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The porous composite scaffolds (PHBV/HA) consisting of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and
hydroxyapatite (HA) were fabricated using a hot-press machine and salt-leaching. Collagen (type I) was then immobilized on
the surface of the porous PHBV/HA composite scaffolds to improve tissue compatibility. The structure and morphology of
the collagen-immobilized composite scaffolds (PHBV/HA/Col) were investigated using a scanning electron microscope (SEM),
Fourier transform infrared (FTIR), and electron spectroscopy for chemical analysis (ESCA). The potential of the porous
PHBV/HA/Col composite scaffolds for use as a bone scaffold was assessed by an experiment with osteoblast cells (MC3T3-E1) in
terms of cell adhesion, proliferation, and differentiation. The results showed that the PHBV/HA/Col composite scaffolds possess
better cell adhesion and significantly higher proliferation and differentiation than the PHBV/HA composite scaffolds and the
PHBV scaffolds. These results suggest that the PHBV/HA/Col composite scaffolds have a high potential for use in the field of bone
regeneration and tissue engineering.

1. Introduction

Polyhydroxyalkanoates (PHAs) are natural biodegradable
thermoplastics that are accumulated by a wide variety of
microorganisms as a unique intracellular storage of carbon,
among which poly (3-hydroxybutyric acid) (PHB) and poly
(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV)
are two main products [1]. Their inherent biodegradability,
nontoxicity, and biocompatibility make them suitable for
biomaterials in tissue engineering [2–4]. Over the past three
decades, hydroxyapatite (HA), which is similar to the mineral
component of natural bone, has been extensively studied
and now used for bone tissue repair [5]. HA is considered
to be osteoconductive, that is, capable of promoting bone
formation, due to its capability to bind and concentrate bone
morphogenetic proteins (BMPs) in vivo.

Efforts have thus been made to form nonporous PHB/
HA and PHBV/HA composites for bone tissue repair by

utilizing the osteoconductive property of HA [6–8]. Sul-
tana and wang [9] prepared PHBV/HA scaffold using
an emulsion freezing/freeze-drying technique. They found
that the scaffolds were highly porous and had intercon-
nected porous structures, and the incorporation of HA
nanoparticles enhanced compressive mechanical properties
of the scaffolds. Jack et al. [10] fabricated the PHBV/HA
composite scaffolds with high porosity and controlled pore
architectures. Their results showed that the incorporation
of HA nanoparticles increased the stiffness and strength
and improved the in vitro bioactivity of the scaffolds. For
bone tissue engineering, biodegradable composite scaffolds
containing HA appear to hold great promises.

For a given environment, the cellular interaction with a
polymer is strongly dependent on the surface characteristics
(i.e., topography and chemistry) of the polymer [11–14].
Polymer surface chemistry has been shown to influence
the initial cell adhesion through the adsorption of proteins
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Scheme 1: Preparation of porous PHBV/HA scaffolds.
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Scheme 2: Collagen immobilization of porous PHBV/HA scaffolds.

derived from the serum used in the culture medium. The
cell adhesion is believed to involve the adhesion receptors on
the cell membrane and extracellular matrix (ECM) proteins
adsorbed to the polymer surface. To mimic the natural
environment of connective tissue, the polymeric surfaces
have been modified by coating or grafting ECM proteins
(fibronectin, vitronectin, and collagen) that have a cell-
binding domain containing the RGD sequence [15–19].

