair (approximate seat height 18 inch, arm height 25.6 inch). She was then asked

to stand up and sat down as quickly as possible on a firm, padded, armless chair. During the test, the

participant was also instructed to keep the feet in a comfortable position and to sit with normal posture

(the knee joint angle flexed around 90 degree) when sitting down on the chair and stood upright when

standing (Schlicht et al., 2001). The test was performed twice.
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FIGURE 2.6: Experimental setting of sit-to-stand five times test. (a) sitting posture; (b) standing
posture.

2.3.4 Timed up and go test

A timed up and go (TUG) was used to evaluate gait stability (Podsiadlo and Richardson, 1991). A

participant sat in a chair with their trunk against the chair back and their arms resting on the chair arm.

On the command “go”, the participant rose from the chair, walked 3 meters at a comfortable and safe

pace, turned around, and walked back to the chair and sat down (Figure 2.7). Each participant performed

one practice trial and then three test trials.
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FIGURE 2.7: Experimental setting of timed up and go test.

2.3.5 Motor function test

The motor function test mainly measured range of motion (ROM) of the knee joint and force production

of the lower-extremity muscles that were maximal muscular strength of ankle dorsiflexion, knee exten-

sion and knee flexion. We measured ROM and muscle strength on the right leg of each participant. For

the range of motion of knee extension (Figure 2.8a), the operator placed one hand above the knee joint

and cupped the contralateral hand behind the heel to lift it off the bed until resistance was felt, which

was deemed as the terminal extension. For range of motion of knee flexion (Figure 2.8b), the examiner

put one hand on the thigh, and the other hand was placed on the anterior ankle with pressure applied to

increase flexion until a firm endpoint was reached and maximum flexion determined (Peters et al., 2011).

In terms of measuring maximal ankle dorsiflexion strength (Figure 2.8c), the participant lied on a bed

with feet over the edge of an examination table. The hand-held dynamometer was positioned against the

metatarsal heads on the dorsal aspect of the foot (Carroll et al., 2013). Then the participant was asked

to try her maximal efforts to perform ankle dorsiflexion to push the dynamometer as much as possible.

Finally, maximal ankle dorsiflexion strength was measured on the dynamometer.

To measure maximal muscular strengths of knee extension and flexion (Figure 2.8d and e), the participant

lied prone on the bed with the right lower leg flexing 90 degrees. The hand-held dynamometer was

positioned against the extreme of the lower leg in flexion or extension. During the test, the participant
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was encouraged to flex or extend her knee to push the dynamometer as much as possible (Carroll et al.,

2013). Maximal muscular strengths of knee extension and flexion were measured on the dynamometer.

In addition to muscular strength of the lower extremity, grip strength was the most effective measure

of the upper extremity to assess fall risks (Moreland et al., 2004). So we also measured hand grip

force. In the test (Figure 2.8f), according to the standardized positioning recommended by the American

Society of Hand Therapists (ASHT) (Casanova, 1992), participants were seated with their shoulders in 0

degree abduction and neutral rotation, their elbows in 90 degree of flexion, and their forearms in neutral

pronation supination. The test was also done on the right hand.

Each participant performed sub-maximal test movements for the familiarization prior to testing. Testing

of each muscle group required a contraction of 3-seconds. Three repetitions were obtained for each

muscle group, with a minimum rest period of 10 seconds between each contraction.

FIGURE 2.8: Experimental setting of motor function test. (a) Range of motion of knee extension; (b)
Range of motion of knee flexion; (c) Maximal muscular strength of ankle dorsiflexion; (d) Maximal
muscular strength of knee extension; (e) Maximal muscular strength of knee flexion; (f) Maximal hand
grip strength.
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2.3.6 Reaction test

We have developed a reaction test APP on iPad Mini for assessing the performance of the central nervous

system in fall-related factors. The APP allowed a user to perform the following four different reaction

tests (Figure 2.9) in the Hick paradigm. Those four reaction tests were in line with the traditional card-

sorting tasks (Mahurin and Pirozzolo, 1993).

(1) One-choice reaction test: At the beginning of the test, the card is facing down by showing the back

side of the card with a brick pattern in the card display box (upper section of the screen). During the

test, once the card is facing up displaying as a red card, the subject has to tap choice reaction button

with red color (lower section of the screen) as soon as possible.

(2) Two-choice reaction test: When the card is facing up, red card or blue card will appear randomly in

the card display box at a random time. The subject has to tap choice reaction button which has the

same color with the card’s color.

(3) Four-choice reaction test: When the card is facing up, one random suit among four suits (hearts,

diamonds, spades, and clubs) will appear in the card display box at a random time. The subject has

to tap the choice reaction button which has the same type of suit with the card (Figure 2.10).

(4) Ten-choice reaction test: When the card is facing up, one random number among ten numbers (0, 1,

2, 3. . . .9) will appear in the card display box at random time. The subject has to tap choice reaction

button which has the same number with the card.

Each reaction test consisted of ten random trials to account for variations as well as to minimize the

possible bias from problematic trials during the test. In order to avoid the confounding effect from

different moving distances during the tests, a fingerprint was shown on the screen as an initial position

of the finger (Figure 2.9). The distance between the fingerprint and the center of the choice reaction

region was fixed to be the same for all four reaction tests.
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FIGURE 2.9: Interface design of four reaction tests in the developed APP. The upper section of each
interface is the card display box (black brick pattern referred as card is facing down), the middle
section is the choice reaction button (s) for the subject, and the lower section is a fingerprint where the
participant puts the index finger at the beginning of tests. (a) One-choice test of red color; (b)
two-choice test of red or blue color; (c) four-choice test of four suits (hearts, diamonds, spades, and
clubs); (d) ten-choice test of 10 numbers from 0 to 9.
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FIGURE 2.10: Demonstration of APP working mechanism with a four-choice test. At the beginning of
tests, a subject puts the index finger at the fingerprint on the screen and the card is facing down with
black brick pattern on it. During the test, the card is facing up with one random suit of four suits
(hearts, diamonds, spades, and clubs) in card display box at a random time and the subject has to tap the
choice reaction button which has the same type of suit with the card (diamond in the example). After
one trial, the index finger would move back to fingerprint position and be ready for the next trial test.

2.3.7 Short falls efficacy scale international

The falls efficacy scale international (FES-I) is a self-report questionnaire, providing information on a

level of concern about falls for a range of daily living activities. It was used to measure the fear of

falling. The short FES-I (Table 2.1) is the short version of FES-I, and contains seven items scored on a

four-point scale (1=not at all concerned to 4=very concerned) (Kempen et al., 2008). The short FES-I

questionnaire was conducted through a face-to-face interview. The interviewer explained the meaning

of items to participants and asked questions about how concerned they were about the possibility of

falling while doing the activity. Participants should think about how they usually do the activity. If

they currently don’t do the activity (for example, if someone does shopping for them), they answer to

show whether they think they would be concerned about falling if they did the activity. For each of

the following activities, they have to check the box that is closest to their own opinion to show how

concerned they are that they might fall if they did this activity.
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TABLE 2.1: Items of short version of falls efficacy scale international.

2.4 Summary

In this section, we aimed to design a systematic and convenient test protocol for assessing fall risks

and identifying the underlying causes of high fall risks. First, the different categories of tests were

selected or developed based on the human balance and fall risk control system. Seven main tests were

determined systematically to evaluate fall related factors, including a sensory integration test, limits of

stability test, sit-to-stand five times test, timed up and go test, motor function test, reaction test, and short

falls efficacy scale. Most tests were common, simple and easy to conduct in the practice. Additionally,

we adapted inertial sensors as the main methods for data collection due to low cost and portability. In
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our experiment, the total time of all tests was within 30 minutes including 10 minutes for attaching and

detaching sensors, and 20 minutes for the actual testing time.



Chapter 3

Validation of a reaction test APP based on

Hick’s law to assess cognitive function and

fall risk in older people

3.1 Objective

In Chapter 2, we have developed a new reaction test APP as a part of the test protocol for fall risk

assessment. A follow-up study was conducted in this chapter to examine the effectiveness of our develop

reaction test APP on assessing cognitive function and fall risk in older people. The developed APP was

tested on one hundred Korean women, consisting of twenty young controls, forty community-dwelling

older non-fallers and forty matched older fallers. The movement time (simple sensorimotor response

time) and information processing speed of each participant were derived through a log-linear regression

of the reaction time on the number of alternative choices based on Hick’s law. It was hypothesized that

young people would show better cognitive functions than old people, and older fallers would demonstrate

worse cognitive functions than older non-fallers.

34
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3.2 Method

3.2.1 Reaction test APP development

In Section 2.3.6 of Chapter 2, we have developed an APP for iPad Mini using an iOS Apple language-

Swift (Apple Inc.) that allows a user to perform four different reaction tests (Figure 2.9) in the Hick

paradigm. The details of reaction test were also described. Reaction times of all test trials from APP

were recorded and further utilized to derive two outcome measures (movement time and information

processing speed) based on modified Hick’s law (Roth, 1964):

Reaction time(RT ) = Movement time(ie.A)+
log2(n)

Processing speed(ie.,1/B)

, where n is the number of alternative choices. The recorded reaction times at the different numbers

of choices from APP were subjected to a log-linear regression analysis, resulting in movement time

(intercept A in the regression equation) and information processing speed (reciprocal of the slope B of

the regression line) for each subject. Figure 3.1 shows three typical examples for a young people, an

older non-faller and an older faller respectively.
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FIGURE 3.1: Typical examples of log-linear relationships between the reaction times and number (n)
of alternative choices for a young people (a), an older non-faller (b) and an older faller (c).

3.2.2 Fall risk assessment with the developed APP

3.2.2.1 Experiment design and procedure

One hundred Korea women consisting of twenty young controls, forty community-dwelling older non-

fallers and forty matched older fallers (Table 3.1), participated in the experiment. Based on a self-

reported history of falling in the past 5 years, older people who had experienced multiple falls, or one

fall requiring medical attention within one year prior to assessment, were categorized as ‘fallers’. Old

participants were classified as ‘non-fallers’ if they did not fit into these criteria (Greene et al., 2012). A

fall was defined as an unexpected loss of balance resulting in coming to rest on the floor, the ground, or

an object below the knee level. No significant differences in age, height, and weight (p > 0.05) were

found between older non-fallers and older fallers (Table 3.1). Only female subjects were recruited to
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avoid the potential gender effect on balance and fall risk control (Verghese et al., 2009). All subjects

were right-handed and in healthy conditions with no self-reported neurological and musculoskeletal

diseases or vestibular dysfunction that may affect their balance performance. Prior to the participation,

each subject provided informed consent on a protocol approved by the university institutional review

board (IRB No.14-32-A).

TABLE 3.1: Characteristics of experimental participants

Character-

istics

Young group

(N=20)

Old group

(N=80)

Mean ± SD

Non-fallers

(N1=40)

Mean ± SD

Fallers

(N2=40)

Mean ± SD

p value of 2-sample

comparison between

non-fallers and fallers

Age (yrs) 22.45 ± 0.60 72.48 ± 4.36 71.75 ± 4.77 0.48

Height (cm) 160.78 ± 6.04 155.63 ± 5.46 153.91 ± 4.36 0.13

Weight (kg) 52.15 ± 5.67 58.27 ± 7.42 60.50 ± 7.56 0.19

A commercially available iPad Mini from Apple Inc., running the operation system iOS 8.1.3, was

utilized in this study. It is an iOS-based mini tablet computer with 7.9 inches screen. Each participant

was asked to sit on a standard chair with her left hand holding the iPad Mini and right hand taping the

choice reaction button (s) at her comfortable posture. Prior to the test, practice session was conducted

to make each participant be familiar with the experimental setting and procedure. During the test, each

participant needed to complete ten random trials for all four reaction tests.

3.2.2.2 Data analysis

Two sample t-tests were performed on two outcome measures from the developed APP to compare the

differences between the young and old groups (for age comparison), and the older faller and non-faller

groups (for fall comparison). Since the decline of cognitive function and the increase of falls risk are

significantly associated with ageing process, the ability to distinguish between age groups should be a

necessary precondition for establishing the effectiveness of the developed APP on assessing fall risks.

If the significance level of a certain outcome measure was reached for both age comparison and fall
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comparison, a follow-up Receiver Operating Characteristic (ROC) analysis (Greiner et al., 2000) would

be carried out to examine the discriminative power of the specific measure on classifying fallers and

to further determine the optimal cutoff value using Youden index (Fluss et al., 2005). Area under the

ROC curve (AUC) was used to measure the discriminative ability. The general guideline of AUC is

as follows (Hosmer Jr and Lemeshow, 2004): AUC = 0.5, no discrimination; 0.5 < AUC < 0.7, poor

discrimination; 0.7< AUC < 0.8, acceptable discrimination; 0.8< AUC < 0.9, excellent discrimination;

AUC > 0.9, outstanding discrimination. MedCalc Statistical Software version 13.0 (MedCalc software

bvba, Ostend, Belgium; http://www.medcac.org/; 2014) was used for statistical analysis and the

significance level was 0.05.

3.3 Results

As shown in Table 3.2, the error rates of overall reaction tests were very small (<5%). In the data

analysis, error data records were removed to increase the accuracy. As the number of choices increased,

the reaction time increased. Elderly people showed long reaction time than reaction time than young

people.

TABLE 3.2: Mean and standard errors of one-choice, two-choice, four-choice and ten-choice reaction
time and error rate.

Group One-choice Two-choice Four-choice Ten-choice Error rate

Young people 0.43 (0.012) 0.49 (0.011) 0.64 (0.014) 0.74 (0.016) 0.028 (0.0079)

Older non-fallers 0.59 (0.013) 0.77 (0.025) 0.98 (0.032) 1.15 (0.031) 0.047 (0.0054)

Older fallers 0.63 (0.019) 0.85 (0.023) 1.15 (0.035) 1.25 (0.034) 0.049 (0.0066)

Older people showed significantly longer movement time (p < 0.0001, Figure 3.2a) and slower infor-

mation processing speed (p < 0.0001, Figure 3.2b) than the young control group. Within the old group,

even though there was no significant difference between older non-fallers and fallers on the movement

time (p= 0.54, Figure 3.3a), the older faller group had significantly slower information processing speed

than the older non-faller group (p < 0.0001, Figure 3.3b). The follow-up ROC analysis (Figure 3.4a)

and interactive dot diagram (Figure 3.4b) showed that the information processing speed had excellent

discriminative ability (AUC = 0.80, (Hosmer Jr and Lemeshow, 2004)) on distinguishing older fallers

and older non-fallers. The optimal cutoff value of information processing speed was 6.4 bit/second,

http://www.medcac.org/
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resulting in overall classification accuracy of 78%, sensitivity (true positive rate) of 85% and specificity

(true negative rate) of 70%.

FIGURE 3.2: Mean and standard error of movement time (a) and information processing speed (b)
between young and older groups.

FIGURE 3.3: Mean and standard error of movement time (a) and information processing speed (b)
between older non-fallers and older fallers.
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FIGURE 3.4: (a) receiver operating characteristic (ROC) analysis of information processing speed on
classifying older fallers and older non-fallers. Area under ROC curve is 0.80. (b) interactive dot
diagram of information processing speed for older non-fallers and older fallers. Sens: sensitivity; Spec:
specificity.

