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The microscopic contributions to the electric-field-induced macroscopic strain in a morphotropic

0.93(Bi1/2Na1/2TiO3)�0.07(BaTiO3) with a mixed rhombohedral and tetragonal structure have

been quantified using full pattern Rietveld refinement of in situ high-energy x-ray diffraction data.

The analysis methodology allows a quantification of all strain mechanisms for each phase in a mor-

photropic composition and is applicable to use in a wide variety of piezoelectric compositions. It is

shown that during the poling of this material 24%, 44%, and 32% of the total macroscopic strain is

generated from lattice strain, domain switching, and phase transformation strains, respectively. The

results also suggest that the tetragonal phase contributes the most to extrinsic domain switching

strain, whereas the lattice strain primarily stems from the rhombohedral phase. The analysis also

suggests that almost 32% of the total strain is lost or is a one-time effect due to the irreversible

nature of the electric-field-induced phase transformation in the current composition. This informa-

tion is relevant to on-going compositional development strategies to harness the electric-field-

induced phase transformation strain of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric materials for

actuator applications. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937470]

Among the lead-free piezoelectric ceramics, the bis-

muth sodium titanate, (Bi1/2Na1/2)TiO3 (BNT) based sys-

tems have attracted considerable attention, not merely from

a potential application point of view but also from a scien-

tific perspective with respect to the fundamental nature

of electro-mechanical coupling. Since the first report of

BNT, research has been focused on the compositional mod-

ifications required to improve its electro-mechanical prop-

erties.1–5 Among them, (1�x)(Bi1/2Na1/2)TiO3–xBaTiO3

(BNT-100xBT) is considered an attractive system to be

investigated as it presents enhanced properties at the mor-

photropic phase boundary (MPB). Takenaka et al.6 reported

an MPB between a rhombohedral and a tetragonal phase in

BNT-100xBT (0.06� x� 0.07) system through the electri-

cal property and structure measurements. However, Ranjan

and Dviwedi7 suggested that the crystallographic structure

is nearly cubic for BNT-6BT. As yet several phase dia-

grams for the BNT-100xBT system have been reported

based on various measurements.8–12 Nevertheless, it is gen-

erally accepted that the MPB of BNT-100xBT is situated

for 0.06� x� 0.11.

In situ observation of the field-induced structural changes

of BNT-100xBT by diffraction techniques has shown changes

in crystallographic phases. Reports of in situ x-ray13 and neu-

tron14 diffraction experiments showed that the MPB composi-

tion of as-processed BNT-100xBT is pseudocubic and

undergoes an electric-field-induced phase transformation to

tetragonal or mixed phase rhombohedral-tetragonal symmetry.

Jo et al.9 have reported phase evolutions in a wide range of

BNT-100xBT (0� x� 0.15) compositions at both the unpoled

and poled state. Interestingly, despite the results showing the

electric-field-induced evolution of mixed phase compositions

between BNT-5BT and BNT-11BT, optimal properties were

still observed at around BNT-7BT as was reported by

Takenaka et al.6 In addition, Ma et al.15 have reported elec-

tric-field-induced creation/modification of MPB in this mate-

rial system by in situ TEM. The unusual phase transformation

behaviour of BNT-100xBT compositions is of interest as it’s

been shown to provide a mechanism to so-called “giant” strain

property or incipient piezoelectricity16–19 in related BNT-

based compositions.

Although structural contributions, such as phase coexis-

tence and non-180� ferroelectric domain switching,9 to the

macroscopic strain are evident in this material, quantitative

analysis of microscopic strain contributions is not available.

Quantification of the electric-field-induced diffraction data

can be useful to get further insights into the structural origin

of strain response in piezoelectric materials. For example, it

is interesting to understand how individual phases in an

MPB composition contribute to the overall macroscopic

response. Quantification of microscopic origins from in situ
diffraction data in different materials has been successfully

conducted using selected reflection-fitting methods.20–24

However, this method to quantify domain texture, lattice

strain, and phase transformation strain for mixed-phase

materials is difficult due to significant peak overlap. This
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difficulty can be overcome using full pattern Rietveld refine-

ments.25 This refinement strategy enables one to quantify the

sources of microscopic contributions to the macroscopic

strain by utilizing all available diffraction information. The

aim of this work is to reconcile the types of structural contri-

butions present at the microscopic length scales in an MPB

composition (BNT-7BT) by quantitative full pattern

Rietveld refinements which incorporate texture analysis.

