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Nickel hexacyanoferrate (NiHCFe) is an attractive cathode material in both aqueous and

organic electrolytes due to a low-cost synthesis using earth-abundant precursors and

also due to its open framework, Prussian blue-like crystal structure that enables ultra-

long cycle life, high energy efficiency, and high power capability. Herein, we explored

the effect of different alkali ions on the insertion electrochemistry of NiHCFe in

aqueous and propylene carbonate-based electrolytes. The large channel diameter of

the structure offers fast solid-state diffusion of Li+, Na+, and K+ ions in aqueous

electrolytes. However, all alkali ions in organic electrolytes and Rb+ and Cs+ in aqueous

electrolytes show a quasi-reversible electrochemical behavior that results in poor

galvanostatic cycling performance. Kinetic regimes in aqueous electrolyte were also

determined, highlighting the effect of the size of the alkali ion on the electrochemical

properties.
Introduction

The demand for advanced energy storage devices has greatly increased recently,
and current research efforts focus on solving scientic issues associated with this
formidable challenge.1,2 Depending on the targeted application, researchers in
this area look for improvements in power output3,4 and energy density5,6 for
portable applications and for cycle/calendar life and cost for grid-scale stationary
energy storage systems (GSES).7–9 Li-ion batteries (LIBs) based on conventional
organic electrolytes have been widely used and studied for portable applications
due to their high energy density (deriving from the high operating voltage and low
electrochemical equivalent weight of lithium) and reasonable durability, which
allow them to meet current market requirements.10 Nevertheless, the constant
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increase in the demand for Li raw materials and their limited availability could
lead to a considerable rise in the cost of LIBs in the near future.11 In this regard,
Na or K-ion based secondary batteries are oen proposed as promising alterna-
tives due to the ready and lower-cost availability of the raw materials.12

In the case of GSES applications, the key performance metrics are cost, envi-
ronmental compatibility, cycle life, energy efficiency, and response time rather
than energy density. In fact, the $ per kW h cost of the stored energy should be
comparable to the price of the energy delivered by the primary source. Therefore,
long calendar life and high energy efficiencies are required to reduce their life-
time cost.13 Aqueous rechargeable batteries can meet these requirements, and
previous research efforts in this area have been very promising.14–16

Open-framework Prussian blue analogues (PBAs) have recently received a great
deal of attention as alkali-ion rechargeable battery electrodes due to their
impressive electrochemical cyclability, their straightforward and low-cost
synthetic processes, and the possibility of using them in both aqueous and
organic electrolytes.17–19 This class of materials contains large interstitial sites that
allow for the insertion of alkali20 and divalent21 ions with very little crystallo-
graphic lattice strain. However, the insertion of different cations results in very
different electrochemical behavior in both aqueous and organic electrolytes.22

Hence, a deeper understanding of the effect of the nature of the inserting ion in
aqueous and organic electrolytes on the electrochemical features of PBAs is
required to achieve improved battery performance.

Herein, we investigated the electrochemical behavior of nickel hex-
acyanoferrate (NiHCFe) in different aqueous and organic electrolytes with
particular emphasis on the role of the guest cation. Among different PBAs, we
chose NiHCFe as a model system because of its chemical stability in both water
and propylene carbonate and because of its redox behavior potential well within
the electrochemical stability window of the investigated electrolytes.

Materials and methods

NiHCFe nanoparticles were prepared by a simple co-precipitation method22,23 in
which 120 mL of a 40 mM aqueous solution of Ni(NO3)2 and 120 mL of a 20 mM
solution of K3Fe(CN)6 were simultaneously added dropwise into 60 mL of
deionized water with vigorous stirring. The precipitation was carried out at a
constant temperature of 70� C until a yellow–orange precipitate formed. The
precipitate was then ltered, washed several times with deionized water, and
dried under vacuum at 40� C for 12 h. High-resolution powder X-ray diffraction
(XRD) patterns were obtained at 12 keV (l ¼ 1.0332 Å) at BL 2-1 at the Stanford
Synchrotron Radiation Lightsource (SSRL) using zero-background quartz holders
in reection geometry with a monochromator and Soller slits. The structural
analysis was performed on the XRD data with the Rietveld renement method
using the EXPGUI interface for the General Structure Analysis System (GSAS).24–26

Morphology and particle size were investigated with transmission electron
microscopy (TEM, Tecnai G2 F20 X-Twin).