3.4 Discussion

In order to investigate the potential use of reaction time for assessing cognitive function and falls risk in

older people, we developed a reaction test APP based on Hick’s law on iPad Mini. iPad Mini (7.9 inch)

was chosen as the device to conduct the experiment for taking the advantage of the proper size com-

pared with iPhone 6 (4.7 inches) and the convenience and portability compared with iPad (9.7 inches).

Additionally, compared with the traditional card-sorting task timed by an experimental operator using

a stopwatch, our tool has advantages when being used to measure the reaction time of the task in an

accurate manner. Mahurin and Pirozzolo (1993) noted that there was a potential confounding between

choice conditions and the amount of movement due to far distance when a subject physically placing

cards in 10 piles from 1 to 10 in the traditional timed card-sorting task, so information processing time

and movement time would be overlapped. However, with the developed APP and reaction test tasks,

the distance was designed to be much shorter to minimize the effect of the distance. Furthermore, the

reaction test through this APP can be considered time-effective ( 4 minutes in total from the onset of the

test) and should be reliable as well since 10 random repetitions of each test were used.
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This is the first study that utilizes APP to empirically measure movement time and information process-

ing speed of older people for the purpose of assessing fall risks. The results showed that the outcome

measure of information processing speed is not only sensitive to age related differences (young vs. old),

but also fall risks in older people (older fallers vs. older non-fallers). For older people, slower infor-

mation processing speed than the young group was expected since the cognitive function declines with

the ageing process (Mahurin and Pirozzolo, 1993). More importantly, our results also showed that in-

formation processing speed of older faller group was significantly slower than older non-faller group.

This finding revealed that cognitive processing speed of human CNS is an important fall risk factor for

the older population, due to the sensory and motor components associate with it. Slow information pro-

cessing speed can delay the sensory integration process and necessary motor responses to regain human

balance from critical situations of balance perturbations (Horak, 1997). The finding was in line with

many previous studies. Even though the SRT (Lajoie and Gallagher, 2004) and CRT (Woolley et al.,

1997) tests involved more complicated motor responses such as extending and flexing the knee (Gra-

biner and Jahnigen, 1992), and stepping on the required region (Lord and Fitzpatrick, 2001), the older

faller group had significantly longer reaction time than the non-faller group.

Information processing speed showed excellent discriminative power on classifying older fallers and

older non-fallers (AUC = 0.80). Based on the optimal cut-off value of 6.4 bit/second, the use of a single

measure of information processing speed can achieve overall classification accuracy of 78%, with sen-

sitivity of 85% and specificity of 70%. The high sensitivity (85%) indicated that most of older fallers

had information processing speeds slower than 6.4 bit/second, probably implying declines in the cogni-

tion and higher fall risks. This should be reasonable since cognitive resources are required in balance

control and slow reactions of CNS could delay the sensory integration process and necessary motor re-

sponses from muscles and joints, and result in falls (Horak, 1997). The relatively lower specificity (70%)

showed that even though the majority of the non-fallers have faster information processing speeds than

the cut-off value, still quite a portion of non-fallers (30%) have slower information processing speeds.

This could be explained by the possible compensation effects from good sensory and motor functions

of some non-fallers (Perry et al., 2007; Salonen and Kivelä, 2012) on human balance and fall preven-

tion even though there is mild cognitive impairment. Collectively, we could conclude that information

processing speed slower than the cutoff value of 6.4 bit/second is an important risk factor associated

with cognitive function for the falls in older people. Verghese et al. (2009) examined the validity of a
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cognitive test of walking while talking (WWT) in predicting falls in older individuals. They reported low

sensitivity (6 46%) but high specificity (> 89%). Compared with WWT, our reaction test can achieve

both high sensitivity (85%) and acceptable specificity (70%). Furthermore, this shows the hybrid use of

different tests could have higher correct classification of older faller and non-fallers.

Our study not only proposes a useful measure (information processing speed) to assess fall risk, but also

provides a simple, meaningful and portable tool which has good potential to be widely applied in the

clinic or at home for assessing cognitive capacity and falls risk of the older population. The test tasks

are simple and quick to administer within a few minutes. All older people in this study can complete the

tasks correctly without difficulty. When all four tests have been completed, two quantitative measures

including movement time and information processing speed can be presented. Since falls are multi-

factorial phenomenon, identifying the people who have high risks of falling and the underlying reasons

are essential for an older people to receive appropriate interventions for proactive fall prevention (Deery

et al., 2000). If an older people whose information processing speed is slower than 6.4 bit/second,

he/she would be classified as an individual with high risk of falling and one of the underlying reasons

is cognitive deficit or impairment. Afterwards, corresponding intervention strategy could be adopted

for fall prevention and the efficacy of such intervention on improving cognitive information processing

can be further evaluated by the developed APP. Additionally, as the reaction test APP was developed

on iOS operating system and would be available in the Apple Store, it can be installed on all portable

devices from Apple Inc. including iTouch, iPhone, iPhone Plus, iPad Mini, iPad air, and iPad Pro. The

APP also can be easily extended to a smart phone or tablet with Android operation system (Google

Inc.) so that the developed APP could be not only used in the clinic but also be accessible by most

people who own a smart phone or a tablet computer, enabling the APP to be widely utilized in daily life,

especially considering nowadays smartphone and tablet computer are becoming popular, and half the

adult population owns a smartphone.

Regarding another outcome measure of movement time, older people showed significantly longer move-

ment time than the young group. This result is reasonable since ageing has been reported to be associated

with the decline of muscular strength and degradation of motor functions (Lindle et al., 1997) and conse-

quently, older people performed the movement slower than the young controls. Interestingly, there was

no significant difference on movement time between older fallers and older non-fallers. In this study, the

movement time corresponds to simple sensorimotor response time when performing fairly easy physical
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tasks (finger movement and press), healthy older people without self-reported musculoskeletal disorders

recruited in this study did not need to exert much motor effort to perform the required tasks. Conse-

quently, there may be not much difference on motor function while performing the designed test tasks

within healthy older people regardless of their fall history, resulting in no significant difference on move-

ment time between older non-fallers and older fallers.

This study has some limitations. First, information processing speed was used to measure the cognitive

performance of older people on an easy visual decision-choice task, so it was assumed that older people

can make the choices correctly. Second, the cut-off value of 6.4 bit/second on information processing

speed was generated from older Korean women, it should be used with caution for other populations.

Further studies should be carried out with larger sample sizes and in different settings for research results

verification. Third, in the reaction test, different types of stimulus were used in the different choices,

such as color differences in two-choice test, the number differences in ten-choice test. The stimulus may

affect the reaction time. Future study can be done to evaluate the effects of stimulus on the reaction time.

Last but not least, only retrospective falls were used in this study for classifying the older people into

fallers and non-fallers. Considering an inherent limitation of inaccurate recalling of past falls (Lord and

Fitzpatrick, 2001), prospective studies are needed to confirm the prognostic value of the developed APP

for future falls in older people.

3.5 Conclusion

We have designed and developed the software for a reaction test based on Hick’s law. The test can be run

as an APP on Apple iOS mobile operating systems and provides the older individuals and health care

professionals with a convenient assessment tool of testing cognitive capacity of older people who may

be at high risk of falls, thereby reducing the number of fall accidents caused by inadequate cognitive

processing from CNS. The effectiveness of the developed APP on assessing age related differences and

fall risks in the older population has been demonstrated through an experimental study with a sample of

twenty young women and eighty community-dwelling older women. Experimental results showed that

the developed APP is not only sensitive to age related differences, but also fall risks in older people.

Information processing speed derived from this APP had excellent discriminative power on classifying
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older fallers and non-fallers. The findings indicated that slow information processing speed is an im-

portant risk factor for falling in older people and the developed APP is potentially useful for assessing

cognitive function and falls risk of older people.



Chapter 4

Development of models for fall

classification in older people

4.1 Objective

In Chapter 2, we proposed a new test protocol for fall risk assessment. Later in Chapter 3, we validated

the ability of a developed reaction test in the test protocol on classifying fallers and non-fallers. In this

Chapter, we were going to describe a large-scale experimental study based on the new test protocol and

to build fall classification models from the experimental data. The objective of this Chapter was to de-

velop appropriate models for classifying fallers and non-fallers. First, physiological, psychological, and

integrated functions of the human balance system were evaluated through the tests included in our newly

designed protocol. Significant measures that could distinguish fallers and non-fallers were chosen from

available measures, which were derived from tests in the protocol. Afterwards, typical statistical models

were utilized to classify fallers and non-fallers such as logistic regression, classification and regression

tree, etc. These models used significant measures as the independent variables and fall category (faller

or non-faller) as the dependent variables. The accuracies of these models were then analyzed to identify

their appropriateness on classifying fallers and non-fallers.

45
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4.2 Method

4.2.1 Participants

One hundred ninety-five Korean old females consisting of 76 fallers and 119 match controlled non-fallers

participated in this study (Table 4.1). Only female participants were recruited in the experiment in order

to avoid potential gender differences while performing the tests (Butler et al., 2009). In addition, women

are two or three times more likely to fall than man (Cook et al., 1982; Exton-Smith, 1997). Based on a

self-reported history of falling in the past 5 years, older people who had experienced multiple falls, or

one fall requiring medical attention within one year prior to assessment, were categorized as ‘fallers’.

Old participants who did not fit into these criteria were classified as ‘non-fallers’ (Greene et al., 2012).

A fall was defined as an unexpected loss of balance resulting in coming to rest on the floor, the ground,

or an object below the knee level. The criteria used to recruit participants were 1) female; 2) age over

65 years old; 3) all participants were physically fit, functionally independent, and had no self-reported

neurological, musculoskeletal deficits or vestibular dysfunction, and they could complete all tests in

our new test protocol independently. In the questionnaire of fall history, the participants should report

whether they had fall history or not in past five years. If they had fall experience, then they were requested

to report how many time they fell and the reasons and place of each fall occurring were also needed. If

the participants got injuries due to the fall, they had to report the details of the injuries and which body

segments were damaged. The participants gave their informed consents to participate in the study, which

had been previously approved by the university institutional review board (IRB No. 14-32-A).

TABLE 4.1: Comparisons of baseline characteristics in experimental participants.

Characteristics Non-faller (N=119) Faller (N=76) P value

Age (years) 71.90±54.52 72.13±5.06 0.80

Height (cm) 154.82±5.46 154.29±5.26 0.49

Weight (kg) 58.04±7.10 59.70±6.67 0.11
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4.2.2 Instruments

Xsens MVN inertial motion capture system (Xsens Inc.) with lower body solution module, including

seven inertial sensors, was utilized for data collection. In our experiment, we only used five of these

Xsens sensors to collect the data while participants performed sensory integration test, limits of stability,

sit-to-stand five times, timed up and go test, and knee extension/flexion in motor function test. Iner-

tial sensor is also called inertial measurement unit (IMU) consisting of accelerometers, gyroscopes, and

magnetometers (Figure 4.1), which outputs 9 degree of freedom (DOF) raw data including 3D acceler-

ations from accelerometers, 3D angular velocity from gyroscopes, and 3D magnetizations respectively.

Additionally, the orientations were also derived from acceleration, gyroscopes, and magnetometers by

using sensor fusion algorithms (Madgwick, 2010). Raw data of accelerations, angular velocities and

magnetizations from IMU were collected at a sample frequency of 100Hz. In the experiment, sensors

were attached on the body segments of the pelvis, left and right upper legs, and left and right lower legs

(Figure 2.3).

FIGURE 4.1: Typical example of an inertial sensor from Xsens Inc..

In our experiment, most of the measures were derived from inertial sensing data. Other measures can’t be

determined from sensing data were quantified by utilizing other simple methods. In the limits of stability

test, yardsticks were attached to the wall to record the reach distances. A commercially available iPad

Mini from Apple Inc. was utilized in the reaction test. A Jamar hand dynamometer was used to measure

the maximal muscular strengthen while participants performed ankle dorsiflexion, knee extension and

flexion, and hand grip. The questionnaire of short falls efficacy scale international was used to measure

the fear of falling.
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4.2.3 Experimental procedure

In the experiment, our newly designed protocol was implemented (the protocol was explained in detail

in Chapter 2). The protocol contained seven main tests: sensory integration test, limits of stability test,

sit-to-stand five times test, timed up and go test, motor function test, reaction test, and short falls effi-

cacy scale questionnaire (Figure 4.2). The experimental procedure was presented in Figure 4.3. First,

seven Xsens inertial sensors were attached on human body segments of the pelvis, two upper legs, two

lower legs, and two foot. Then participants performed sensory integration test, limits of stability test,

sit-to-stand five times test, timed up and go test, and knee extension and flexion in motor function test.

After these tests, inertial sensors were detached from the body. Maximal muscular strengths of ankle

dorsiflexion, knee extension and flexion, and hand grip in motor function were measured with a Jamar

hand dynamometer. Participants performed the reaction test using an iPad mini. Finally, questionnaires

of short falls efficacy scale international and fall history were completed through the face-to-face inter-

view.
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FIGURE 4.2: Seven tests in the test protocol: (a) sensory integration test; (b) limits of stability test; (c)
sit-to-stand five times test; (d) timed up and go test; (e) motor function test; (f) reaction test; (g) the
questionnaire of short falls efficacy scale international.
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FIGURE 4.3: Overall experimental procedures.

4.2.4 Data processing

4.2.4.1 Overview of data processing

The data were collected and saved to the database while participants performed the tasks in the test

protocol. Then these data in the database would be exported for post data processing and the algorithms

to calculate different test based measures were developed.
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FIGURE 4.4: Overview of data processing.

4.2.4.2 Measures in sensory integration test

In sensory integration test, participants were required to stand as still as possible. During the posture was

adjusted dynamically to react the gravity for achieving the balance. The sensor at the pelvis was most

close to the center of body mass (COM). The pelvis sensor could reflect the movements of COM, so the

data from the sensor at the pelvis were chosen to develop different types of measures for evaluating the

postural stability. In the sensory integration test, measures could be classified into two types: test based

measures that assessed the postural stability and sensory system based measures that assessed sensory

system.

Test based measures were used to evaluate the postural control ability during quiet standing in different

conditions and were derived directly from the raw sensor data. Generally, test based measures included

time domain measures and frequency domain measures. Root mean square (RMS) and jerk of accel-

erations were found to be good measures on measuring postural stability (Mancini et al., 2011). RMS

accelerations were parameters of the magnitude of raw data. Jerk was about the smoothness of acceler-

ation change. Equilibrium score measured the range of tilt angles was also a good measure of postural
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stability. Hence, time domain measures included magnitudes of raw data, jerk, and tilt angle. Jerk is de-

fined as the rate of acceleration changes, which is the derivative of acceleration with respect to time and

the second derivative of velocity. In our measures, jerk of the acceleration is the derivative of the accel-

eration with respect to the time. Jerk of angular velocity is the second derivative of the angular velocity

with respect to the time. In respect of tilt angle, equilibrium score (ES) was calculated by subtracting the

difference between a maximum (θmax) and minimum (θmin) anteroposterior (AP) sway angle from the

normal limit of the AP sway angle range, which is 12.5 degrees, and then divided it by the normal limit

of the AP sway angle ranges, and multiplied it by 100. The following formula was used to calculate the

equilibrium score:

Equilibrium Score =
(12.5− (θmax−θmin))

12.5
×100

Figure 4.5 shows the example of the algorithm to calculate root mean square (RMS) accelerations in time

domain measures. In the algorithm, time serials of accelerations in the anteroposterior (AP) direction

from the sensor at the pelvis were used as the input data. The data were filtered, then were used to

calculate RMS acceleration directly, and finally saved in the system.