The reported analysis methodology allows a quantifica-

tion of all strain mechanisms; namely, lattice strain, domain

switching strain, and phase transformation strain, for each

phase. In contrast to the reported in situ neutron diffraction

data of a Pb(Zr,Ti)O3-based composition,25 where small

amounts of reversible phase switching occur, here BNT-7BT

is shown to have a one-time effect due to the irreversible na-

ture of the phase transformation.

The studied composition 0.93(Bi1/2Na1/2TiO3)–0.07

(BaTiO3) (BNT-7BT) was prepared by conventional solid

state processing; details can be found elsewhere.26

Macroscopic strains up to fields of 4 kV/mm were measured

with disk-shaped samples by modified sawyer tower setup at

a frequency of 50 mHz. Sample dimensions of 0.8 mm

� 1 mm� 6 mm suitable for in situ high-energy diffraction

experiments were cut from sintered disks. In situ high-

energy XRD measurements were carried out at beamline

I12-JEEP, Diamond Light Source, UK. A monochromatic

x-ray beam of energy 84.82 keV (wavelength, k¼ 0.146 Å)

was used in transmission geometry with a large area detector.

Using this technique, full orientation dependent data with

respect to the angle, w, between the scattering vector and

applied electric field vector can be collected in a single diffrac-

tion image. Diffraction data for one unipolar cycle (maximum

electric field, Emax¼ 4 kV/mm) in equal steps were collected

using a flat-panel Pixium detector.27–29 The collected diffrac-

tion images were radially integrated into 36 azimuthal sections

using the software Fit2D.30 Full pattern Rietveld refinements

using the software package MAUD (Materials Analysis Using

Diffraction)31 were performed to describe the structure and

domain texture changes as a function of electric field over the

entire electrical loading/unloading cycle. The orientation

dependent information was extracted using the Exponential

Harmonic32 model and the weighted strain orientation distribu-

tion function (WSODF)33 model.

Figure 1 shows the diffraction pattern of the as-

processed BNT-7BT and electric-field-induced changes in

the selected diffraction patterns. In the as-processed state,

the BNT-7BT composition results in a single phase perov-

skite type diffraction pattern (Figure 1(a)) that can be

indexed with a cubic unit cell. The exact crystallographic

structure of the as-processed BNT-7BT is yet to be conclu-

sive. However, previous work has shown that compositions

close to the MPB in the BNT-100xBT system exist with a

long range cubic symmetry but with short range disorder,

leading to lower symmetries at the nanometer scale.34–36 For

simplicity, here, the as-processed BNT-7BT has been termed

as pseudocubic.

Data presented in Figures 1(b) and 1(c) signify the elec-

tric-field-induced phase transformation in this material. The

observed 111 reflection asymmetry and 200 reflection split-

ting reveal that the field-induced phase transformation for

the BNT-7BT in this study is from pseudo-cubic to mixed

rhombohedral and tetragonal symmetry, and is irreversible,

consistent with earlier reports on morphotropic BNT-

100xBT.14,37 While the long range structure is cubic in the

initial state, the relaxor-like34 nature of the as-processed

BNT-7BT signifies that the material contains disorder at the

atomic or nanometer length scale which may be in the form

of octahedral tilt disorder as well as cation occupational and

displacement disorder.35,38 Therefore, the nature of the elec-

tric-field-induced phase transformation in this material has

been perceived as an establishment of long range ordering of

the short range lower symmetries and simultaneous develop-

ment of the corresponding lattice distortion with applied

electric field.39–41 In order to understand the thermodynam-

ics of such transformations, the total free energy of any given

crystallite within the polycrystalline material can be consid-

ered and written as a volume weighted sum of all the contrib-

uting factors42

F ¼
ð

V

ðfbulk þ felastic þ felectrostaticÞdV: (1)

FIG. 1. (a) Diffraction profile for BNT-7BT in the as-processed state show-

ing single and symmetric reflections consistent with a pseudocubic structure.