Collagen is one of the most abundant structural proteins
found in animal connective tissues and is an important pro-
tein for anchoring cells such as fibroblasts or epithelium [20].
Depending on the final application (cell carrier/scaffold), the
natural protein is either grafted (chemically immobilized)
or dip coated (physically immobilized) on the polymer
surface [14, 21]. Tesema et al. concluded that the collagen-
immobilized PHBV membrane provided a more favorable
matrix for cell proliferation than the collagen dip-coated
PHBV porous membranes or unmodified PHBV porous
membranes [22]. Our previous study showed collagen-
immobilized HA/TiO2 composite nanofiber mats possess

better cell adhesion and significantly higher proliferation
and differentiation than the untreated HA/TiO2 composite
nanofiber mats [23]. However, immobilization of collagen
on the porous PHBV/HA scaffolds has not been reported.
The combination of PHBV, HA, and collagen in a porous
scaffold should give the combined benefits of properties
which are not achievable by individual components. Based
on these beneficial properties, three-dimensional porous
scaffolds could be applied in dental and medical fields.

In this study, PHBV/HA composite scaffolds were
obtained by the salt-leaching method. Collagen (type 1)
was then immobilized on the surface of the porous
PHBV/HA scaffolds (PHBV/HA/Col) to enhance the tissue
compatibility. The morphology of the porous PHBV/HA/Col
scaffolds was investigated and compared with that of the
unmodified PHBV/HA, and PHBV scaffolds. Cell behaviors
on PHBV/HA/Col, PHBV/HA, and PHBV scaffolds were
compared, in terms of cell adhesion, proliferation, and
differentiation to study the potential for use in the field of
bone regeneration.
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Figure 1: FE-SEM images of porous PHBV (a), PHBV/HA (b), and PHBV/HA/Col (c) scaffolds.
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Figure 2: FT-IR spectra of the PHBV (a), HA (b), PHBV/HA (c), and PHBV/HA/Col (d) scaffolds.

2. Experimental

2.1. Scaffold Preparation. Porous poly(3-hydroxybutyric
acidco-3-hydroxyvaleric acid) (PHBV, hydroxyvaleric acid
content: 5 wt%; Aldrich Chemical Co. USA)/HA scaffolds
were prepared by mixing the PHBV/HA powder (w/w =
9 : 1) with sodium chloride (PHBV/HA : NaCl = 1 : 17), fol-
lowed by salt-leaching techniques (Scheme 1). The sodium
chloride particles of size 100∼300 μm (75 g) were mixed
with PHBV/HA powder (4.0 g) using a Brabender machine

(Plasti-corder Co. Korea) for 5 minutes at 180◦C. The
resulting mixture was cast in a mold (Diameter: 15 mm,
thickness: 2 mm) for 5 minutes at 180◦C. The resulting
PHBV/HA/NaCl composite scaffolds were immersed in a
shaker containing 100 mL of distilled water at 50◦C for 3
days (the water was changed every 12 hours) to leach out the
sodium chloride. The salt-free PHBV/HA scaffolds were air
and vacuum dried for 24 hours and stored in a dessicator
for further use. The drying process was continued until the
constant weight of the scaffolds could be obtained.
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Figure 3: ESCA scan spectra and chemical composition of a PHBV (a), PHBV/HA (b), and PHBV/HA/Col (c) scaffolds.
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Figure 4: Tensile properties of the PHBV and PHBV/HA scaffolds.

2.2. Immobilization of Collagen on PHBV/HA Composite
Scaffolds. The immobilization of collagen (type 1, Bioland
Technology Ltd, Korea) on the surface of PHBV/HA scaffolds
carried out in two steps (Scheme 2). First, an amine group
(–NH2) was introduced to the surface of the PHBV/HA
composite scaffolds by a silanization reaction using 3-
aminopropyltriethoxysilane (APTES) [24]. Then, collagen
was immobilized on the surface of the APTES-modified

PHBV/HA composite scaffolds using water soluble carbodi-
imide (WSC) [24]. The PHBV/HA/Col composite scaffolds
were then washed in distilled water and dried.

2.3. Surface Characterization. The morphology of the com-
posite scaffolds was examined using a field emission scanning
electron microscope (FE-SEM S4300, Hitachi, Tokyo, Japan).
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Figure 5: Confocal laser scanning microscope images of calcein-AM dye-stained osteoblasts on PHBV (a, d, g), PHBV/HA (b, e, h) and
PHBV/HA/Col (c, f, i) scaffolds for 4 hours (a, b, c,), 1 day (d, e, f), and 2 days (g, h, i) (magnification 100×).