In frequency domain measures, median frequency and power density spectral are the basic measures.

In addition, centroid frequency was found to be a good measure of postural stability (Mancini et al.,

2011). Thereby frequency domain measures include median frequency (MF), centroid frequency, and

power spectral density of raw data. Figure 4.6 shows the algorithm to generate power spectral density

of the acceleration. In the algorithm, accelerations and angular velocities through the time were used

as the input and were filtered afterwards. Differences from time domain measures were that frequency

domain data were derived from time domain data through using Fast Fourier Transform (FFT). Finally,

power spectral density of the acceleration was calculated based on frequency domain data. All time and

frequency domain measures were summarized in Table 4.2.
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FIGURE 4.5: The algorithm of calculating time domain measures in sensory integration test. ACC:
acceleration; AP:anteroposterior; RMS: root mean square.
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FIGURE 4.6: The algorithm of calculating frequency domain measures in sensory integration test.
ACC: acceleration; AP:anteroposterior; PSD: power spectral density.



Chapter 4. Development of models for fall classification in older people 55

TABLE 4.2: Test based measures in sensory integration test. ACC: acceleration; angVel: angular
velocity; AP: anteroposterior; ES: equilibrium score; ML: mediolateral; RMS: root mean square.

Category Subcategory Measures

Time domain

Magnitudes of raw data (ACC

and angVel)

RMS ACC AP/ML

RMS angVel AP/ML

Jerk
RMS Jerk ACC AP/ML

RMS Jerk angVel AP/ML

Tilt angle RMS ES AP/ML

Frequency domain

Median frequency (MF)
RMS MF ACC AP/ML

RMS MF angVel AP/ML

Centroidal freqency (CF)
CF ACC AP/ML

CF angVel AP/ML

Power spectral density (PSD)
PSD ACC AP/ML

PSD angVel AP/ML

As the domain sensory systems on controlling balance varied as the test condition changed in sensory in-

tegration test, we could apply this pattern to generate the performance of each sensory system indirectly.

Eliana et al. (2009) summarized the contributions of subsystems as

SOM =
Cond2
Cond1

×100

V IS =
Cond3
Cond1

×100

V ES =
Cond4
Cond1

×100

where, Cond represented the condition.
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In addition to individual sensory system, Balance Master Pro system proposed the equation to calculate

composite equilibrium scores (CES) based on the measures. The equation is as follows (Baker, 2003):

CES =
Avg(Cond1)+Avg(Cond2)+Cond3T 1+Cond3T 2+Cond4T 1+Cond4T 2

1+1+2+2

where Avg, Cond, and T represented the average, the condition, the trial. Figure 4.7 showed the al-

gorithms of calculating somatosensory (SOM), visual (VIS), and vestibular systems scores based on

accelerations in AP directions. Time serials of the acceleration AP were input to algorithm and were

filtered by a band-pass filter. RMS accelerations in 4 conditions would be calculated and then used to

generate the SOM, VIS, and VES system scores. All sensory systems based measures were summarized

in table 4.3
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FIGURE 4.7: The algorithm of calculating sensory system measures in sensory integration test. ACC:
acceleration; AP:anteroposterior; PSD: power spectral density. SOM: somatosensory; VES: vestibule;
VIS: vision.
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TABLE 4.3: Sensory system based measures in sensory integration test. ACC: acceleration; angVel:
angular velocity; AP: anteroposterior; ES: equilibrium score; ML: mediolateral; RMS: root mean
square; SOM: somatosensory; VES: vestibule; VIS: vision.

System Category Subcategory Measures

SOM / VIS /

VES /

Composite

systems

Time domain

Magnitudes of raw data

(ACC and angVel)

RMS ACC AP/ML

RMS angVel AP/ML

Jerk
RMS Jerk ACC AP/ML

RMS Jerk angVel AP/ML

Tilt angle RMS ES AP/ML

Frequency

domain

Median frequency

(MF)

RMS MF ACC AP/ML

RMS MF angVel AP/ML

Centroidal freqency (CF)
CF ACC AP/ML

CF angVel AP/ML

Power spectral density

(PSD)

PSD ACC AP/ML

PSD angVel AP/ML

4.2.4.3 Measures in limits of stability test

In this test, the participants were asked to reach as far as possible. To do that, the participant’s trunk was

always bending during the test, so angular velocities from the sensor located in the pelvis were selected to

generate measures. Since participants were asked to complete special tasks that were not easy for them,

the RMS and jerk of angular velocity were used to measure difficulties while old people performed the

tasks. In addition, we also applied the reach distance to measure the stability limits by using yardsticks.

Additionally, in real situations of daily life, active reaches could mainly occur in forward, left and right

directions but rare in the backward direction. Therefore, limits of stability (LOS) test included three

directions functional reach: forward, left and right reach. Limits of stability contained reach distance,

root mean square (RMS) angular velocity and RMS jerk angular velocity in forward, right and left

directions. Figure 4.8 showed the algorithm to calculate RMS of angular velocity and jerk. First, the

angular velocity and orientation on the pelvis from the database were input and filter. The start and
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end points of bending during functional reach are determined based on the pelvis orientation. In order

to measure reach distance, The start point was recorded using the yardsticks on the wall before the

participant executed functional reach test, while the end point was recorded when participants reached

furthest distance. The reach distance equals to the difference between the start and end points on the

yardstick. Finally, the RMS angular velocity and jerk during the reach can be generated. All measures

in the limits of stability test are presented in Table 4.4.

FIGURE 4.8: Sensor data processing in limits of stability test. RMS: root mean square.
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TABLE 4.4: Measures in limits of stability. RMS: root mean square.

Functional reach direction Measures

Forward reach

Reach distance

RMS angular velocity

RMS jerk

Right reach

Reach distance

RMS angular velocity

RMS jerk

Left reach

Reach distance

RMS angular velocity

RMS jerk

4.2.4.4 Measures in sit-to-stand five time test

In this test, the duration, RMS angular velocity and RMS jerk angular velocity were utilized to measure

how difficult participants performed the task. So there were three types of measures derived in the period

of a sit-to-stand process: sit-stand-sit measures, sit-stand measures, and stand-sit measures (Table 4.5).

Each type contains the duration, RMS angular velocity and RMS jerk. The orientation and angular

velocity from the sensor at the right upper leg were selected to derive the measures. Figure 4.9 shows

the algorithm to calculate duration and RMS angular velocity during the period of sit to stand. In the

algorithm, the orientation and angular velocity from the sensor at the right upper leg were selected as the

input data and then filtered by a low-pass filter. The sit and stand points could be identified based on the

orientation of the right upper leg. The duration and the RMS of angular velocity of sit to stand would be

calculated. Sit-to-stand five time test measures were shown in Table A.10.
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FIGURE 4.9: Sensor data processing in sit-to-stand five times test. in sit-to-stand five times test. STS5:
sit-to-stand five times test .
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TABLE 4.5: Measures in sit-to-stand five times test. RMS: root mean square.

Category Measures

sit-stand-sit

Duration

RMS angular velocity

RMS jerk

sit-stand

Duration

RMS angular velocity

RMS jerk

stand-sit

Duration

RNS angular velocity

RMS jerk

4.2.4.5 Measures in timed up and go test

Many magnitude measures and gait pattern measures by using inertial sensors in timed up and go test

showed the significant differences between fallers and non-fallers (Greene et al., 2010a). In addition, old

people aged 65 or more showed significant turning difficulty (Thigpen et al., 2000). It was reasonable

to have a hypothesis that fallers may show more turning difficulty than non-faller. The turning difficulty

could be measured by the turning duration and angular velocity during turning.

Therefore, measures in timed up and go test can be classified into walking related measures and turning

related measures based on the tasks. Walking related measures included magnitude measures and gait

pattern measures (Greene et al., 2012). Magnitude measures were calculated by using acceleration and

angular velocity from the sensor at the pelvis during walking. For the gait pattern measures , angular

velocity from the sensors at the left and right lower legs were used to extract features. Figure 4.10 shows

the algorithm to calculate magnitude and gait measures during the walking in timed up and go test. The

angular velocity on pelvis and lower legs are input to the algorithm and are filtered by a low-pass filter.

The angular velocity on lower legs are used to detect the toe off and heel strike during walking. These

toe off and heel strike points are used to find the start and end points of walking for magnitude measures
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and can be also utilized to identify the gait cycle for gait measures such as the stride time. The range

of the knee joint motion was calculated based on the orientations of upper and lower legs (Figure 4.11)

and gait symmetric was also calculated based on range of the knee joint motion on left and right legs. In

the turning measures, the turn period was determined by the magnetization and turning measures were

calculated during this period (Figure 4.12).

FIGURE 4.10: The algorithm of calculating magnitude gait measures in timed up and go test.
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FIGURE 4.11: The algorithm of calculating range of motion measures in timed up and go test. TUG:
timed up and go test.
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FIGURE 4.12: Calculates of turning measures in timed up and go test. TUG: timed up and go test.
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TABLE 4.6: Measures in timed up and go test. AP: anteroposterior; ML: mediolateral; V: vertical;
RMS: root mean square.

Phase Category Measures

Walking

Magnitudes of raw data

RMS acceleration AP

RMS acceleration ML

RMS acceleration V

RMS angular velocity AP

RMS angular velocity ML

RMS angular velocity V

Gait pattern

Gait velocity

Stride time

Stride length

Single support

Range of motion on knee joint

Gait symmetry

Turning

Duration Turning duration

Magnitudes of raw data
RMS angular velocity

Maximal angular velocity

4.2.4.6 Measures in motor function test, reaction test and fear of falling test

Motor function was assessed by considering the flexibility and maximum muscular strength (Figure

4.7). The flexibility was measured by range of knee extension and flexion. Similar with the range of

motion of the knee joint, the orientations from the sensors at right upper and lower legs were utilized to

calculate the knee joint angles. Then the ranges of knee joint angles during knee extension and flexion

were calculated. The maximum muscular strengths were measured while participants performed ankle

dorsiflexion, knee extension, knee flexion, and hand grip. In the reaction test, two measures including
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movement time and information processing speed were derived from four conditional tests based on

the Hick’s law. The short falls efficacy scale international (Short FES-I) score was generated after the

participants completed the questionnaire.

TABLE 4.7: Measures in timed up and go test in motor function test

Category Measures

Range of motion
Range of knee extension

Range of knee flexion

Maximal muscular strength

Maximal ankle dorsiflexion force / weight

Maximal knee extension force / weight

Maximal knee flexion force / weight

Maximal hand grip force / weight

4.2.5 Development of fall classification models

4.2.5.1 Introduction of typical classification models

In the theory of statistical learning, according to whether the data are labeled or not, the models are

divided into supervised learning models and unsupervised learning models. In this study, our data were

labeled as a faller or a non-faller based on fall history. So we intended to use supervised learning

models to classify fallers and non-fallers. Many supervised learning models have been proposed for

the classification. According to the flexibility of the model, these classification models include linear

models, tree models, neural network models, and support vector machine (Friedman et al., 2001).

The basic linear model for classification is the logistic regression model, which is a regression model

measuring the relationship between the categorical variable and one or more independent variables by

estimating probabilities using a logistic function (Hilbe, 2009). In the logistic regression, the model tries

to learn p(y|x) directly that learns mappings directly from the space of input x to the labels y. It is also

called discriminative learning model. There are also another kind of models called generative learning

models, which try to model p(x|y) by using the Bayes rule to derive the posterior distribution on y given
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x:

p(y|x) = p(x|y)p(y)
p(x)

Linear discrimination analysis also called Gaussian discriminant analysis assumes that p(~x|y) is a mul-

tivariate Gaussian distribution, where~x is a vector of continuous variables. Another generative learning

model is Naive Bayesion model that is also based on Bayes’ theorem with independence assumptions

between predictor variables.

Tree-based models partition the feature space into a set of rectangles, and then fit a simple model in each

one. A popular and simple tree-based model is a classification and regression tree (CART). The basic

tree models are easy to explain, more closely mirror human decision-making than do the regression and

classification approaches, and are able to be displayed graphically. Unfortunately, basic trees generally

do not have the same level of predictive accuracy. However, by aggregating many basic decision trees,

using methods like bagging, random forests and boosting, the predictive performance of trees can be

substantially improved. The boosted regression tree differs fundamentally from basic tree models (E.g.

CART) that produce a single ’best’ model, instead using the technique of boosting to combine large

numbers of relatively simple tree models adaptively, to optimize predictive performance (Elith et al.,

2008). Different from boosted tree model, random forests add an additional layer of randomness to

bagging. In addition to constructing each tree using a different bootstrap sample of the data, random

forests change how the classification or regression trees are constructed (Liaw and Wiener, 2002).

Neural network models in artificial intelligence are usually known as artificial neural networks (ANN).

It is an information paradigm that is inspired by the way biological nervous systems, such as the brain,

process information (Anderson, 1995). A neural network has several inputs, hidden, and output nodes.

Each node applies a function (E.g. linear, logistic), and returns an output. Every node in the proceeding

layer takes a weighted average of the outputs of the previous layer, until an output is reached. The

reasoning is that multiple nodes can collectively gain insight about solving a problem (like classification)

that an individual node cannot. The cost function differs for this type of model and the weights between

nodes adjust to minimize errors. However, ANNs often converge on local minima rather than global

minima, meaning that they are essentially ”missing the big picture” sometimes, or missing the forest for

the trees. ANNs often overfit if training goes on too long, meaning that for a given pattern, an ANN

might start to consider the noise as part of the pattern.
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Another advance model that overcomes the disadvantages of ANN is support vector machine (SVM),

which is to construct a hyperplane or set of hyperplanes in a high- or infinite-dimensional space, which

can be used for classification, regression, or other tasks (Cristianini and Shawe-Taylor, 2000). In detail,

SVM tries to fit a hyperplane/function between two different classes, while given a maximum margin

parameter. This hyperplane attempts to separate the classes so that each falls on either side of the plane,

and by a specified margin. There is a specific cost function for this kind of model which adjusts the

plane until the error is minimized.

There is trade-off between prediction accuracy and model interpretability (James et al., 2014). Models

with low flexibility such as logistic regression have good interpretability and low variance of its pre-

diction accuracy, but low prediction accuracy and use restrictive assumptions. On the other hand, high

flexible models such as SVM present high prediction accuracy but high variance of its accuracy and

low interpretability. Therefore, we would like to select typical models with different flexibility. In this

study, six typical statistical models including linear models of logistic regression and linear discriminant

analysis, basic tree model of classification and regression tree, advance tree models of boosted tree and

random forest, and support vector machine (SVM) radial basis function were used to assess the fall risk

(Table 4.8).