(b) and (c) Variation in 111 and 200 reflections as a function of applied elec-

tric field up to 4 kV/mm. A change in as-processed state is initiated around

�1.2 kV/mm. Bottom of (b) and (c) shows the peak profiles in the as-

processed state (E0), at 4 kV/mm (Emax) and after the removal of the electric

field (Erem). The black dashed lines indicate the corresponding reflection

positions in the as-processed pseudocubic BNT-7BT (i.e., at E0). These data

represent scattering information with applied electric field vector parallel to

the scattering vector (i.e., w¼ 0�).

242902-2 Khansur et al. Appl. Phys. Lett. 107, 242902 (2015)
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Here, the bulk free energy, fbulk, can be expanded in terms of

the polarisation order parameter.43 The elastic energy, felastic,

is related to the elastic stiffness and spontaneous strain, and

the electric energy, felectrostatic, is a combination of dipole-

dipole interaction, depolarisation energy, and energy due to

coupling with the applied electric field.

Particularly in the polycrystalline state, electrostatic and

strain interactions not only occur within the crystallites

themselves at ferroelectric domain boundaries but also these

interactions at grain boundaries must be accounted for. Thus,

upon expansion, coupling terms between strain and electro-

static interactions arise. In the case of a negative coupling

parameter,44 increase in strain energy, for example, results in

a decrease in electrostatic energy to lower the total free

energy of the system. Here, the electric field is considered to

be the control parameter. Therefore, under an applied electric

field, the changes in the order parameters for a given grain

determine its resultant phase symmetry.

The mixed phase symmetry that results is likely due to

the flattening of the total free-energy landscape as a function

of crystal orientation relative to the applied field vector,45

thus transformations to tetragonal or rhombohedral symme-

try are possible with very small changes in bulk potential,

fbulk. The mixed phase symmetry of the material, however,

will result in many possible polar directions, which may act

to lower the electrostatic energy felectrostatic, particularly at

grain boundaries, thus making this the preferred phase struc-

ture in the current composition. Additionally, after the phase

transformation has occurred, the distribution and the minimi-

sation of elastic energy and electrostatic energy are also im-

portant to understand domain switching.42 It is generally

accepted that domain switching increases the elastic energy

at the granular scale;46 therefore, the reduction in electro-

static energy is also a driving force for domain switching.

From observations in Figure 1, it can be qualitatively stated

that the macroscopic strain in BNT-7BT stems from lattice

strain, domain switching, and a phase transformation. Electric-

field-induced structural changes in morphotropic BNT-7BT

have been extracted from diffraction data using full pattern

Rietveld refinement incorporating full texture analysis. Figure 2

shows typical fitting of the measured diffraction profiles at

Emax. The refinement with R3c and P4mm structure can model

the measured field-induced data accurately. Related refinement

parameters are listed in Table I. It is worthwhile to mention that

upon field application in the poling cycle, the as-processed

BNT-7BT remains pseudocubic up to fields of 1.2 kV/mm and

was modelled using a single phase cubic Pm�3m structure.

By using this data analysis technique, lattice strain (eL),

domain texture, and phase fraction for each phase at each field

step is obtained. The eL (i.e., intrinsic contribution) was

obtained from the WSODF strain model for the individual

phases at each electric field step. On the other hand, the varia-

tion in relative intensity as a function w is a signature of non-

180� ferroelectric domain texture. From the texture refinement

with the orientation dependent diffraction data, the complete

orientation distribution function (ODF) can be found and used

to calculate the magnitude of texture along the polar axis in

units of multiples of a random distribution (MRD). Using the

obtained lattice distortion (g) and MRD, the domain switching

strain (eD) can be calculated using the following equation:20

eD ¼ g
1

2p

ðp2

a¼0

Dfhkl að Þ cos2a
� �

sin að Þda; (2)