Fourier transform infrared (FTIR, Mattson, Galaxy 7020A)
spectroscopy was used to identify the chemical bond and
ionic groups in the composite scaffolds. The surface chemical
composition was analyzed using electron spectroscopy for
chemical analysis (ESCA, ESCA LAB VIG microtech, Mt
500/1, and so forth, East Grinstead, UK), which was
equipped with Mg Kα at 1253.6 eV and a 150 W power mode
at the anode. A survey scan spectrum was taken and the
surface elemental compositions relative to the carbon that

took into account sensitivity were calculated from the peak
heights.

2.4. Mechanical Properties. According to the ASTM Standard
D3379-75, tensile test for single specimen was conducted on
a Zwick Roell Tensile tester equipped with a 1 kgf load cell.
The size of the sample for the strength test was 100 mm in
length, 10 mm in width, and 2 mm in thickness. A tensile
test was carried out using a universal testing machine (UTM,
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Instron, model 4465) at 25◦C with an extension speed of
10 mm/min. The results reported were the averages of 10
specimens for each scaffold.

2.5. Cell Culture. In order to examine the interaction of the
composite scaffolds (PHBV, PHBV/HA, and PHBV/HA/Col)
with osteoblasts (MC3T3-E1), the circular scaffolds were
fitted into a 24-well culture dish using glass ring and
immersed in a DMEM medium containing 10% fetal bovine
serum (FBS, Gibco, Invitrogen, USA). Then, 1 mL of the
MC3T3-E1 cell solution (3 × 104 cells/mL) was added to the
mats and then incubated in a humidified atmosphere of 5%
CO2 at 37◦C for 4 hours, 1 day, and 2 days. After incubation,
the supernatant was removed and calcein-AM (1 mM in
PBS) solution was added and left standing for 15 minutes.
Cells with intact cell membranes are able to use nonspecific
cytosolic esterases to convert nonfluorescent calcein-AM into
bright green-fluorescent calcein. The fluorescence images
were visualized with a confocal laser scanning microscope
(CLSM 700, Carl Zeiss, Germany) after washing the scaffolds
three times (10 minutes each) with a PBS solution [25].
The morphology of the cells incubated for 5 days was also
observed with a confocal laser scanning microscope (CLSM
700, Carl Zeiss, Germany).

2.6. Evaluation of Cell Proliferation. The proliferation of
MC3T3-E1 cells was determined using the enzyme-linked
immunosorbent assay (ELISA) [26, 27]. The ELISA method
is based on the measurement of 5-bromo-2-deoxyuridine
(BrdU), which is incorporated during DNA synthesis. The
ELISA was done according to the manufacturer’s instructions
(Roche Molecular Biochemicals, Germany).

2.7. Cytoskeletal Organization. Osteoblast cells were seeded
onto the scaffolds (2× 104 cells/mL) and cultured for 3
days. At each time point, the cells were fixed in 4%
paraformaldehyde in PBS. The samples were washed after
fixation with a buffer solution (PBS solution containing
0.05% Tween-20) and permeabilized with 0.1% Triton X-
100 in PBS for 15 minutes at 25◦C. The samples were then
incubated for 30 minutes in 1% BSA/PBS followed by the
addition of TRITC-conjugated Phalloidin (Millipore, Cat.
no. 90228) for 1 hour. The samples were washed three
times (10 minutes each) with buffer solution and incubated
with DAPI (Millipore Cat. no. 90229) for 5 minutes. The
fluorescence images were visualized with a confocal laser
scanning microscope (CLSM 700, Carl Zeiss, Germany) after
washing the scaffolds three times (10 minutes each) with
buffer solution [28].