TABLE 4.8: Typical fall risk assessment models.

Model type Typical model

Linear Model
Logistic regression

Linear discriminant analysis

Basic tree model CART: Classification and regression tree

Advance tree model
Boosted tree

Random forest

Support vector machine (SVM) SVM radial basis function (SVMRBF)
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4.2.5.2 Development of fall classification models

First, two-sample t-tests were performed on outcome measures from seven tests to compare the differ-

ences between the faller and non-faller groups. Cohen’s effect sizes of t-tests for measures were also

calculated. Cohen (2013) suggested the following guidelines for social sciences: r = 0.1 indicates small

effect size; r = 0.3 indicates medium effect size; r = 0.5 indicates large effect size. Then a Receiver

Operating Characteristic (ROC) analysis (Greiner et al., 2000) would be carried out to examine the dis-

criminative power of the specific measure on classifying fallers and non-fallers. Area under the ROC

curve (AUC) was used to measure the discriminative ability. Measures that were significant both on

t-test and ROC analysis and effect size over than 0.3 were considered as the significant measures. The

significance level of statistical analysis was 0.05.

Based on identified significant measures from each test, mathematical models were built to classify

fallers and non-fallers. In this process, significant measures were selected as the independent variables

of the models. The fall histories of the participants were used as the dependent variables of the models.

After the models were constructed, cross validation was used to estimate the test error associated with

a given statistical learning method to evaluate its performance and select proper level of flexibility.

Available cross validation methods include leave-one-out cross-validation (LOOCV) and k-folder cross-

validation. Here, LOOCV can be considered as the case of k=1 folder cross-validation. In this case,

small k values always result to high variance and high running time. Larger k values mean less bias

towards overestimating the true expected error. Here, LOOCV is always utilized when the training

sample size is very small. In our study, we selected 10-fold cross-validation that was commonly used

in previous studies (James et al., 2014). In 10-fold cross-validation, the original sample is randomly

partitioned into 10 equal size subsamples. Among the 10 subsamples, a single subsample is retained

as the validation data for testing the model, and the remaining 9 subsamples are used as training data.

The cross-validation process is then repeated 10 times (the folds), with each of the 10 subsamples used

exactly once as the validation data. The 10 results from the folds can then be averaged (or otherwise

combined) to produce a single estimation. The statistical analysis, model constructions and accurate

analysis were conducted in R using the caret package (Kuhn and Johnson, 2013).
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4.3 Results

Table 4.9 summarized all significant measures from seven tests based on two sample t-test and AUC for

simplified representation, the detailed results were attached in the Appendix A. In physiological function,

in visual (VIS) system measures, fallers showed significantly higher root mean square (RMS) angular

velocity anteroposterior (AP), jerk of acceleration AP and ML, jerk of angular velocity AP and ML,

power spectral density (PSD) of acceleration mediolateral (ML) and angular velocity AP (Table A.1).

In vestibular (VES) system measures, fallers had significant higher RMS angular velocity AP, jerk of

acceleration AP and ML, power spectral density of acceleration ML and angular velocity AP, but lower

equilibrium score (ES) ML than non-fallers (Table A.2). However, no somatosensory (SOM) system

measures showed a difference between fallers and non-fallers (Table A.3). In the measures of overall

performance of the sensory system (Table A.4), fallers showed significantly higher RMS acceleration

AP and ML, RMS angular velocity ML, power spectral density of acceleration AP and ML and angular

velocity of ML, but lower ES AP and ML than non-fallers. In central nervous system measures (Table

A.5), fallers showed significantly lower information processing speed than non-fallers. However, there

was no differences between fallers and non-fallers on movement time. In the motor function test (Table

A.6), fallers showed the significantly smaller range of motion on knee extension and flexion non-fallers.

The maximum muscular strengths of knee extension, flexion and hand grip of fallers were significantly

smaller compared with non-fallers. In fear of falling test (Table A.7), fallers had significantly higher

short falls efficacy scales international score than non-fallers.

In terms of integration function, in the postural stability measures, at the condition of eyes open and foam

surface (Table A.8), fallers showed significantly higher RMS acceleration AP and ML, RMS angular

velocity AP and ML, RMS jerk of acceleration AP and ML, RMS jerk of angular velocity AP and ML,

power spectral density of acceleration AP and ML, and power spectral density of angular velocity AP

and ML, and had the significantly lower equilibrium score AP and ML than non-fallers.

In limits of stability test (Table A.9), fallers showed significantly shorter reach distance and lower angular

velocity and jerk in comparison with non-fallers during forward and right reach. For the left reach, fallers

showed significantly shorter reach distance and jerk of angular velocity than non-fallers. During sit-to-

stand five times test (Table A.10), fallers had a longer duration and slower angular velocity and jerk

than non-fallers in the period of sit-stand-sit, sit-stand and stand-sit. In timed up and go test (Table
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A.11), fallers had significantly lower RMS acceleration AP, RMS angular velocity AP, ML and V than

non-fallers. In gait pattern measures, fallers had the significantly lower gait velocity, longer stride time,

wider stride width and smaller range of motion on knee joints than non-fallers. During the turning,

fallers showed significantly lower RMS and maximal angular velocity than non-fallers.

According to the experimental results of measures in seven tests, significant measures based on two-

sample t-test and AUC were summarized in Table 4.9. These significant measures were used as the

predictors of fall history. Then six typical models (Table 4.8) were built to assess the fall risks. Using

10-fold cross validation, the accuracies of models were shown in Figure 4.13. Among the models,

SVMRBF, boosted tree and random forest had excellent accuracies (> 0.85). CART had good accuracy

of 0.77 (> 0.75) but LDA and logistic regression had relatively low accuracies around 0.70. According

to Gini variable importance in classification and regression tree model (Sandri and Zuccolotto, 2008),

10 most important measures were shown in Table 4.10.
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TABLE 4.9: Summary of significant measures in seven tests. acc: acceleration; angVel: angular
velocity; AUC: area under ROC curve; AP: anteroposterior; CES: composite equilibrium score; ES:
equilibrium score; ML: mediolateral; PSD: power spectral density; FES-I: falls efficacy scale
international; rms: root mean square; ROM: range of motion; V: vertical; VIS: vision; VES: vestibular.

Test Significant measures

Sensory integration test

(SIT)

SIT–postural stability: in eyes open & sway surface condition,

rms acc AP and ML, rms angVel ML, jerk acc AP and ML, jerk

angVel AP and ML, PSD acc AP and ML, PSD angVel ML

SIT–VIS: rms angVel AP, ES ML, jerk acc AP, jerk acc ML, jerk

angVel AP, jerk angVel ML, PSD acc ML, PSD angVel AP

SIT–VES: rms angVel AP, ES ML, jerk acc AP and ML, jerk

angVel AP, PSD acc ML, PSD angVel AP

SIT–CES: rms acc AP and ML, rms angVel ML, ES ML, PSD acc

AP and ML, PSD angVel ML

Limits of stability test

Reach forward: reach distance, jerk angVel AP

Reach right: reach distance, rms angVel ML, jerk angVel ML

Reach left: reach distance, jerk angVel ML

Sit-to-stand five times test

Sit-stand-sit: duration, rms angVel, jerk

Sit-stand: duration, rms angVel, jerk

Stand-sit: duration, rms angVel, jerk

Timed up and go test

Amplitude of raw data: rms acc AP, rms angVel AP, ML and V

Gait pattern: gait velocity, stride time, stride length, single

support

Turning: maximal angVelV

Motor function test
ROM: knee extension, knee flexion

Maximal strength: max knee extension, knee flexion, hand grip

Reaction test Information processing speed

Fear of falling test short FES-I score
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FIGURE 4.13: The accuracy of fall risk assessment models using 10-fold cross validation. BT: boosted
tree; CART: classification and regression tree; LDA: linear discriminant analysis; LR: logistic
regression; RF: random forest; SVMRBF: support vector machine radial basic function

TABLE 4.10: Top 10 importance measures based on the Gini variable importance in classification and
regression tree. AP: anterioposterior; ML: mediolateral; FES-I: falls efficacy scale international; PSD:
power spectral density; SIT: sensory integration test; TUG: timed up and go test; VIS: vision

Measures Overall score of Gini variable importance

Information processing speed 38.1

Short FES-I 29.9

VIS PSD acceleration ML 17.6

VIS angular velocity AP 14.0

SIT PSD angular velocity AP 12.9

Sit-stand jerk 11.6

VIS PSD angular velocity AP 11.5

Sit-stand duration 11.4

TUG angular velocity AP 11.2

Maximal turning angular velocity 11.1
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4.4 Discussion

4.4.1 Measures of fall related factors

In terms of physiological ability, fallers had the significantly higher angular velocity, jerk, and power

spectral density than non-fallers in terms of the VIS system. For VES measures, fallers also had sig-

nificantly higher angular velocity, jerk, and power spectral density, and lower equilibrium score than

non-fallers. But none of the SOM system measures indicated the difference between fallers and non-

fallers. As for composite measures, fallers showed significantly higher acceleration, angular velocity,

and power spectral density, and lower equilibrium score than non-fallers. During sensory integration

test, participants were required to stand as still as possible. The higher angular velocity, jerk, power

spectral density, or lower equilibrium score indicated more movements during quiet standing, which

was associated with the poor stability. Hence, fallers showed much weaker vision (VIS) and vestibule

(VES) systems, and poorer sensory system compared with non-fallers. The findings were in line with

previous studies. Vision played important roles in the balance control (Lord et al., 2003a). With the

impoverished visual input, balance control and obstacle avoidance abilities became impaired due to mis-

judgment of distances and misinterpretation of spatial information. Impaired depth perception has been

found to be among the strongest visual risk factors for multiple falls in community-dwelling older people

(Ambrose et al., 2013; Salonen and Kivelä, 2012). Vestibular dysfunction was common in older people

as a result of attrition of neural and sensory hair cells (Baloh et al., 2001). This often resulted in impair-

ments in posture and gait, characterized by postural instability and a broad-based, staggering gait pattern

with unsteady turns placing the older adult at an increased risk of recurrent falls (Sturnieks et al., 2008).

Di Fabio et al. (2001) and Kristinsdottir et al. (2001) showed a relationship with increased risk of falls

using more precise measurement of vestibular function. Shaffer et al. (2007) found that ageing caused

impaired distal lower-extremity proprioception, vibration and discriminative touch in the somatosensory

(SOM) system. Not all falls are resulted from lesions in the vestibular system. Many individuals expe-

rienced a sensation of disequilibrium or unsteadiness as a result of decreasing function in other sensory

systems. A common cause of falls was a proprioceptive/somatosensory loss from peripheral neuropathy

seen in diabetics and chronic alcoholics (Girardi et al., 2001). However, in our study, SOM-related mea-

sures showed no difference between fallers and non-fallers. The possible reason was that all participants

were in good health condition even fallers.
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In the reaction test, we found that fallers showed significantly higher information pressing speed than

non-fallers, but there was no significant difference between fallers and non-fallers on movement time.

Information processing speed was associated with cognitive function of central nervous system and

movement time was related to the motor control in the reaction test. Impaired cognitive function was as-

sociated with increased fall risk (Muir et al., 2012). Information processing and reach time are important

parts of cognitive function (Alexander and Hausdorff, 2008). Fallers showed the significantly short re-

action time in simple reaction test and choice reaction test (Lord and Clark, 1996; Lord and Fitzpatrick,

2001). Fallers also had significantly poorer motor coordination skills in terms of lower joint flexibility

and maximal muscular strength compared with non-fallers. The flexibility was measured by ranges of

motion of knee extension and flexion. Greater flexibility was more useful on balance control. Lower

ranges of motions were found to be associated with increased fall risk (Kerrigan et al., 2001; Tinetti

et al., 1993, 1986). Muscle strength should be one important factor that were assessed and treated in

older adults at fall risks (Moreland et al., 2004) and weak muscles were associated with high fall risks

(Horlings et al., 2008). In the psychological aspect, fallers had significantly higher short falls efficacy

scale international score than non-fallers. It indicated that fallers showed much higher fear of falling

than non-fallers. The fear of falling has been identified as one of the key symptoms of ‘past-fall syn-

drome’ (Legters, 2002). The study of Legters (2002) also showed that 50% to 60% of reported fallers

experienced fear of falling in several community samples. Fallers also showed significantly higher falls

efficacy scale scores than non-fallers (Delbaere et al., 2010; Friedman et al., 2002).

In terms of integrated functions, in the sensory integration test, fallers showed significantly higher ac-

celerations, angular velocities and jerks compared with non-fallers. Higher accelerations, angular veloc-

ities and jerks indicated unstable status when the test requires participants to stand stable as possible.

So fallers showed poor postural control ability compared with non-fallers. Our findings matched those

observed in earlier studies. Greene et al. (2012) found that fallers had significantly higher root mean

square (RMS) acceleration and angular velocity than non-fallers during eyes open and closed on a firm

surface. O’Sullivan et al. (2009) also found that fallers had significantly higher RMS acceleration than

non-fallers during eyes open on the foam mat. From the frequency domain measures, fallers had sig-

nificantly higher power spectral density than non-fallers. It demonstrated that fallers should take more

effects to perform the same tasks compared with non-fallers.

In the limits of stability test, sit-to-stand five times, and timed up and go test, faller showed significantly
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slower accelerations, angular velocities and jerks. In these tests, participants were required to complete

special tasks. The higher accelerations, angular velocities or jerks indicated that participants could

perform the tasks faster and easier. Fallers had some difficulties on performing these tasks compared

with non-fallers. Doheny et al. (2011) found that fallers had significantly lower total jerk than non-fallers

during sit-to-stand five times test. Meanwhile, fallers also took longer time to perform the sit-to-stand

five times test, timed up and go tests. In addition to the sensor raw data of acceleration and angular

velocity, feature measures were also extracted from the acceleration and angular velocity in sit-to-stand

five times test and timed up and go test. In sit-to-stand five times test, fallers took longer duration to

complete the sit-to-stand five times test compared with non-fallers. Doheny et al. (2011) also found

that mean of sit-stand duration fallers were significantly longer than non-fallers. In the timed up and

go test, gait pattern measures were also extracted from the angular velocity of lower legs (Greene et al.,

2010a,b). Fallers showed significantly lower gait velocity, longer stride time and shorter stride steps than

non-fallers. While doing the turning movement, fallers took significantly longer time but smaller angular

velocity than non-fallers. Greene et al. (2010a) found that fallers spent significantly longer walking time

and stride time than non-fallers.

4.4.2 Fall classification models

In order to assess fall risk, our study covered the tests systematically that were associated with different

aspects of balance control, which was measured by inertial sensors in most of the tests. Most previous

studies (Seeing Table 4.11) only used some tests to build the classification models for assessing the fall

risks, such as postural stability in quiet standing (Greene et al., 2010a), timed up and go test and 20-meter

walking (Marschollek et al., 2011a,b), a directed-routine movement test consisting of a timed up and go

test, a sit-to-stand five times test, and an alternate step test (Liu et al., 2011). As falls could be caused by

many different factors, some tests only associated with parts of balance functions might not reflect the

real reasons of falls. Systematic factors from different aspects could have more advantages on improving

the accuracy of a model. For example, Marschollek et al. (2009) utilized two models to assess fall risks,

where model 1 only used clinical assessment data consisting of Stratify score and Barthel index while

model 2 added the sensor data from timed up and go test. Their results showed the accuracy of model 1

increased from 83.6% to the model 2 accuracy of 90%.
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Our study applied the 10-folder cross validation to assess the accuracy of models for the model selection.