where DfhklðaÞ is the change in MRD of the polar axis along

the sample direction, a, with respect to the applied electric

field vector. The lattice distortion is defined as gRh ¼ffiffiffi
2
p

cRh=2
ffiffiffi
3
p

aRh � 1 and gTet ¼ cTet=aTet � 1.37

In addition, the strain resulting from the electric-field-

induced pseudocubic to rhombohedral-tetragonal phase trans-

formation (eV) can be calculated from the volumetric change

between the initial and resultant phases by the equation47

eV ¼ 1

3
PFRh � VRhð Þ þ PFTet � VTetð Þ � VPC

� �
=VPC

� �
;

(3)

where VPC, VRh, and VTet are the unit cell volumes of the

pseudocubic, rhombohedral, and tetragonal phases, respec-

tively. PFRh and PFTet are the phase fraction of the rhombo-

hedral and tetragonal phases, respectively.

Change in phase fraction, unit cell volume, and related

microscopic strain contributions calculated from the

extracted refinement parameters as well as the measured

macroscopic strain are shown in Figure 3.

FIG. 2. Measured (a) and modelled (b) orientation dependent diffraction pat-

terns at maximum field.

TABLE I. Refined structural parameters for both phases and criteria of fit

for BNT-7BT at Emax (4 kV/mm). The Vpc indicate the unit cell volume of

the pseudocubic primitive cell, and g is the lattice distortion.

R3c P4mm Criteria of fit

a (Å) 5.52340(5) 3.89488(3) Rwp: 0.04823

c (Å) 13.57163(4) 3.94424(5) Rp: 0.031781

Vpc (Å3) 59.79(3) 59.85(2)

g(%) 0.342(3) 1.263(4)

Fraction (%) 40.4(6) 59.6(5)
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As can be seen from Figure 3(a), at the onset of pseudo-

cubic to rhombohedral-tetragonal phase transformation, the

major phase is rhombohedral R3c (67%) and with increasing

electric field, this fraction decreases. At an electric field of

around 2 kV/mm, the composition is approximately an equal

mixture of rhombohedral and tetragonal phases, and at the

maximum field the tetragonal phase becomes the majority

phase. From Figure 3(b), it is clear that the pseudocubic to

mixed phase transformation initiates at 1.2 kV/mm. This is

highlighted by changes in the unit cell volume, a result that

is consistent with the previous report of electric-field-

induced volume changes in BNT-100xBT compositions.11

Several observations can be made from the calculated eL,

eD, and eV presented in Figures 3(c)–3(e). The eL contribution

in the morphotropic BNT-7BT is mostly generated from the

rhombohedral phase (eL
Rh� 0.13%), and the eL

Tet is only about

0.04%. Whereas the eD is largely contributed by the tetragonal

phase, i.e., eD
Tet.(�0.20%)> eD

Rh (�0.05%). The transformation

strain, eV, is slightly greater for the tetragonal phase. In the

rhombohedral phase, the intrinsic (i.e., eL
Rh¼ 0.13%) and

extrinsic (i.e., combination of eD
Rh and eV

Rh is 0.13%) contribu-

tions are comparable. On the other hand, almost all of the con-

tributions in the tetragonal phase stem from extrinsic processes,

i.e., domain switching and phase transformation strain. The

strain contribution from one switched domain is the difference

of the c and a lattice parameters, i.e., gTet and gRh for tetragonal

and rhombohedral, respectively. The higher degree of eD
Tet is

directly related to the large gTet (�1.26% at Emax) that is

approximately four times greater than the gRh is �0.34%.20

From the phase weighted calculated strain (green circles in

Figures 3(c)–3(e)), it is evident that in the mixed phase BNT-

7BT composition, extrinsic processes are the major contribu-

tors to the electric-field-induced strain, a result that is consistent

with that reported for an MPB composition of Pb(Zr,Ti)O3.
48,49

The comparison of calculated total strain and measured

macroscopic strain is shown in Figure 3(f). Within experi-

mental errors, the strain calculated from the diffraction data

(0.32%) is in agreement with the macroscopically observed

strain response (0.34%). The measured macroscopic strain of

this BNT-7BT is consistent with that of a previously reported

value.26 Differences between the calculated and observed

macroscopic strain at other field strengths most likely arise

from the time-dependence of the strain mechanisms. Zhou

and Kamlah50 have shown, in Pb(Zr,Ti)O3-based materials,

that creep occurs and is particularly large close to the coer-

cive field. The difference in collection frequency, therefore,

has a particularly strong effect on the observed coercive field

and slopes of strain vs E curves.