The electrochemical investigation was carried out on electrodes prepared by
casting a slurry made of 80 wt% NiHCFe, 10 wt% carbon (Timcal Super P Li), and
10 wt% polyvinylidene uoride (PVDF, Kynar HSV 900) dispersed in 1-methyl-2-
pyrrolidone (NMP) on a carbon cloth (Fuel Cell Earth/Ballard AvCarb) current
70 | Faraday Discuss., 2014, 176, 69–81 This journal is © The Royal Society of Chemistry 2014
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collector. The electrodes were then dried under vacuum at room temperature for
10 h, resulting in an active material loading of about 8–10 mg cm�2. The elec-
trodes were tested in a ooded, three-electrode electrochemical cell equipped
with a commercial Ag/AgCl (4 M KCl) reference electrode and an activated carbon
counter electrode. In-depth kinetics experiments were carried out in a Swagelok,
three-electrode cell equipped with a pseudo-reference Ag/AgCl electrode, an
activated carbon counter electrode, and an active electrode – prepared by coating
the surface of a stainless steel current collector with the slurry previously
described, achieving an active material loading of about 1 mg cm�2. The Ag/AgCl
pseudo-reference electrode was calibrated before and aer each measurement in
both aqueous and organic electrolyte using a commercial Ag/AgCl 3.5 M reference
electrode and the Fc+/Fc0 redox couple,27 respectively. All the potentials were
converted relative to the standard hydrogen electrode (SHE). 1 M aqueous solu-
tions of LiNO3, NaNO3, KNO3, RbNO3, CsNO3 and 1 M LiClO4, NaClO4, and 0.8 M
KPF6 solutions in propylene carbonate were prepared and tested. The acidity of all
aqueous electrolytes was increased to a pH of 2 by the addition of HNO3 to take
advantage of the lower solubility of PBAs in acidic conditions.28
Results and discussion
Physicochemical characterization

The as-synthesized NiHCFe has the general perovskite-type open framework
crystal structure, shown in Fig. 1a, in which hexacyanoferrate complexes and
nickel ions bound by cyanide linkages form a face-centered cubic structure. In the
framework, guest cations can occupy large interstitial A sites around the center of
each cube, as conrmed by high-resolution synchrotron powder diffraction
measurements (Fig. 1b). Sharp peaks indicate the high crystallinity of the powder,
and the absence of secondary peaks veries the presence of a single phase and the
absence of impurities. Rietveld renement of the XRD data conrms that NiHCFe
has a perovskite structure with a face-centered cubic phase (fm�3m, a0 ¼ 10.211 Å)
that matches closely the crystal structure of Prussian blue (JCPDS no. 73-0687).
The TEM image in Fig. 1c shows spherical particles with an average diameter of
about 20–50 nm, which is benecial for increasing the surface area (better contact
with the electrolyte and the conductive additive) and reducing diffusion lengths of
the charge carriers (both ions and electrons). In Fig. 1d and e, the HR-TEM image
and its corresponding inverse fast Fourier transform (FFT) show an interplanar
distance of about 2.076 Å, which well matches the (422) crystal plane.
Effect of insertion ion and solvent on the electrochemical properties of NiHCFe