In previous studies, many models were proposed to assess fall risk by using inertial sensors. A review

study (Howcroft et al., 2013) reported half of geriatric fall risk research paper used derived models

instead of correlating a variable with fall risk. However, 50% of these did not employ cross validation

to evaluate the performance of their models. Thereby it limited the model’s applicability beyond the

train population. Due to the differences of evaluation methods, the model accuracy was also different.

So we intended to compare the accuracy of models using the similar cross validation methods. Liu et

al. (2011) and Caby et al. (2011) used leave-one-out cross-validation and Marschollek et al. (2011a;

2011b) and Greene et al. (2012) used ten-folder cross-validation for evaluating the fall classification

model performance.

In the previous studies (Seeing Table 4.11), the frequently used classification models were logistic re-

gression (Marschollek et al., 2011b), decision tree (Marschollek et al., 2011a), support vector machine

(Greene et al., 2010a), neural network (Caby et al., 2011), naive Bayesian classfiers (Caby et al., 2011),

etc. In this study, the typical classification models with different flexibilities were conducted. Among the

models, linear models had relatively low accuracy but advance tree models and support vector machine

(SVM) showed excellent accuracy on classifying fallers and non-fallers. In terms of the flexibility of

models, linear models had more restrictive assumption, basic tree model had relatively lower flexibility,

and advance tree models and SVM had THE highest flexibility. High flexibility of a model is associated

with high accuracy of the model (James et al., 2014). The accuracy of models ranged from 0.68 to 0.88,

where linear models had lower accuracy and advance model showed high accuracy. Compared with

previous study, models with lower flexibility showed the similar accuracy with previous studies. Our

linear models including logistic regression and linear discrimination also showed the similar accuracy

with the studies of Marschollek et al (2011a) and Liu et al.(2011) at the accuracy around 0.70. The basic

decision tree with accuracy of 0.79 also present similar accuracy with the decision tree with accuracy

of 0.78-0.80 in the study of Marschollek et al.(2011). The possible reason was that linear models and

basic decision tree have restrictive assumptions, so more measures were added to the models but it could

not help to improve the model accuracy. On the contrary, advance models with high flexibility showed

relatively higher accuracy compared with models in previous studies. Greene et al. (2012) used SVM

model to classify fallers and non-fallers based on timed up and go test and the accuracy of the model

was evaluated using ten-fold cross validation and showed the accuracy of 71.5%. Our study showed
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excellent accuracy of 88.5%. This result might be explained by the fact that we included significant

measures from different aspects of a balance system, while their studies only used the measures from

timed up and go test. Due to the high flexibility of these advance models, more measures from different

aspects of a balance system could improve the model accuracy efficiently.
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4.4.3 Limitations

Some limitations still existed in this study. First, we generated so many measures from different kinds

of tests. Then we used significant measures in two-sample t-test, effect size, and ROC analysis as the

independent variables to build the models. Some measures might have high correlations between each

other, so the independent variables might be redundant for the models. Some methods such as principle

component analysis could be used to reorganize the independent variables in the future. Second, we set

fall history as the criteria to separate fallers and non-fallers. Fall experience induced many effects on the

people such as fear of falling (Legters, 2002). In order to prevent falls in the future, it is reasonable to

use the future fall as the criteria for predicting fall risks in the future study. Additionally, in our study,

the total weight of the system is 480g, including 30g×5 XSens sensors and 330 g Xbus Master. So the

system is not light for the subject. But it may also affect the results. Additionally, in order to make sure

all participants walked barefooted comfortably, we considered of keeping the temperature of the room

and the floor in all seasons, especially in the winter, the floor was cold for walking, so the participants

wore a pair of normal and thin socks to keep warm on the feet. In other seasons, participants just walk

barefooted. However, the socks may be a confounding factor, but the effect may be small. Lastly, only

old women were recruited in this study to avoid the gender effect on fall risks, the generalizability of the

study findings on old men need to be investigated further.

4.5 Conclusion

The purpose of this study was to develop the models for classifying fallers and non-fallers. We conducted

an experiment of 195 participants using our designed protocol, which included seven main tests: sen-

sory integration test, limits of stability test, sit-to-stand five times test, timed up and go test, reaction test,

and short falls efficacy scale international questionnaire. In the statistical analysis, many inertial sensor

based measures derived from test showed significant differences between fallers and non-fallers using

two-sample t-test and significant discrimination ability on separating fallers and non-fallers using ROC

curve analysis. Faller showed worse visual and vestibule systems, weaker muscular strength, decreased

flexibility of the knee joint, and slower information processing speed than non-fallers. Fallers also had

more difficulties on performing postural stability, functional reach, sit-to-stand five time tests and timed
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up and go test compared with non-fallers. According to the model flexibility, six representative models

were used to classify fallers and non-faller, including logistic regression, linear discriminant analysis,

classification and regression tree, boosted tree, random forest, and support vector machine radial basis

function (SVMRBF). 10-folder cross-validation was used to evaluate the model performance. Restric-

tive models of logistic regression and linear discriminant analysis presented relatively lower accuracy

around 0.70 on fall classification but they had good interpretability. High flexible models of SVMRBF,

boosted tree and random forest showed excellent accuracy (>0.85) on fall classification but they had

poor interpretability. Due to the trade-off between the model interpretability and flexibility, lower flexi-

bility models had good interpretability but low accuracy and high flexibility models had high accuracy

but poor interpretability. Therefore, depending on the research purpose, the model with proper flexibility

could be selected for fall classification among available models in this study.



Chapter 5

Development of methods for identifying

the underlying causes of high fall risks in

older people

5.1 Objective

In Chapter 4, we used six statistical models for fall classification. If a senior was classified as a faller

or at a high risk of falling by our models, it was important to identify the causes of high fall risk for

fall prevention. In this Chapter, the aim was to identify the underlying causes of high fall risks in

the individuals. Significant measures identified from the previous chapter were further analyzed and

two methods were integrated for fall evaluations: the classification and regression tree (CART) model

and the profile assessment. The CART model identified the possible causes of high fall risks based

on the tree-based relationships between fall related factors and fall category (faller or non-faller). The

profile assessment examined abnormal fall related factors using the normal distributions of significant

and representative measures.

83
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5.2 Method

In Chapter 4, six typical statistical models with different flexibilities for classifying fallers and non-

fallers were proposed. Generally, there is the trade-off between the model predictive accuracy and

model interpretability (James et al., 2014). Advanced models including boosted tree, random forest and

SVMRBF showed excellent model accuracy on fall classification. However, these models worked more

like a ’black box’, which absorbs the features or independent variables, trains the data and later outputs

the results. It was difficult to interpret how the model generated results from available independent

variables. As a result, it was impossible to use these advanced models to identify the causes of high

fall risks. In terms of logistic regression and linear discriminant analysis, the relationships between

independent variables and response variables were easily interpretable, but were also unable to identify

the factors of high fall risks.

On the other hand, decision tree involves stratifying or segmenting the predictor space into a number

of simple regions recursively, e.g. classification and regression tree (CART). This prosperity built tree-

based relationships between risk factors and fall. Because of this, the basic tree-based models, such as

CART (Delbaere et al., 2010), logistic regression tree (Yamashita et al., 2012), and tree-structured sur-

vival analysis (Stel et al., 2003a), have been used for identifying high fall risk factors in several studies.

However, the decision tree algorithms were not very robust (Last et al., 2002). Small variations in the

training data could result in different trees. For example, changing variables, excluding duplicated in-

formation, or altering the sequence midway could lead to major changes and possibly require redrawing

the tree.

Meanwhile, Lord et al. (2003b) proposed the profile assessment method to identify the causes of high

fall risks. The profile assessment method evaluated the performance of important fall related factors

based on the normal distribution of a large-scale sample. It could provide much detailed information on

each individual measure/factor relative to the normative data. Different from the decision tree method,

the structure of the profile assessment method was stable and was not affected by small variances of the

training data. However, since the fall information was not used directly in the profile assessment method,

the relationships between risk factors and fall category were weak.
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TABLE 5.1: Comparisons of two methods for identifying the causes of high fall risks

Methods Description Advantages Disadvantages

Decision tree

(Delbaere et al.,

2010)

To identify the causes of

high fall risks based on a

tree-based relationships

between risk factors and

falls. E.g. classification

and regression tree

(CART).

Clear relationships

between risk

factors and falls,

and interactions

among factors.

Decision tree structure is

unstable (Last et al.,

2002), sensitive to the

change of training data,

e.g. variables or sample

size.

Profile

assessment

method (Lord

et al., 2003b)

To identify abnormal

factors based on normal

distribution of the factor

measures as the causes of

high fall risks.

Stable profile

structure and

reference range.

Weak relationships

between risk factors and

falls, and interactions

among factors

Therefore, the decision tree built clear tree-based relationships between risk factors and falls, but was

sensitive to fall and thus unstable. On the other hand, the profile assessment had stable structure but weak

relationships between risk factors and falls. Thus the two methods are complementary to each other.

Therefore, we developed the CART-PA method to integrate the CART model and profile assessment

method for identifying the causes of high fall risks. As shown in Figure 5.1, to identify the causes

of risks, CART model and profile assessment methods are utilized to find the causes. Then a factor

identified by two methods is considered as the main factor, otherwise the factor is considered as the

possible factor. Comparing with using CART model or profile assessment method only, CART-PA

method could generate reinforced causes of high risks. The results can include the main factors and also

possible factors.
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FIGURE 5.1: The algorithm of the CART-PA method.

According to the CART model, the decision tree was generated from the significant measures in the tests.

Figure 5.2 shows the algorithm to generate a decision tree based on the CART model. The algorithm

starts with the whole population and sequentially divides it into subgroups by independent variables.

Then the best split variable is selected first and provides the first partition by the cutoff value. Both split

variable and cutoff values were determined by Gini impurity. After this, the remaining variables are

examined to determine whether they can provide further discrimination, and this process continues until

the sample size is smaller than five or no significant change on Gini impurity.
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FIGURE 5.2: The algorithm of the CART model to construct the decision tree.

In our study, first all participants were separated into two groups based on the short FES-I score at the

cutoff point of 10 using the Gini impurity. Subsequently, participants in the short FES-I group with cutoff

below than 10 were split into two groups based on the jerk in sit-to-stand five times test. The group was

split recursively until all terminal nodes became non-significant pure or the number of participants in the

nodes were less than 5. Finally, the tree was constructed, as shown in the figure 5.5. The normal tree
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node was represented by the rectangles while the terminal tree node was represented by the ellipses. The

normal tree node contains the test, the measure and the cutoff point. In addition to the information on

the normal tree node, the terminal node also included the total number of participants and the percentage

of fallers within the participants.

In our study, many measures could assess one profile (or a factor). For example, the visual system was

assessed by eleven measures (seeing Table 4.3). Because of it, it was necessary to choose the most

useful measures to reflect the profiles. Therefore, if there were more than two significant measures for

evaluating a profile, the first two significant measures that had the highest area under the ROC curve

(AUC) would be selected to represent this profile, because AUC measured the discriminate power of

the measure to classify fallers and non-fallers. Figure 5.3 presents 15 measures based on the profiles

of a participant, including the visual system, vestibular system, central nervous system, motor function,

postural stability, postural response, stability limits and gait stability. Each profile was assessed by the

measures derived from the tests in the protocol. For example, the visual system could be measured by

RMS jerk of angular velocity in AP direction and RMS equilibrium score in ML direction.
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FIGURE 5.3: Components and representative measures of a participant profile. AP: anteroposterior;
ML: mediolateral; RMS: root mean square; ES: equilibrium score.

In this method, first 95% of the normal distribution of the population was used as the reference to

generate the normal range with lower and upper limits from the large-scale sample. When a high value

represented poor performance, the measure value larger than the upper limit was defined as an abnormal

range. When low measure value represents the poor performance, then the measure value smaller than

the lower limit was identified as an abnormal range. Once a subject’s test performance results were

calculated, these results could be compared to the reference value to determine whether the related

measures were abnormal. Additionally, the test results could also be converted to z score to compare

across different measures, with the z scores being calculated using the mean and standard deviation of
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measures (Table 5.2) by below equation:

z =
sign× (measure value−mean)

standard deviation
(5.1)

Sign is +1 if higher measure value indicates better performance; otherwise, -1 will be assigned. Hence,

all measures could be compared in the common standard for easy visualization and fall risk evaluation.

The abnormal range was z score lower than -1.96. Finally, a profile graph that includes all profiles could

be plotted from z scores of all profiles.
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TABLE 5.2: Mean, standard deviation and normal range based on 95 percentile of the profile measures.

Profiles Measures Mean
Standard

deviation
Abnormal range

Visual system

RMS jerk angular

velocity AP
2.32 0.87 > 4.46

ES ML 0.89 0.045 < 0.80

Vestibular system

RMS jerk angular

velocity AP
4.17 2.24 > 9.72

ES ML 0.82 0.077 < 0.66

Central nervous

system

Information

processing speed
6.35 1.80 < 3.68

Fear of falling Short FES-I 11.80 4.21 > 21

Motor function
Hand grip 0.35 0.071 < 0.20

Knee extension 0.25 0.080 < 0.10

Postural stability

RMS jerk

acceleration AP
13.00 7.07 > 29.67

RMS acceleration

ML
0.0071 0.0020 > 0.012

Postural response
Sit-stand duration 1.01 0.22 > 1.49

Sit-stand angular

jerk
1525.40 607.04 < 578.40

Stability limits

Reach forward

distance
24.85 7.27 < 12.04

RMS angular

velocity in reach

forward

0.24 0.094 < 0.078

Gait stability
Gait velocity 0.74 0.12 < 0.50

Step length 0.38 0.045 < 0.30
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Figure 5.4 shows a typical example of the distribution and z score of information processing speed.

First, using 95% as the reference, the range of information processing speed was between 3.68 and

9.04. Since a low information processing speed represents poor performance, the abnormal range is

information processing speed smaller than 3.68. A subject had the information processing speed of

3.25, which is lower than 3.68. The z score of information processing speed was also calculated and

presented in the figure. We could conclude that the subject had a much lower information processing

speed than the average of information processing speed based on a large-scale sample. So the subject

may have an impaired central nervous system that was measured by the information processing speed.

To generate the z score, we could derive the mean and standard deviation from large-scale information

processing speed data (in the example, mean = 6.35 and standarddeviation = 1.20). By using this mean

and standard deviation, the subject’s information process speed of 3.25 would be standardized to z score

of -2.27.