2.8. Alkaline Phosphatase (ALP) Activity. The differentiation
of osteoblast cells was evaluated by the expression of
alkaline phosphatase (ALP) and its activity [29]. After 15
days of culturing the osteoblasts on the PHBV, PHBV/HA
and PHBV/HA/Col nanofibrous scaffolds, ALP staining was
done by a standard procedure [30] according to the man-
ufacturer’s instructions (Alkaline phosphatase, Leukocyte,
Procedure no. 86, Sigma-Aldrich, USA). After culturing, the

osteoblast cells were washed with a PBS solution and fixed
with a citrate-acetone-formaldehyde fixative solution (citrate
solution 25 mL, acetone 65 mL, and formaldehyde solution
10 mL) at room temperature for 30 seconds. Subsequently,
the cell fixed discs were rinsed three times with PBS solu-
tion for 45 seconds and stained with alkaline-dye mixture
(sodium nitrate 1 mL, FBB-alkaline solution 1 mL, naphthol
AS-BI alkaline solution 1 mL, and deionized water 45 mL) at
room temperature for 15 minutes. After removing the dye
solution, the dyed samples were washed twice with distilled
water to completely remove the redundant stains and then
dried. The cells stained positively for ALP were observed with
an optical microscope (Carl Zeiss, Germany).

2.9. Statistical Analysis. Our results are displayed as the
mean ± standard deviation. The statistical significance of
the differences between the scaffolds was determined by a
Student’s two-tailed t test. Scheffe’s method was used for
multiple comparison tests at a level of 95%.

3. Results and Discussion

3.1. Surface Characterization. The SEM images of the porous
PHBV (a), PHBV/HA (b), and PHBV/HA/Col (c) composite
scaffolds are shown in Figure 1. PHBV scaffolds exhibiting
interconnected but porous networks with pore sizes rang-
ing from several microns to around 400 μm were made
(Figure 1(a)). Under the same processing parameters, the
resulting PHBV/HA composite scaffolds possessed nearly
the same porous morphology (Figure 1(b)) as the PHBV
scaffolds. After collagen immobilization, the pore size of
the composite scaffolds decreased slightly and the scaf-
folds exhibited both open and closed pore morphologies
(Figure 1(c)).

The chemical bonding structure of the PHBV, HA,
PHBV/HA, and PHBV/HA/Col scaffolds were examined
by FT-IR spectroscopy, as shown in Figure 2. The spectra
of the PHBV/HA composite scaffolds (Figure 2(c)) dis-
played the vibrational bands at 1722 cm−1 based on C =
O bond of PHBV and 1039 cm−1based on PO3−

4 of the
hydroxyapatite, indicating the presence of PHBV and HA.
In the PHBV/HA/Col scaffold (Figure 2(d)), characteristic
adsorptions were observed at 1640 and 1572 cm−1 based on
amide I (–CONH–) and II (–CONH–) bonds of collagen,
respectively [23, 31, 32]. This result suggests that collagen
was successfully immobilized on the surface of PHBV/HA
composite scaffolds.

Immobilization of collagen on PHBV/HA composite
scaffolds was further confirmed by ESCA, as shown in
Figure 3. The PHBV/HA composite scaffolds (Figure 3(b))
showed four peaks corresponding to C1s (binding energy,
285.0 eV), Ca2p (binding energy, 346.9 eV), P2p (binding
energy, 102.4 eV), and O1s (binding energy, 531.7 eV). On
the other hand, the PHBV/HA/Col composite scaffolds
(Figure 3(c)) showed seven peaks corresponding to C1s,
O1s, Ca2p, P2s, P2p (binding energy, P2s = 151.7 and
P2p = 102.4 eV), N1s (binding energy, 400.0 eV), and Si2s
(binding energy, 133.8 eV). The chemical composition of
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Figure 6: The proliferation of osteoblasts cultured on PHBV, PHBV/HA, and PHBV/HA/Col scaffolds for 3 days.