The effect of the insertion ion on the insertion potential of NiHCFe bulk elec-
trodes in aqueous electrolytes was investigated in a previous study by our research
group.22,23 In that study, increases in the insertion potential were observed for
ions further down Group I on the periodic table. This behavior has been previ-
ously interpreted by Scholz et al.29–31 They suggested that the change in Gibbs free
energy due to the alkali ion insertion DGi (corresponding to the insertion
potential: DGi ¼ �nFDEi) is equal to the difference between the Gibbs free energy
of “solvation” of the alkali ion in the NiHCFe lattice (DGl) and the Gibbs free
energy of solvation of the alkali ion in the solvent (DGs):29
This journal is © The Royal Society of Chemistry 2014 Faraday Discuss., 2014, 176, 69–81 | 71
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Fig. 1 (a) Schematic illustration of the unit cell of the open-framework NiHCFe structure
with carbon-coordinated Fe ions and nitrogen-coordinated Ni ions. (b) Rietveld-refined
XRD data of the as-synthesized NiHCFe. Black dots and red lines indicate the observed and
the calculated patterns, respectively. The blue line at the bottom indicates the difference
between observed and calculated patterns. The magnified patterns (6.5�) are shown for
clarity above 25�. (c) Transmission electron microscope (TEM) images (black scale bar,
100 nm) and (d) high-resolution TEM images of NiHCFe nanopowders. (e) The inverse fast
Fourier transform (FFT) of (d) (white scale bar, 1 nm).
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DGi ¼ �nFDEi ¼ DGl � DGs

DGl corresponds to the free energy of any residual hydration of the alkali ion aer
insertion. The magnitude of this value is smaller than the free energy of solvation
in solution (DGs) because insertion ions are mostly dehydrated as they go into the
structure. Fully hydrated ions cannot t in the interstitial sites, which are about
3.2 Å in diameter, because they are much larger in diameter.32 Thus, the variation
in insertion potential for different insertion ions is mainly a function of just the
Gibbs free energy of solvation (hydration in the case of water) of the insertion ion.
DGi decreases as the ionic radius of the ion increases further down Group I of the
72 | Faraday Discuss., 2014, 176, 69–81 This journal is © The Royal Society of Chemistry 2014
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periodic table since larger ions have lower hydration energies in solution.33 In the
present study, the same behavior is observed (Fig. 2a and Table 1).

It is worth noticing the presence of multiple electrochemical processes
between 0.3 and 0.8 V versus SHE in the case of Li+ at pH 6 (Fig. 2b, blue line).
Since the concentration of H+ is so low in this experiment, all the peaks can be
attributed to the insertion of Li+. The peaks are at different potentials because of
the varying levels of hydration of Li+ when in the structure. This is only observed
for Li+ because its small ionic radius allows for a signicant degree of hydration
even when in the structure. In other words, DGl takes on varying values for Li+ and
has a more signicant impact on the change in Gibbs free energy for ion inser-
tion. The reduction peak is located at the lowest potential because the ions are
almost fully dehydrated as they diffuse through the channels in the framework,
but once they insert into interstitial sites, they may be partially rehydrated by
mobile water molecules in the structure.29 At pH 2 (Fig. 2b, red line), we see an
additional electrochemical process developing at 0.6 V that is ascribed to the
insertion of hydronium ions, as conrmed by CV cycling in an acidied lithium-
free cell at pH 3 (Fig. 2b, black line). Data obtained at pH 6 (Fig. 2c) clearly show
the capacity fading upon cycling caused by the higher solubility of NiHCFe.28 The
solubility of NiHCFe at pH 2 and 1 M salt solution is innitesimal and denitely
not enough to affect the measurements. In the case of K+ and Na+ insertion, the
H3O

+ peak is not observed because of the higher insertion potentials of these ions,
Fig. 2 Cyclic voltammetry (CV) curves of NiHCFe. The scan rate is 0.1 mV s�1. (a) CV
curves using aqueous electrolytes of Li+, Na+, and K+ ions. (b) CV curves (in blue, red, and
black) are measured by using 1 M LiNO3 in H2O (pH 6, controlled by HNO3), 1 M LiNO3 in
H2O (pH 2, controlled by HNO3), and 1 mM HNO3 in H2O electrolytes, respectively. (c) 7
cycles of CV in pH 6, 1 M LiNO3 in H2O electrolyte. The oxidation and reduction peaks of
NiHCFe electrode decrease with cycling. (d) Propylene carbonate (PC) is used as the
electrolyte solvent. 1 M LiClO4, 1 M NaClO4, and 0.8 M KPF6 are used as salts in PC.