Finally, CART model and the profile assessment were combined to identify the underlying causes of high

fall risks. If one factor was identified as the cause by two methods, then that factor would be considered

as one of the causes of high fall risks. If one factor was identified as the cause by only one method (either

the CART model or the profile assessment), then the factor was the potential cause of high fall risks.
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FIGURE 5.4: A typical example of the distribution and z score of information processing speed. (a)
The plot of normal distribution probability density function (PDF) and histogram based on the
information processing speed data (mean=6.35 and standard deviation=1.20. Using 95% as the
reference of normal performance, the lower limit is 3.68 and the upper limit is 9.04.). (b) a subject’s
information processing speed of 3.25 was standardized to z-score of -2.27 (Using 95% as the reference,
lower limit of z-score is -1.96, upper limit is 1.96). IPS: information processing speed.

5.3 Results

Once the tree was built, we could utilize it to predict the fall risk and identify the underlying causes

of high fall risks. First, a new subject has to complete all tests in our test protocol. Then fall related

measures would be calculated based on the tests. Finally, the subject would fall into one of the end nodes
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in the tree. The tree end node showed a fall probability of the subject directly. We can trace back the path

based on measures of the subject in the tree model to identify the possible reason of high fall risks. For

example, there are two participants who were named as participant 1 and participant 2 in the experiment.

In the Figure 5.5, if participant 1 falls into the green tree end node following the green path, the subject

has very low fall risk (3%). From the green path, we can conclude that the participant has a low fear of

falling, good sit-to-stand ability, good sensory system and good vestibular system. If participant 2 falls

into the red end node following the red path, the subject has very high fall risk (90%). From the red

path, we also can conclude that this participant has a relatively high fear of falling, poor central nervous

system ability, but the good functional reach ability from limits of stability test. So the possible causes

of high fall risk are fear of falling and poor central nervous system ability.

FIGURE 5.5: Classification and regression tree for fall risk assessment. In the tree, rectangles represent
tree nodes and ellipses represent tree end nodes. Normal tree nodes include the factors and the
measures of the factors. The end nodes include factors, measures, total number of the group and the
number of fallers (fall probability). FES-I: falls efficacy scale international; LOS: limits of stability;
SIT-CES ES: equilibrium score of composite equilibrium score measures in sensory integration test;
VES: vestibular. VIS: vision.

Using the same participants in the decision tree, Figure 5.6 showed the profile graph of participant 1
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based on z scores of representative measures. From the figure, it was clear to observe overall perfor-

mance of the participant. Participant 1 showed good performance on all profiles. Figure 5.7 presented

the profile graph of participant 2 based on z scores and z score of information processing speed was

smaller than -1.96. Therefore, information processing speed could be the cause of participant 2.

Therefore, combining the results from the CART model and the profile assessment, participant 1 was

healthy with very low fall risk. Participant 2 was at high fall risk, and the cause of high fall risk was poor

central nervous system and the potential cause of high fall risk was the fear of falling.

FIGURE 5.6: The profile graph of participant 1.
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FIGURE 5.7: The profile graph of participant 2.

5.4 Discussion

In the decision tree using CART model, fall related factors were that the fear of falling measured by

short FES-I score, information processing speed of central nervous system, sit-to-stand five times jerk,

and sensory system including visual and vestibular systems, functional reach angular velocity. In pre-

vious studies, many similar tree models were also proposed to assess fall risks. For example, CART

model was also used in the study done by Delbaere et al (2010), in which the factors were actual fall

risk measured by the score of physiological profile assessment (PPA), level of disability, exercise, exec-

utive functioning, and coordinated stability. In addition to CART model, Stel et al. (2003b) proposed the

tree-structured survival analysis (TSSA). They considered functional limitations, performance tests, grip

strength, alcohol, pain, education, dizziness as the factors. Yamashita et al. (2012) utilized the logistic

regression tree analysis to create the decision trees, which included factors of age, activities of daily

living (ADL) limitations, and instrumental activities of daily living (IDAL) limitations. Comparing the
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factors in our study with previous studies, factors in our study were associated with special functions of

balance system (E.g. visual system), but factors in previous studies were associated with composite per-

formance such as disability, ADL limitations. If the causes of high fall risk were composite performance,

the exact reasons of high fall risks would still be unknown. Moreover, fall risk factors used in our study

were also modifiable. However, in previous studies, many factors used were unmodifiable such as age

(Yamashita et al., 2012), education (Stel et al., 2003b). If unmodifiable factors were the causes of high

fall risk, it would be useless on fall prevention even if they were identified as the causes. Considering

the fall related factors used in our study, our CART model was more advanced than models in previous

studies on identifying the causes of high risks of falling for preventing falls.

In the profile assessment method, fall related factors covered physiological, psychological, and inte-

grated functions. Physiological function (Winter, 1995) was related to the sensory system including

somatosensory, visual, and vestibular systems, central nervous system of cognitive function, and motor

function. Psychological function contained the fear of falling. Integrated function (Horak et al., 2009)

was associated with biomechanical constraints, sensory orientation, stability limits, anticipatory postural

response, and stability in gait. However, the study that was done by Lord et al. (2003b) only used the

physiological factors which contained vision, vestibular function, peripheral sensation, reaction time and

muscle force. They also acknowledged the omission of other important factors in their approach as one

of the limitations of their study. Compared with previous study, our profile assessment method could

identify more possible causes of high risks of falling. Therefore, our combined method that combines

the CART model and the profile assessment method could have a higher probability on identifying the

factors resulting in high risks of falling than previous studies. Also since these factors were modifiable,

the results could be useful on fall prevention.

In the decision tree, for the classification and regression tree model, the splitting variables and the cutoff

values in the tree were determined by the Gini impurity. However, the Gini impurity was sensitive to

changing variables and sample size (Last et al., 2002). The decision tree could be affected significantly

due to the changes of training sample population. Additionally, we found that short FES-I score that

measures the fear of falling, information processing speed of central nervous system, sit-to-stand five

times jerk, and sensory system including visual and vestibular systems, functional reach angular velocity

were most important measures on classifying fallers and non-fallers among all significant measures in

the tests (around 40 measures). Falls efficacy scale measures how much do old people concerns of falls
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while performing special activities (Tinetti et al., 1990). It is the integrated self-evaluations of their

abilities that were associated with falls systematically. Due to the fear of falling, people will also limit

their physiological activity (Legters, 2002), which enhances to increase the fall risk. central nervous

system also played a core role on balance control, for receives the stimuli from a sensory system, makes

the decision and sends the control stimuli to motor control system for achieving balance or avoiding falls

(Horak, 2006). Visual and vestibular systems were also found to be important factors of falls (Ambrose

et al., 2013). Our findings also showed that sit-to-stand five times test and functional reach may be the

efficient tests for classifying fallers and non-fallers.

Some limitations still existed in this study. First, the decision tree separated population into subgroups

recursively by the independent variables. Some terminal tree node could have small sample sizes. The

fall risk of each end tree node was based on the percentage of fallers. If the sample size is too small in

the tree end node, the fall probability is not stable and affected by few data significantly. We are still

conducting additional experiment to increase the sample size for generating stable results. The other

was that we used two methods to identify the underlying causes of high fall risks. We intend to combine

results from two methods to analyze the real causes. However, in the current stage, we didn’t propose the

methods to validate our results. One standard reference could be the evaluation results from the doctors

in the hospital.

5.5 Conclusion

In this study, we proposed CART-PA method to identify the underlying causes of high fall risks. Since

many factors from different aspects were considered, the possible causes of high fall risks could be

identified effectively. Additionally, fall evaluation results could be helpful for fall prevention, because

these factors were measurable and modifiable. Additionally, CART-PA method was integrated by the

CART model and profile assessment method. The CART model built a tree based relationship between

fall related factors and fall and interactions among factors, which was effective on identifying the causes

of high fall risks. But the tree structure was unstable could be affected by small variance. On the other

hand, the profile assessment was developed based on the normal distribution of fall related factors. So it

was useful on identifying abnormal factors but may ignore sensitive risk factors. Therefore, CART-PA

method could generate reinforce results of the factors of high fall risks.



Chapter 6

Development of an inertial sensor based

fall risk assessment system

6.1 Objective

The purpose of this study was to develop an inertial sensor based prototype system for fall risk assess-

ment. The system was designed to realize our proposed fall risk assessment methods, which included

the hardware and software. The hardware consisted of five low-cost individual wireless inertial sensors

and a wireless transmission device; it was developed to collect the data simultaneously. Computer-based

software was developed to process the raw data obtained from the sensors, calculate the measures for

each test in the protocol, and build fall risk assessment models.

6.2 Overview of fall risk assessment system

Figure 6.1 presents the overview of the developed fall risk assessment system, which mainly includes the

hardware for data acquisition and the software for fall classification and evaluation. The data acquisition

hardware contains five wireless inertial sensors and one Bluetooth USB adapter for wireless transmission

device. These five sensors were attached to the pelvis and the upper and lower parts of both legs. Data

from the sensors were then transferred to a personal computer (PC) through the wireless transmission

99
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device. A multi-sensor management software (Shimmer Inc.) in a PC or laptop was used for sensor

communication and data collections. Then we developed graphical user interface (GUI)-based software

to process the raw data from sensors, calculate measures based on raw data in different tests, and build

fall risk assessment models for fall classification and evaluation.

FIGURE 6.1: Overview of an inertial sensor based fall risk assessment.

6.3 Hardware development

Our study utilized inertial sensors to acquire data while participants were performing different tests. The

requirements for the sensors were: (1) five wireless inertial sensors with a combination of accelerometer,

gyroscope, and magnetometer; (2) synchronized live data streaming and collection through five sensors;
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(3) the sensors’ outputs of 3D accelerations, 3D angular rate, and 3D magnetic field intensity at a fre-

quency of 100 Hz; and (4) a low price. We searched for available inertial sensors on the Internet, and a

list of available sensors is presented in Table 6.1.

TABLE 6.1: Available products of inertial sensors.

Product Sensor Wireless Sync
Price per

sensor ($)

Isen SIT-IBS
accelerometer, gyroscope, and

magnetometer (100Hz)
Yes Yes 865

LightBlue

Bean
acceleraometer (30Hz) Yes No 30

Shimmer3
accelerometer, gyroscope, and

magnetometer (100Hz)
Yes Yes 380

Opal I2M
accelerometer, gyroscope, and

magnetometer (100Hz)
Yes Yes >3000

ProMove

mini

accelerometer, gyroscope, and

magnetometer (100Hz)
Yes Yes 469

Sensoplex

SP-10C

accelerometer, gyroscope, and

magnetometer (100Hz)
Yes No 100

VectorNav

VN-100

accelerometer, gyroscope, and

magnetometer (100Hz)
No No 800

Xsens

MTi-100

accelerometer, gyroscope, and

magnetometer (100Hz)
Yes Yes >3000

x-BIMU Kit
accelerometer, gyroscope, and

magnetometer (100Hz)
Yes No 300

Among the available sensors, Isen SIT-IBS, Shimmer3, Opal I2M, ProMove mini, and Xsens MTi-100

were acceptable, in terms of the wireless and sync functions. Among these sensors, Shimmer3 ap-

peared to be the cheapest sensors that could satisfy all of our requirements. Therefore, we purchased the

Shimmer3s as our inertial sensors from Shimmer Inc., which cost approximately $380 per sensor. The
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Shimmer3 (Figure 6.2) is a wireless sensor planform that contains a TI MSP430 microcontroller, Blue-

tooth radio support, a MicroSD slot supporting up to 2 GB of flash storage, and a 450 mAh Li-polymer

rechargeable battery (Burns et al., 2010). The Shimmer incorporates tri-axial MEMS accelerometer,

gyroscope, and magnetometer; it measures 51×34×14mm and weights 23.6 g.

To communicate with the computer, Shimmer3 contains an embedded Bluetooth module that can be

connected to a computer with a built-in Bluetooth module. However, many of the available desktop

computers are not equipped with a Bluetooth module. In addition, such Bluetooth modules equipped in

computers is class 2 type Bluetooth, which have a small range of 10 meters and weak signal strength.

Hence, we added a Parani-UD 100 (Sena Technologies Inc.) as the wireless transmitter. The Parani-

UD 100 is a class 1 type Bluetooth USB adapter that supports 300 meters of wireless transmission

distance by default. Due to its greater communication distance compared with other regular Bluetooth

USB adapters, it is widely used for industrial or special applications. Therefore, the Parani-UD 100 was

utilized for sensor communications and signal control between the computer and sensors.

FIGURE 6.2: System hardware: (a) Shimmer platform; (b) Shimmer base for multiple sensor
synchronization; (c) Bluetooth USB adapter for data transmission between inertial sensors and the
computer.

6.4 Software development

6.4.1 Development platform

The software was designed to process the data acquired from the hardware, calculate measures based

on the tests, and perform fall classification and evaluation. Tasks in the software were designed mainly
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for data analysis purpose. In Windows 7, C sharp, developed by Microsoft Inc., is commonly used to

develop GUI software. Matlab, developed by MathWork Inc., is another high-level language with an

interactive environment that provides various toolboxes for algorithm development, data visualization,

data analysis, numeric computing, and GUI design. Compared with C sharp, Matlab is more professional

and powerful in processing of raw sensor data, calculating measures, and constructing the statistical

models. Therefore, the GUI was developed using Matlab R20015b on the operation system of Window

7 64bit operation system (Microsoft Inc.).

6.4.2 GUI design

Figure 6.3 shows the overall interface of the fall assessment system. Our software consists of three main

modules: data import, measure calculation, and fall assessment. The data import module contains the

following functions: opening data files, resampling data, and visualizing and exporting data. The mea-

sure calculation module includes the calculation of sensory integration test measures, limits of stability

test measures, magnitude and gait measures in timed up and go (TUG) test , joint angles measures in the

TUG test, turning measures in the TUG test, flexibility measures in the motor function test, and input

measures. The fall assessment module involves the functions of fall classification and evaluation.

FIGURE 6.3: Fall assessment system overall interface.
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6.4.3 Operations and main functions of the software

The data collected by the hardware were initially imported into the software. Measures in the different

tests were then calculated based on the data. Finally, these measures were used in the models to identify

individuals at high fall risk and then identify the possible causes.

The data import module was designed to input the data file of five inertial sensors, resample the data

from the five sensors for time synchronization, and visualize and export the resampled data. The raw

data from the hardware were 3D accelerations, 3D angular rates, 3D magnetization and 4D orientation

represented by the quaternion. The open file function was used to combine all sensor data files as a unit

and store the data in the database. Raw sensor data were recorded based on the same reference time (PC

time), but there were some small shifts on time serials between different sensors. In addition, the sample

rate appeared to be close to the number that we could set during data acquisition, but was not exactly the

number that we expected. Consequently, the data resample function was utilized to identify the start and

end points of all sensor time serials and then resample all data to the same frequency (100Hz).

After the data were imported and resampled, the resampled data could be plotted and exported in the

software (Figure 6.4). First, users had to load the file that they wanted to check or export by clicking the

’Load data file’ button. After selecting the files, the file names were shown in the interface. Then users

needed to select the sensors and data type of the data. Once the sensors and data type were checked, the

selected data were automatically plotted in a figure. If users intended to export the data file, they could

simply click the ”export” button and choose the path or folder in which they wanted to store the data,

which was saved in the CSV format.
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FIGURE 6.4: The interface of data visualization and export function.