(a) (b)

(c)

Figure 7: Confocal laser scanning micrographs (actin (red), nucleus (blue)) of osteoblast cells on PHBV (a), PHBV/HA (b), and
PHBV/HA/Col (c) scaffolds after 3 days incubation (Mag: 400×).
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Figure 8: The SEM images of osteoblasts cultured on PHBV (a, b), PHBV/HA (c, d), and PHBV/HA/Col (e, f) scaffolds for 5 days (Mag 40×
for (a), (c), (e); Mag 300× for (b), (d), (f)).

Table 1: Atomic percent of the PHBV, PHBV-HA, and PHBV-HA-Col scaffolds.

Substrate
Atomic %

C O Na Cl Ca P Si N

PHBV 68.1 31.7 0.1 0.1 — — — —

PHBV/HA 68.9 29.3 0.2 0.1 1.3 0.2 — —

PHBV/HA/Col 60.2 20.3 0.1 0.1 4.7 1.7 1.0 11.9

the scaffolds calculated from the ESCA survey scan spectra
is shown in Table 1. In the surface of the PHBV/HA/Col
composite scaffolds (Figure 3(c)), two new elements such as
nitrogen and silicon were observed, indicating the successful
immobilization of collagen via a silanization with APTES.

The tensile properties of the porous PHBV and
PHBV/HA composites scaffolds are given in Figure 4. The

modulus (0.95 MPa) and strength (1.8 MPa) of PHBV were
significantly increased by the addition of HA nanosized
particles up to 2.38 and 4.3 MPa, respectively, as shown in
Figures 4(a) and 4(b). According to the report by Hull and
clyne [33], the addition of HA nanoparticles had certainly
reinforced the scaffolds as the incorporated HA is a stronger
and stiffer material than PHBV. The values reported are
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Figure 9: ALP activity staining of osteoblasts (MCT3T-E1) cultured on PHBV (a), PHBV/HA (b), and PHBV/HA/Col (c) scaffolds for 16
days.

more similar to those reported for loadings of 20% of HA
by weight [9, 34]. Wang et al. produced the blends of 10%
HA (micrometer sized) in a PHB solvent cast, salt particle-
leached scaffolds, and reported that the blend showed only
small increases in modulus and stress [35]. In addition, it
is possible that some nanoscale dispersion of the inorganic
phase within the walls of the scaffold exists, and that these
dispersed particles lead to the observed significant increased
in the compressive modulus and strengths of the scaffold
[10]. Overall, the incorporation of HA nanoparticles into the
porous PHBV scaffolds enhances compressive mechanical
properties of the scaffolds, which is beneficial for bone tissue
engineering.

3.2. Bioactivity and Cellular Responses. The cell adhesion
to the surface of PHBV, PHBV/HA, and PHBV/HA/Col
scaffolds was examined after 4 hours, 1 day, and 2 days
incubation. Cells were stained with a cell-permeable green
fluorescent dye (calcein AM) to observe cell adherence and
cytoplasmic spreading. The morphologies of osteoblasts on
the surface of the three scaffolds are shown in Figure 5. Few
osteoblast cells adhered to the composite scaffolds after 4
hours of incubation (Figure 5(a), 5(b), 5(c)) and some cell
spreading was also observed after 1 day (Figure 5(d), 5(e),
5(f)) or 3 days (Figure 5(g), 5(h), 5(i)) of incubation. How-
ever, the osteoblasts adhered more quickly to the collagen-
immobilized PHBV/HA scaffold than the PHBV/HA and