This journal is © The Royal Society of Chemistry 2014 Faraday Discuss., 2014, 176, 69–81 | 73
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Table 1 The redox potentials (Ehalf), the potential difference between the oxidation and
reduction reactions (DE) recorded in cyclic voltammograms, and the specific capacities
from galvanostatic cycling of NiHCFe electrodes in propylene carbonate and aqueous
electrolytesa

PC Aqueous

Ehalf/V DE/V
Specic capacity/mA
h g�1 Ehalf/V DE/V

Specic capacity/mA
h g�1

Li+ 0.327 0.107 53.4 0.379 0.049 57.8
Na+ 0.492 0.111 49.6 0.583 0.032 57.4
K+ 0.665 0.17 43.7 0.721 0.02 57.7

a The CV data were measured at 0.1 mV s�1 and the all capacities in galvanostatic curves
were characterized at 1 C.
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which indicates that K+ and Na+ insertion are more thermodynamically favored
processes.

In organic propylene carbonate-based electrolytes (PC), the same trend is
observed (Fig. 2d). The insertion potential differences between the different
cations in aqueous and organic electrolytes are similar due to the similarities in
the solvation energies of the ions in water and PC.30,34 There is only a single redox
peak for each ion insertion process due to the lack of H3O

+ insertion in PC and
also due to the fact that ions cannot be resolvated in the structure because there
are no mobile solvent molecules within the structure when in PC.

The cyclic voltammetry (CV) proles suggest very different kinetics in aqueous
and organic electrolyte. The CVs in aqueous conditions show symmetric anodic/
cathodic peaks that demonstrate the reversibility and fast kinetics of aqueous ion
insertion. In propylene carbonate, the peaks show asymmetry and a quasi-
Nernstian behavior (the difference in potential between the anodic and cathodic
peaks is larger than 100 mV) due to slower kinetics of ion insertion relative to the
aqueous system. This behavior can be ascribed to different ion diffusion mech-
anisms within the structure in aqueous and organic electrolytes.35 A Grotthus-like
mechanismmay enable the extremely rapid kinetics of ion insertion in water; this
has previously been suggested for driving proton conductivity in hex-
acyanochromates.35 Zeolitic water molecules exist throughout the structure, and
ligand water molecules bond to the N-coordinated metal ions adjacent to hex-
acyanometallate vacancy sites. The N-coordinated metal ion acts as a Lewis acid,
and protons are carried through the 3D hydrogen-bonding network, which is
composed of zeolitic water and ligand water molecules. These different properties
result in very different battery performance as described in the following section.
NiHCFe's battery performance comparison in aqueous and organic electrolyte

Galvanostatic charge–discharge curves are reported in Fig. 3. In all aqueous
electrolytes, specic capacities of about 60 mA h g�1 were obtained at 1 C. The
voltage proles reect the properties already observed during the CV experiments.
In the presence of Li+ ions (Fig. 3a), the potential spans from 0.3 to 0.7 V versus
SHE. In particular, the potential hysteresis associated with Li+ insertion is
signicantly greater than that associated with Na+ or K+ because of the partial
74 | Faraday Discuss., 2014, 176, 69–81 This journal is © The Royal Society of Chemistry 2014
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Fig. 3 Comparison of hysteresis in galvanostatic potential profiles at 1 C between aqueous
and PC electrolytes. (a) Li+, (b) Na+, and (c) K+ ion systems. Typical charge and discharge
potential profiles of NiHCFe electrodes at different C rates (0.2, 0.5, 1, 2, and 5 C) with (d)
Li+, (e) Na+, and (f) K+ ions in PC.
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rehydration of Li+ aer insertion as previously described. Curves obtained in the
presence of Na+ (Fig. 3b) and K+ (Fig. 3c) show remarkably low potential hysteresis
(high energy efficiency) and a higher reaction potential in the presence of K+

relative to that of Na+. The rate capability of the material in the presence of Li+,
Na+, and K+/PC solutions is reported in Fig. 3d–f, respectively, and the compar-
ison between electrolytes is summarized in Fig. 4. The results show that the
kinetics are much better in aqueous than in organic electrolytes.