After importing the data, the measure calculation module was designed to calculate inertial sensor based

measures and input other necessary measures acquired from other methods, such as functional reach

distance and muscular strength. According to measures in the tests, six sub-modules were used for

calculating measures: sensory integration test measures, limits of stability test measures, sit-to-stand five

times test measures, magnitude and gait measures of the TUG test, turning measures of the TUG test,

and flexibility measures of motor function test. Figures 6.5 and 6.6 present the operations to calculate

measures. In general, three steps were used to calculate measures: loading the data, identifying the

feature points (E.g. the start and end points of functional reach), and calculating the data. For example,

in the limits of the stability test measures (Figure 6.5b), first the data were loaded and the file names were

shown in the textboxes. The checkboxes located beside the textboxes were checked to plot the pelvis

orientation and the start and end points of the functional reach. This procedure was done to examine

whether the automatically determined start and end points of the functional reach were correct or not. In

the figure, the start and end points were generated by our algorithms. If the points were not correct, users

could point to the figure, find the correct one, note the start and end points in the textboxes, and click the

”Update” button to update the start and end points. Later, the start and end points would be renewed in
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the figures. After the start and end points were identified, users could click the calculate measures button

and the results were presented in the data table.
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FIGURE 6.5: The operations of calculating sensory integration measures (a); limits of stability
measures (b); sit-to-stand five times measures (c).
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FIGURE 6.6: The operations of calculating magnitude and gait measures in timed up and go test (a);
turning measures in timed up and go test (b); flexibility measures in timed up and go test (c).
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In addition to measures derived from inertial sensors, some other measures were not generated from

inertial sensors, such as functional reach distance and information processing speed. These measures

are necessary and needed to be manually input into the system for fall classification and evaluation.

Figure 6.7 shows the interface to input measures to the system. These measures included maximal

muscular strengths in the motor function test, reaction test measures, short FES-I score, functional reach

distance in forward, right and left directions, and additional basic information about the participant.

FIGURE 6.7: The interface of inputting additional measures.

Figure 6.8 shows the interface of fall risk assessment functions, which contained fall classification and

evaluation. In terms of the fall classification, users selected a fall classification model and then the

classification results were shown in the textbox. In terms of the fall evaluation, if old people were

detected to be at high fall risk from the results of the fall classification, the decision tree and the profile

graph showed the possible causes of high fall risks. Our proposed method combined the results from

the decision tree and profile graph to generate the overall results. For example, when the classification

and regression model was chosen for a participant, the results showed that the participant’s probability

of falling was 0.90, which indicated high fall risks. Then the ”Decision Tree” button was clicked to

check the causes of high fall risks based on the CART model, showing a poor central nervous system

and relatively high fear of falling (Figure 6.9). Clicking the ”Profile Graph” button allowed the user
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to examine the causes of high fall risk using the profile assessment method (Figure 6.9). The results

showed that a poor central nervous system was the factor and poor gait stability was a potential factor.

Finally, clicking the ”Combined Method” button revealed the overall results (Figure 6.10). It showed

that a poor central nervous system was the main cause of high fall risks, and in addition, relatively high

fear of falling and poor gait stability were also indicated as potential factors that might cause high fall

risks.

FIGURE 6.8: The typical example of fall risk assessment.
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FIGURE 6.9: The typical example of identifying the causes of high fall risks: (a) the CART model; (b)
profile assessment method.
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FIGURE 6.10: The typical example of identifying the causes of high fall risks using combined method.

6.5 Discussion

In this chapter, we developed an inertial sensor based prototype system for fall risk assessment. Table

6.2 presents a list of available systems or products related to fall risk assessment. We compared our

system with current products in terms of functions, portability and cost.



Chapter 6. Development of inertial sensor based fall risk assessment system 113

TABLE 6.2: Current systems or products on fall risk assessment. ∗ represents the estimated price in
terms of functions.

Products Company Functions Price($)

PROPERIO

Reactive

Balance System

PROPRIO

1.Balance evaluation; 2.Proprioception

training; 3.Weight bearing range of motion

exercises; 4.Stabilization muscles

strengthening.

∼ 50,000

∗

Force plate AMTI
1. Human gait studies; 2. Balance

assessment and training.

30,000 ∼

50,000

Balance Master

System
NeuroCom

1. Peripheral/central vestibular deficits; 2.

Central nervous system disorders; 3.

Compensated peripheral vestibular deficits;

4. Metabolic diseases affecting balance; 5.

Lower extremity injuries.

80,000 ∼

100,000

Balance

Balance System

SD and

Biosway

Biodex
1. Fall risk screening and conditioning; 2.

Neurorehabilitation.
∼ 50,000

Sway

balance–APP

on iPhone

Sway

medical

1. Sway balance; 2. Sway’s simple reaction

time.

4.25 per

profile

D+R

balance–APP

on iPhone

D R

Medical

1. Assess postural sway; 2. Peripheral

vestibular function by Unterberger test
29.99

Fall

prevention–

APP on

iPhone

EIM

(Evidence

In Motion)

APP is based on the STEADI (Stopping

Elderly Accidents, Deaths and Injuries)

Tool Kit.

4.99

Geriatric

APP–APP on

iPhone

Doctoc

The interactive scales available in Geriatric

care: Abbreviated Mental Test Score,

Geriatric Depression Scale, Barthel ADL

Rating Scale, Elderly Mobility Scale,

BERG Scale.

Free
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Our system first evaluated the fall related factors of physiological functions, psychological functions, and

integrated functions in the human balance system through a test protocol. However, most current systems

only measured small parts of risk factors of falls. For example, the PROPERIO Reactive Balance System

assesses the performance of postural sway, range of motion, and muscular strength. These factors were

also included in physiological functions of our system. The Balance Master System only evaluated

the vestibular deficit, central nervous system disorder, metabolic diseases and lower extremity injuries.

Furthermore, our system also included the methods for classifying fallers and non-fallers and identifying

the underlying causes of high risks of falling. In the existing systems or products, some included the

functions of fall classification. For example, Balance System SD and BioSway included the function

of fall risk screening and conditioning. Some questionnaires or clinical test can also be used to classify

fallers and non-fallers, such as the Barthel Activity Daily Live (ADL) Rating Scale and Berg Balance

Scale. In terms of identifying the underlying causes of high risks of falling, current existing systems

also could examine the abnormal performance of many factors such as range of motion in PROPERIO

Reactive Balance System, vestibular deficits and central nervous system disorder in the Balance Master

System.

Looking at these previously developed systems, some showed good functionality. However, the equip-

ment used in the PROPERIO Reaction Balance System, force plate, Balance Master System, and Bal-

ance System SD and BioSway was cumbersome and required a large space. Meanwhile, there were other

products used the iPhone as their platform which-although portable-but unfortunately leads to limited

functions. In our system, sensing technology was utilized to collect data while participants performed the

tests, hence the inertial sensors were small and portable for practical application. Therefore, considering

functionality and portability aspects, our system not only offers good functions, but is also portable.

Moreover, the total cost of our system was around US$2698, including 5 Shimmer sensors, one base and

one Bluetooth USB adapter. This amount is much cheaper than PROPERIO Reaction Balance System,

force plate, Balance Master System, and Balance System SD and BioSway, which cost at least US$

30,000. The iPhone based APP was very cheap (even free) but the functions offered were extremely

limited. Therefore, in addition to the good functions provided, our system costs significantly lower than

other existing systems. The developed system could be used to identify the underlying causes of high fall

risks. Since the system cost is not cheap for individuals, the system could be affordable to the hospitals,

some health centers or research centers.
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In the test protocol, among 7 tests, most tests used inertial sensors, including sensory integration test,

limits of stability test, sit-to-stand five times test, timed up and go test, and range of motion in motor

function test. Sensory integration test and limits of stability test only used the sensor attached on the

pelvis and sit-to-stand five times only used the sensor attached on the right upper leg. The sensors on

the lower and upper legs were used to measure the range of motion in motor function test. Only timed

up and go test used 5 sensors. In the measures of timed up and go test, only gait symmetry needed four

sensors on left and right upper and lower legs. From the results, the gait symmetry was not significant

on distinguishing fallers and non-fallers. Other measures could be generated from one or two sensors.

So it is possible to reduce 5 sensors to 3 sensors. The sensors’ locations are the pelvis, right upper leg

and right lower leg.

Some limitations were still existing in our system development. First, even though our software can

perform data analysis, it lacks of the ability to control the inertial sensors for data acquisition, while data

streaming functions were done by the software from the sensor company (Shimmer Inc.). So users had

to operate two softwares for collecting and analyzing data, which was inconvenient for the users. Also,

due to this limitation, there was no real-time data analysis function. In the future, the software should be

improved to incorporate full functions of data collection and analysis. Additionally, users had to double

check the important feature points auto-detected by developed algorithms before measures calculation

to minimize the possible errors/uncertainties. It would be trivial for users to do so one by one. Later,

one function can be developed to calculate all measures directly and advanced algorithms should be also

designed to identify possible errors on feature points to remind users.

6.6 Conclusion

In this chapter, a fall risk assessment system was developed as an implementation of proposed methods

for fall classification and evaluation. Compared with existing systems or products, our developed system

provides powerful functions for systematically evaluating fall risk factors and identifying the underlying

causes of high fall risks. Our system is also portable which consequently enables it to be widely used at

any time and in any place. Furthermore, the whole system was significantly cheaper than other existing

systems. Therefore, our developed system offers good potential for future applications in assessing fall

risk in older people.
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Conclusions and future work

7.1 Summary of main findings

In this study, we used inertial sensors to assess fall risk and to develop a system for older people. In order

to assess fall risks, a new test protocol based on the human balance system that could cover fall-related

factors systematically for identifying the underlying causes of the high risk of falls, was designed in our

first study. The second study was conducted to examine the effectiveness of Hick’s law based reaction

test in the protocol on assessing cognitive function and fall risks. After the test protocol was validated,

we conducted a large-scale experiment based on our newly-designed protocol by using inertial sensors

to assess fall risks in older people. At this stage, a third study was conducted to construct various

statistical models to classify fallers and non-fallers. In addition to fall classification, our fourth study

was conducted to develop methods for identifying the underlying causes of the high risks of falls in

older people. At last, an inertial sensor-based prototype system consisting of hardware and software was

developed so the proposed methods can be used to assess fall risks in older people.

In the first study, we designed a new test protocol that covered the factors related to the human balance

system. The protocol had to meet the following criteria: (1) simple and quick to administer; (2) feasible

for older people to undertake; (3) valid and reliable tests for assessing corresponding risk factors; (4)

provide quantitative measures, which should be mainly obtained from wearable inertial sensors. There-

fore, the test protocol consisted of seven main tests, i.e., (1) the sensory integration test; (2) limits of
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stability; (3) sit-to-stand five times test; (4) timed up and go test; (5) motor function test; (6) reaction

test; and (7) short falls efficacy scale international. In the fall-related factors, the visual system, vestibu-

lar system, somatosensory system, biomechanical constraints, and sensory orientation were evaluated by

the sensory integration test. The central nervous system of cognitive function and its motor system were

assessed in a reaction test and a motor function test, respectively. Fear of falling was assessed through

the questionnaire of short falls efficacy scale. Both anticipatory postural adjustments and postural re-

sponse were measured in the test that involved sit-to-stand five times. Evaluations of stability limits and

stability in gait were conducted in limits of stability test and the timed up and go test, respectively.

The findings from the second study indicated that the speed of processing information was an important

biomarker for falling, and the reaction test APP was sensitive to fall risk in older people. Fallers showed

significantly lower information-processing speed than non-fallers. However, there was no significant

difference on movement time between fallers and non-fallers. In the test, information processing speed

was correlated with the cognitive function. Previous studies have reported that fallers have much poorer

cognitive function than non-fallers (Muir et al., 2012). However, movement time was more associated

with motor control function.

The third study indicated that our newly-designed test protocol was effective on classifying fallers and

non-fallers. First, through the statistical analysis of measures derived from the tests, fallers were found

to have significantly poorer physiological, psychological, and integrated functions than non-fallers. Fur-

thermore, six typical statistical models with different flexibilities were developed to classify fallers and

non-fallers based on significant measures in the tests and the fall histories. Among these models, three

highly-flexible models, i.e., support vector machine radial basis function, random forest, and boosted

tree models, had excellent accuracy but poor interpretability because the models functioned essentially

as ‘black boxes.’ The logistic regression, linear discriminant analysis, and classification and regression

tree models had relatively lower accuracy than the highly-flexible models, but they had good inter-

pretability in terms of the relationship between the risk factors and the type of older person, i.e., faller

or non-faller. Depending on the research requirements of model interpretability and accuracy, proper

models could be chosen for practical application.

The findings from the fourth study proved that our proposed method, which combined classification and

regression tree (CART) model with the profile assessment could be a significant advancement in identi-

fying the underlying causes of high fall risks in order to prevent falls. First, in our model, we selected
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measurable, modifiable, and important fall-related factors based on the human balance system. Once the

factors were identified as the causes of high risk of falling, a customized rehabilitation program could be

designed for older people to reduce their risks of falling more effectively. The CART model identified

the causes of the high risks of falling by building tree-based relationships between the risk factors for

falling and the types of falls. In addition, the profile assessment method was proposed to identify the

causes of high fall risks. Different from the CART model, this method examined the abnormal factors

based on a normal distribution of the population. Compared with the profile assessment method, the

CART model had the advantages of using the relationships between fall factors and fall type. The profile

assessment method was effective on examining abnormal risk factors but had a weak relationship with

the types of falls. The combination of the two methods could provide a better method of identifying the

causes of falls.

The fifth study indicated that our inertial sensor-based prototype system could be very promising when

compared with other available systems in terms of powerful functions, portability, and low-cost for as-

sessing the fall risks of older people. First, the system covered the evaluations of fall risk-related factors

systematically considering the human balance system, ranging from each individual system to inte-

grated functions on performing certain tasks. Also advanced fall classification and diagnostic methods

were embedded in the system to identify the underlying causes of high fall risks. In addition, since the

hardware was combined with wearable inertial sensors, the system could be used extensively anytime

and anywhere. Importantly, the cost of a system was significantly lower than current fall-risk assessment

systems.

7.2 Limitations

There were several limitations inherent in this study. First, the risk factors associated with falls are

classified as intrinsic and extrinsic factors (Lajoie and Gallagher, 2004). Our proposed methods would

be unable to determine several of these factors, e.g., they could not determine whether the falls that

occurred were influenced by extrinsic factors or not, and they could not detect the causes of high risks

for falls in which any extrinsic factors were involved. We only evaluated fall-risk factors based on

human balance system under normal environmental conditions. The environmental factors could affect

balance ability and result in falls. For example, the poor lighting could reduce the performance of vision
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system and cause falls. The second limitation is that only older Korean females were recruited for the

experiment to avoid biased results that might be caused from the effect of gender. Therefore, there is

a need for further investigation to determine whether our study would be applicable for the older male

population. Third, our study used the history of falls as a criterion to identify fallers and non-fallers.

In order to predict the risk of falling, it would be better to choose future falls as the criteria, since fall

experience can result in physiological consequences, such as injuries and psychological effects, such as

the fear of falling. Fourth, we proposed methods to identify the underlying causes of high risk of falling.