Although the eL, eD, and eV contributions are determined

individually and constitute the macroscopic strain response,

they are not completely independent of each other. The origin

of the strain in the poling cycle is essentially the electric-field-

induced phase transformation. Unit cell volumes after the onset

of phase transformation do not change significantly (Figure

3(b)). However, the rhombohedral phase fraction decreases and

the tetragonal phase fraction increases (Figure 3(a)), thus it can

be inferred that the ferroelectric domain switching is a possible

contributor to the change in phase fraction, i.e., phase switching

due to the coupling of strain from non-180� ferroelectric do-

main switching. Therefore, it can be stated that in this BNT-

7BT composition both phase transformation (pseudocubic to

lower symmetries) and phase switching (change in phase frac-

tion between rhombohedral and tetragonal symmetry) are

coupled. The sequence can be perceived as, at a certain critical

field, the initial pseudocubic BNT-7BT transforms to the long

range ferroelectric order with accompanying unit cell volume

change where the major phase is rhombohedral. With further

increase of the electric field, switching of ferroelectric domains

drives the transformation of rhombohedral phase into tetragonal

phase without any significant change in the unit cell volume.

The observed electric-field-induced phase transforma-

tion in BNT-7BT is irreversible. Therefore, the large fraction

of phase transformation strain is only accessible for the

poling cycle. Harnessing the eV can be critical to improve ac-

tuator properties of morphotropic BNT-7BT and other

related compositions. Compositional modification of BNT-

7BT has been reported previously to achieve this.51,52 In

these cases, a small fraction of sodium potassium niobate

was used to tune the strain properties of mixed-phase BNT-

100xBT, where the modified composition undergoes a

FIG. 3. Quantification of electric-field-induced (a) phase evolution, (b)

change in unit cell volume, (c) lattice strain, (d) domain switching strain, (e)

phase transformation strain, and (f) measured macroscopic strain and calcu-

lated total strain from diffraction data. eTotal (green circles in (c)–(e)) is the

strain value weighted with the phase fractions. The unit cell volume, V, in

(b) represents unit cell volume of the pseudocubic primitive cell.
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reversible electric-field-induced phase transformation with-

out any significant remanent volume change.53 The revers-

ibility of the phase transformation also ensures that all

strains associated with the formation and movement of non-

180� ferroelectric domain walls are completely reversible.

This behaviour is analogous to the shape memory effect in a

super-elastic material, where large recoverable strains are

achieved through a stress-induced martensitic transformation

from a parent phase without a domain structure. Here, the

zero field state is free from a domain structure, thus any

strain generated from the formation and movement of do-

main walls by application of field is reversible if the phase

transformation is also reversible upon removing that field.

In summary, by using full pattern Rietveld refinement of

in situ high energy XRD data, we have quantified the micro-

scopic strain contributions to the electric-field-induced strain

in a morphotropic BNT-7BT. This quantitative analysis high-

lights the microscopic strain contributions in BNT-7BT during

poling, finding 24%, 44%, and 32% of the total macroscopic

strain is generated from lattice strain, domain switching, and

phase transformation strain, respectively. Contributions from

both rhombohedral and tetragonal phases in the morphotropic

material have also been quantified as a function of applied

electric field. The analysis of phase transformation behavior

and related strain mechanisms indicates that to achieve high

electric-field-induced strain for actuator application harness-

ing of the phase transformation strain is essential. This analy-

sis of electric-field-induced strain will help develop strategies

to further improve the properties of lead-free electroceramics

through structural and/or chemical design.
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