Effect of the inserting ion on the kinetic features of NiHCFe's electrochemistry
in aqueous electrolyte

The kinetic properties are not only affected by the nature of the solvent but also by
the nature of the guest ion. To explore this effect, we have performed a set of
measurements using the Swagelok experimental setup described in the
This journal is © The Royal Society of Chemistry 2014 Faraday Discuss., 2014, 176, 69–81 | 75
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Fig. 4 Discharge capacity retention in aqueous and PC electrolytes with different inser-
tion ions at varying C rates.
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Experimental section. The Swagelok setup, besides allowing us to perform elec-
trochemical experiments in a convenient three-electrode setup conguration,
offers a consistent distance between the positive and negative electrode, which
minimizes the varying effects of electrolyte resistance on kinetics experiments.
Due to the use of at, smooth stainless steel current collectors instead of porous
carbon cloth, the active material loading is lower (about 1 mg cm�2) but still many
orders of magnitude higher than that in thin lm electrodes.36 Therefore, these
electrodes in the Swagelok conguration can still be considered as bulk systems.

To highlight the kinetic properties of NiHCFe in different electrolytes, we
performed CV scans at different scan rates (Fig. 5). We focused our attention on
aqueous electrolytes because of the better electrochemical properties and the
possibility of including Rb+ and Cs+ in the comparison since their nitrate salts
have the required solubility (1 M). Fig. 5a shows the CV proles obtained in 1 M
solutions at a 1 mV s�1 scan rate. The peak positions are in perfect agreement
with those obtained in the ooded conguration. The redox potentials corre-
sponding to the different electrolytes are summarized in Table 2, which also
reports the separation between the reduction and the oxidation peaks (DE). In a
previous study,29 the electrochemical reactions of hexacyanometallates were
thought to be diffusion-limited, but our results suggest a different kinetic limi-
tation for NiHCFe. The peak separation is too low for a one-electron reaction
under diffusion-controlled kinetic conditions.

The kinetic regime can be better understood by analyzing the relationship
between the CV scan rate and the corresponding peak current. The analysis was
carried out at different scan rates from 0.25 to 5 mV s�1 for different guest ions
(Fig. 5b–f). In the presence of small alkali cations (Li+, Na+, and K+), very small
potential shis are observed for the redox processes, even at the highest scan rate.
The corresponding peak currents show a linear relationship versus the scan rate
(see Fig. 6a–c), which highlights the diffusionless behavior wherein the maximum
current is only limited by the number of electroactive species at/in the electrode.
This kind of behavior is typical of thin lm electrodes,37,38 and, to our knowledge,
NiHCFe is the rst case of diffusionless behavior in bulk systems. In the thin layer
electrode treatment, the linear relationship between the peak current and the
scan rate is ruled by:37
76 | Faraday Discuss., 2014, 176, 69–81 This journal is © The Royal Society of Chemistry 2014
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Fig. 5 CV curves of NiHCFe using the three-electrode Swagelok cell configuration in
aqueous electrolytes. The scan rate is 1 mV s�1. (a) CV curves of Li+, Na+, K+, Rb+, and Cs+

ions. CV curves of (b) Li+, (c) Na+, (d) K+, (e) Rb+, and (f) Cs+ ions at different scan rates from
0.25 to 5.00 mV s�1.