However, a standard reference has not been developed to validate the methods used in the current study.

An evaluation from a doctor at a hospital, for instance, could be used to validate the results of our

proposed methods. Last but not least, our developed software mainly focused on data analysis, not the

data acquisition. Additional sensing data acquisition function was realized through another software

from the sensor company (Shimmer Inc.). It could be inconvenient for customers to use our prototype

system.

7.3 Future work

Considering limitations in the current study, several studies can be conducted in the future. First, the

environmental factors are generally uncontrollable. In order to consider the environmental factors into

fall risk assessment, it is necessary to identify some controllable environmental factors. For example,

as the elderly stay at home most time, it is possible to add the lightness and floor roughness at home

as the factors to assess fall risks. Second, prospective falls of each participant can be collected through

a follow-up study to evaluate the effectiveness of the proposed methods on future fall risks. Third,

in our test protocol, even though most tests were evaluated by an inertial sensor based system, a few

tests were assessed by other methods, such as fear of falling using a paper-based survey questionnaire,

reaction test using iPad, and muscle strength using hand-held dynamometer. In the future, all these

tests in the protocol will be integrated into one system. Lastly, the real-time fall assessment system

should be developed for future applications, in which the software should be improved to incorporate

data acquisition and data analysis functions together as a complete system.
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TABLE A.1: Significance of vision (VIS) measures on differentiating fallers and non-fallers in sensory
integration test. acc: acceleration; angVel: angular velocity; AP: anteroposterior; AUC: area under
ROC curve; ES: equilibrium score; ML: mediolateral; PSD: power spectral density; rms: root mean
square. Sign: plus (+) represents the measure value of faller higher than non-faller; minus (-) represents
the measure value of faller lower than non-faller.

Measures t test p value (sign) Effect size AUC AUC pValue

rms acc AP 0.7428 0.0404 0.5004 0.9903

rms acc ML 0.2780 0.1348 0.5408 0.2525

rms angVel AP 0.0069 (+) 0.3529 0.5835 0.0201

rms angVel ML 0.2724 0.1379 0.5517 0.1518

ESAP 0.4506 0.0951 0.5467 0.1990

ESML 0.0007 (-) 0.4349 0.6148 0.0008

Jerk acc AP 0.0080 (+) 0.3371 0.6090 0.0020

Jerk acc ML 0.0001 (+) 0.5240 0.6224 0.0005

Jerk angVel AP 0.0007 (+) 0.4602 0.5775 0.0356

Jerk angVel ML 0.0205 (+) 0.3041 0.603 0.0048

PSD acc AP 0.1232 0.2038 0.5207 0.5825

PSD acc ML 0.0028 (+) 0.3894 0.6090 0.0022

PSD angVel AP 0.0024 (+) 0.4001 0.6073 0.003

PSD angVel ML 0.3549 0.1195 0.5135 0.7147
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TABLE A.2: Significance of vestibule (VES) measures on differentiating fallers and non-fallers in
sensory integration test. acc: acceleration; angVel: angular velocity; AUC: area under ROC curve; AP:
anteroposterior; ES: equilibrium score; ML: mediolateral; PSD: power spectral density; rms: root mean
square.Sign: plus (+) represents the measure value of faller higher than non-faller; minus (-) represents
the measure value of faller lower than non-faller.

Measures t test p value (sign) Effect size AUC AUC pValue

rms acc AP 0.3802 0.1084 0.4836 0.6497

rms acc ML 0.2094 0.1550 0.5512 0.1516

rms angVel AP 0.0004 (+) 0.4742 0.6066 0.0030

rms angVel ML 0.2019 0.1630 0.5518 0.1556

ES AP 0.6853 0.0512 0.5233 0.5245

ES ML 0.0056 (-) 0.3523 0.5995 0.0050

Jerk acc AP 0.0199 (+) 0.2998 0.6030 0.0040

Jerk acc ML 0.0024 (+) 0.4037 0.5945 0.0094

JerkangVelAP 0.0011 (+) 0.4434 0.5622 0.0924

Jerk angVel ML 0.1095 0.2100 0.5655 0.0742

PSD acc AP 0.4283 0.1018 0.5165 0.6565

PSD acc ML 0.0031 (+) 0.3857 0.5979 0.0068

PSD angVel AP 0.0021 (+) 0.4143 0.5880 0.0165

PSD angVel ML 0.3721 0.1164 0.5237 0.5259



Appendix A. Statistical analysis results of measures derived from test in the protocol 123

TABLE A.3: Significance of somatosensory (SOM) measures on differentiating fallers and non-fallers
in sensory integration test. acc: acceleration; angVel: angular velocity; AUC: area under ROC curve;
AP: anteroposterior; ES: equilibrium score; ML: mediolateral; PSD: power spectral density; rms: root
mean square.Sign: plus (+) represents the measure value of faller higher than non-faller; minus (-)
represents the measure value of faller lower than non-faller.

Measures t test p value (sign) Effect size AUC AUC p value

rms acc AP 0.6304 0.0605 0.4963 0.9200

rms acc ML 0.1239 0.1942 0.5518 0.1515

rms angVel AP 0.3568 0.1176 0.4969 0.9338

rms angVel ML 0.1325 0.1860 0.5494 0.1682

ES AP 0.6750 0.0522 0.4916 0.8180

ES ML 0.5626 0.0757 0.5218 0.5618

Jerk acc AP 0.6048 0.0658 0.5380 0.2999

Jerk acc ML 0.7725 0.0362 0.5054 0.8813

Jerk angVel AP 0.6972 0.0487 0.5032 0.9294

Jerk angVel ML 0.2437 0.1458 0.5541 0.1338

PSD acc AP 0.6034 0.0671 0.5101 0.7844

PSD acc ML 0.2957 0.1313 0.5437 0.2290

PSD angVel AP 0.9165 0.0131 0.5046 0.8998

PSD angVel ML 0.7517 0.0405 0.5231 0.5325
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TABLE A.4: Significance of sensory system measures on differentiating fallers and non-fallers in
sensory integration test. acc: acceleration; angVel: angular velocity; AUC: area under ROC curve; AP:
anteroposterior; ES: equilibrium score; ML: mediolateral; PSD: power spectral density; rms: root mean
square.Sign: plus (+) represents the measure value of faller higher than non-faller; minus (-) represents
the measure value of faller lower than non-faller.

Measures t test p value (sign) Effect size AUC AUC pValue

rms acc AP 0.0322 (+) 0.3782 0.5972 0.0499

rms acc ML 0.0042 (+) 0.5174 0.6497 0.0019

rms angVel AP 0.1850 0.2424 0.5543 0.2942

rms angVel ML 0.0160 (+) 0.4464 0.6126 0.0271

ES AP 0.0468 0.3529 0.5941 0.0599

ES ML 0.0102 (-) 0.4701 0.6394 0.005

Jerk acc AP 0.0556 0.3679 0.5883 0.0979

Jerk acc ML 0.1465 0.2785 0.5569 0.2856

Jerk angVel AP 0.0923 0.3250 0.578 0.1438

Jerk angVel ML 0.0682 0.3476 0.6018 0.0572

PSD acc AP 0.0174 (+) 0.4287 0.6217 0.0133

PSD acc ML 0.0008 (+) 0.6363 0.6708 0.0004

PSD angVel AP 0.0504 0.3707 0.5954 0.0655

PSD angVel ML 0.0022 (+) 0.5785 0.6435 0.0033

TABLE A.5: Significance of central neural system measures on differentiating fallers and non-fallers in
the reaction test. AUC: area under ROC curve.Sign: plus (+) represents the measure value of faller
higher than non-faller; minus (-) represents the measure value of faller lower than non-faller.

Measure t test p value (sign) Effect size AUC AUC p value

Movement time 0.1800 0.2893 0.5655 0.2930

Information Processing speed <.0001 (-) 1.1708 0.7955 <.0001
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TABLE A.6: Significance of measures on differentiating fallers and non-fallers in motor function test.
AUC: area under ROC curve. Sign: plus (+) represents the measure value of faller higher than
non-faller; minus (-) represents the measure value of faller lower than non-faller.

Measure t test p value (sign) Effect size AUC AUC p value

Range of knee extension <.0001 (-) 0.4212 0.6178 <.0001

Range of knee flexion 0.0068 (-) 0.2764 0.5815 0.0049

Max ankle dorsiflexion force / weight 0.1619 0.1735 0.4637 0.3102

Max knee extension force / weight 0.0002 (-) 0.4622 0.6253 0.0002

Max knee flexion force / weight 0.0013 (-) 0.3977 0.6012 0.0036

Max hand grip force / weight 0.0001 (-) 0.4972 0.6336 0.0001

TABLE A.7: Significance of fear of falling measures on differentiating fallers and non-fallers in falls
efficacy scale. Short FES-I: short falls efficacy scale international; AUC: area under ROC curve. Sign:
plus (+) represents the measure value of faller higher than non-faller; minus (-) represents the measure
value of faller lower than non-faller.

Measure t test p value (sign) Effect size AUC AUC p value

short FES-I <.0001 (+) 1.5774 0.8677 <.0001
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TABLE A.8: Significance of postural sway measures on differentiating fallers and non-fallers at the
condition of eyes open and sway surface in sensory integration test. acc: acceleration; angVel: angular
velocity; AUC: area under ROC curve; AP: anteroposterior; ES: equilibrium score; ML: mediolateral;
PSD: power spectral density; rms: root mean square.Sign: plus (+) represents the measure value of
faller higher than non-faller; minus (-) represents the measure value of faller lower than non-faller.

Category Measures
t test p value

(sign)
Effect size AUC

AUC p

value

Time domain

rms acc AP 0.0032 (+) 0.3687 0.6084 0.0018

rms acc ML 0.0002 (+) 0.4890 0.6258 0.0003

rms angVel AP 0.0379 0.2688 0.5544 0.1356

rms angVel ML 0.0006 (+) 0.4490 0.6074 0.0028

rms Jerk acc AP 0.0015 (+) 0.4070 0.6104 0.0016

Jerk acc ML <.0001 (+) 0.5445 0.6374 0.0001

Jerk angVel AP 0.0059 (+) 0.3623 0.5926 0.0110

Jerk angVel ML 0.0076 (+) 0.3544 0.5759 0.0377

ES AP 0.0056 (-) 0.3753 0.5754 0.0451

ES ML 0.1323 0.1931 0.5703 0.0580

Frequency

domain

median Frequency acc AP 0.4737 0.0897 0.5340 0.3458

median Frequency acc ML 0.0353 0.2579 0.5536 0.1331

median Frequency angVel AP 0.2104 0.1533 0.4752 0.4895

median Frequency angVel ML 0.2689 0.1418 0.5510 0.1686

PSD acc AP <.0001 (+) 0.5531 0.6322 0.0002

PSD acc ML 0.0001 (+) 0.5461 0.6245 0.0005

PSD angVel AP 0.0426 (+) 0.2645 0.5732 0.0435

PSD angVel ML 0.0009 (+) 0.4412 0.6072 0.0029

Centroidal Frequency acc AP 0.0303 0.2706 0.5680 0.0545

Centroidal Frequency acc ML 0.0778 0.2151 0.5575 0.1016

Centroidal Frequency angVel AP 0.2226 0.1514 0.5545 0.1280

Centroidal Frequency angVel ML 0.1990 0.1553 0.5243 0.4923
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TABLE A.9: Significance of measures on differentiating fallers and non-fallers in limits of stability
test. angVel: angular velocity; AUC: area under ROC curve; AP: anteroposterior; ES: equilibrium
score; ML: mediolateral; rms: root mean square.Sign: plus (+) represents the measure value of faller
higher than non-faller; minus (-) represents the measure value of faller lower than non-faller.

Category Measures t test p value (sign) Effect size AUC AUC p value

Reach forward

Reach distance <.0001 (-) 0.5608 0.6613 <.0001

rms angVel AP 0.0216 0.2287 0.5625 0.0297

Jerk angVel AP <.0001 (-) 0.4404 0.5858 0.0034

Reach right

Reach distance <.0001 (-) 0.4289 0.6620 <.0001

rms angVel ML 0.0002 (-) 0.3757 0.6078 0.0001

Jerk AngVel ML <.0001 (-) 0.5110 0.6201 <.0001

Reach left

Reach distance 0.0012 (-) 0.3296 0.5998 0.0005

rms angVel ML 0.6620 0.0443 0.5043 0.8850

Jerk angVel ML 0.0001 (-) 0.3913 0.5862 0.0028
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TABLE A.10: Significance of measures on differentiating fallers and non-fallers in sit-to-stand five
times test. angVel: angular velocity; AUC: area under ROC curve; rms: root mean square. Sign: plus
(+) represents the measure value of faller higher than non-faller; minus (-) represents the measure value
of faller lower than non-faller.

Category Measure t test p value (sign) Effect size AUC AUC p value

sit-stand-sit

Duration 0.0001 (+) 0.4981 0.6254 0.0004

rms angVel 0.0007 (-) 0.4229 0.6228 0.0004

Jerk 0.0041 (-) 0.3606 0.6150 0.0011

sit-stand

Duration <.0001 (+) 0.6045 0.6565 <.0001

rms angVel 0.0001 (-) 0.4975 0.6425 <.0001

Jerk 0.0006 (-) 0.4343 0.6294 0.0002

stand-sit

Duration 0.0060 (+) 0.3504 0.5937 0.0083

rms angVel 0.0067 (-) 0.3387 0.6015 0.0036

Jerk 0.0123 (-) 0.3142 0.6004 0.0049
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TABLE A.11: Significance of measures on differentiating fallers and non-fallers in timed up and go
test. acc: acceleration; angVel: angular velocity; AUC: area under ROC curve; AP: anteroposterior; ES:
equilibrium score; ML: mediolateral; V: vertical; rms: root mean square. Sign: plus (+) represents the
measure value of faller higher than non-faller; minus (-) represents the measure value of faller lower
than non-faller.

Cateory Subcategory measure
t test p value

(sign)
Effect size AUC

AUC p

value

Walk

Amplitude of

raw data

rms acc AP 0.0001 (-) 0.4000 0.6116 0.0001

rms acc ML 0.7691 0.0299 0.5031 0.9147

rms acc V 0.1134 0.1666 0.4702 0.3232

rms angVel AP 0.0019 (-) 0.3234 0.5805 0.0060

rms angVel ML 0.0001 (-) 0.4026 0.6007 0.0004

rms angVel V <.0001 (-) 0.4316 0.6228 <.0001

Gait pattern

gait velocity <.0001 (-) 0.4435 0.6258 <.0001

stride time 0.0003 (+) 0.3803 0.5885 0.0028

stride length <.0001 (-) 0.5578 0.6703 <.0001

Single support 0.0001 (-) 0.4108 0.6203 <.0001

range of motion on

knee joint
0.5693 0.0587 0.4731 0.3624

Gait symmetry 0.1123 0.1627 0.5538 0.0668

Turn

Amplitude of

raw data

rms angVel V 0.0210 (-) 0.2410 0.5576 0.0518

max angVel V 0.0065 (-) 0.3888 0.5613 0.0425

Time turn time 0.2665 0.1149 0.5227 0.4417
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