Table 2 The redox potentials in different aqueous electrolytes as measured in the three-
electrode Swagelok configuration

Ehalf/V DE/V

LiNO3 0.350 0.015
NaNO3 0.615 0.01
KNO3 0.715 0.01
RbNO3 0.920 0.06
CsNO3 1.275 (0.870a) 0.12 (0.05a)

a The CV data were measured at 0.1 mV s�1 and stopped at 1.12 V.
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ipeak ¼ n2F 2

4RT
� A� G*

0 � Vrate

where n is the number of electrons involved in the reaction, F the Faraday
constant (C mol�1), R the gas constant (J mol�1 K�1), T the temperature (K), A the
surface area (cm2), G*

0 the concentration of active sites (mol cm�2), and vrate the
scan rate (mV s�1). The G*

0 parameters obtained from the slopes of the straight
lines in Fig. 6a–c are used to calculate the electrode specic capacity reported in
Table 2, which are in good agreement with the values obtained in Fig. 4. The
reduction and reoxidation processes in the presence of both Rb+ and Cs+ ions
show asymmetrically shaped peaks. However, the kinetic properties differ greatly
between the two guest ions. In the case of Rb+, the DE is small (around 60mV) and
comparable with the value in the diffusion-controlled kinetic regime. In fact, the
peak current depends linearly on the square root of the scan rate (Fig. 6d), whose
dependency is given by:37

ipeak ¼ 0:4463�
ffiffiffiffiffiffiffiffiffiffi
n3F 3

RT

r
�

ffiffiffiffi
D

p
� C0 �

ffiffiffiffiffiffiffiffiffi
Vrate

p

where D is the average diffusion coefficient (cm2 s�1) in the whole composition
range and C0 the concentration of active sites (mol cm�3). The slope can thus be
used to determine the diffusion coefficient once C0 and n are known. If we
consider the reaction as monoelectronic and estimate C0 from the specic
capacity (60 mA h g�1), we can calculate the diffusion coefficient D to be 5.7 �
1.0 � 10�6 cm2 s�1, which is two times lower than that of Rb+ in aqueous RbCl
solution (2.06� 10�5 cm2 s�1)39 but still remarkably high for solid-state diffusion.
Fig. 6 The relationship between the peak currents and corresponding scan rates of (a) Li+,
(b) Na+, (c) K+, and (d) Rb+ ions in aqueous electrolytes.
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On the other hand, in the presence of Cs+ ions the reaction is quasi-reversible,
and no kinetic analysis can be carried out. The high hysteresis is a result of the
size of Cs+, which is larger than the channel size and smaller than the size of A-
site, likely resulting in complete dehydration of the ion before insertion. The
dehydration of the Cs+ ion in this case is similar to the results in organic elec-
trolytes as shown in Fig. 2d. In organic electrolytes, guest ions must also be fully
desolvated before insertion, which results in high charge transfer energy.

Conclusions

The effect of the inserting alkali ion on the electrochemical properties of NiHCFe,
which has the characteristic open framework crystal structure of Prussian blue
analogues, was investigated in both aqueous and organic (propylene carbonate)
electrolytes. A linear relationship between the insertion potential and the size of
the alkali ion has been highlighted in both electrolyte systems. In particular, a
smaller insertion ion has a higher solvation energy that needs to be overcome
before insertion in the host structure and therefore a lower insertion potential.

On the other hand, profound kinetic dissimilarities between the two electro-
lytes systems were demonstrated. CVs in aqueous conditions show symmetric
anodic/cathodic peaks that demonstrate the reversibility and fast kinetics of
aqueous ion insertion. Moreover, smaller alkali ions like Li, Na and K show a
diffusionless behavior wherein the maximum current is only limited by the
number of electroactive species at/in the electrode. This enables the minimal
hysteresis in the galvanostatic charge–discharge curves (extremely high energy
efficiency) and the exceptionally long cycle life exhibited by nickel hex-
acyanoferrate and PBAs in general.

In propylene carbonate, the CV peaks show asymmetry and a quasi-Nernstian
behavior that results in poor galvanostatic cycling performance. We believe that
the different behavior could be ascribed to a different diffusion mechanism in the
open framework crystal structure. Therefore, an aqueous electrolyte system is
needed – to guarantee the extremely long cycle life and energy efficiencies
required by grid scale energy storage applications.13
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