PHBV scaffolds. This result suggests that collagen immobi-
lization improves cell adhesion to the surface of PHBV/HA
scaffolds. Figure 6 shows the proliferation of MC3T3-E1
cells cultured for 3 days on the composite scaffolds. The
cell proliferation on the porous PHBV/HA/Col scaffolds
was significantly (P < 0.05) higher than those on the
PHBV and PHBV/HA scaffolds due to the immobilization
of collagen. Figure 7 shows images of the cytoskeletal (actin)
staining of osteoblasts cultured for 3 days on the PHBV
(Figure 7(a)), PHBV/HA (Figure 7(b)), and PHBV/HA/Col
(Figure 7(c)) composite scaffolds. Actin filaments are shown
in red, and the nuclei are shown in blue. The cells cultured
on the PHBV scaffold slightly expressed actin filaments.
However, on the PHBV/HA scaffold, the cytoskeletons were
organized (Figure 7(b)). On the 20 wt % HA scaffold, actin
was more clearly organized with stress fibers (Figure 7(c)).
Figure 8 shows the SEM images of osteoblasts cultured on
PHBV, PHBV/HA, and PHBV/HA/Col scaffolds. After 5
days of culture, osteoblasts on the PHBV scaffolds were still
isolated (Figure 8(a), 8(b)), whereas cells on the PHBV/HA
scaffolds had formed a cytoplasmic web (Figure 8(c), 8(d)).
However, the PHBV/HA/Col scaffolds were covered by an
almost complete layer of osteoblasts with an almost flattened
morphology (Figure 8(e), 8(f)). These results suggest that
collagen chemically immobilized on PHBV scaffolds could
provide a more conducive environment for cell growth.
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Differentiation of osteoblast cells is one of the key
processes for bone regeneration. The in vitro differentiation
of MC3T3-E1 into osteoblastic phenotype was qualitatively
observed using ALP staining. In this study, ALP activity
was determined as an indicator of osteoblastic differenti-
ation of MC3T3-E1 cultured on PHBV, PHBV/HA, and
PHBV/HA/Col composite scaffolds for 16 days after cell
culturing. As shown in Figure 9, the amount of ALP synthe-
sized by the cells cultured on the PHBV/HA/Col composite
scaffolds was apparently higher (blue spot in figure) than
those synthesized on the PHBV/HA and PHBV scaffolds.
Since ALP is one of the most exclusive proteins synthesized
by osteoblasts, the presence of ALP in MC3T3-E1 osteoblasts
which were cultured on PHBV/HA/Col composite scaffolds
could be used as the sole marker to confirm the osteoblastic
phenotype of the cells [36].

4. Conclusions

The composite scaffolds composed of the porous PHBV
and HA (PHBV/HA) were successfully fabricated by the
slat-leaching technique. Collagen was immobilized on
the surface of the porous PHBV/HA composite scaffolds
(PHBV/HA/Col) for improving cell adhesion, and prolifera-
tion. It was found, from the experiments of cell proliferation,
cytoskeletal organization, and alkaline phosphatase (ALP)
activity, that the porous PHBV/HA/Col composite scaffolds
showed a higher proliferation as well as a better production
of ALP. This result suggests that the porous PHBV/HA/Col
composite scaffolds have a high potential for use in the field
of bone regeneration and tissue engineering.
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[2] G. T. Köse, S. Ber, F. Korkusuz, and V. Hasirci, “Poly(3-
hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue
engineering matrices,” Journal of Materials Science, vol. 14, no.
2, pp. 121–126, 2003.

[3] G. Q. Chen and Q. Wu, “The application of polyhydroxyalka-
noates as tissue engineering materials,” Biomaterials, vol. 26,
no. 33, pp. 6565–6578, 2005.

[4] Y. Tokiwa and B. P. Calabia, “Degradation of microbial
polyesters,” Biotechnology Letters, vol. 26, no. 15, pp. 1181–
1189, 2004.

[5] M. Wang, Biomaterials and Tissue Engineering, Springer,
Berlin, Germany, 2004, Edited by D. L. Shi.

[6] L. J. Chen and M. Wang, “Production and evaluation of
biodegradable composites based on PHB-PHV copolymer,”
Biomaterials, vol. 23, no. 13, pp. 2631–2639, 2002.

[7] J. Ni and M. Wang, “In vitro evaluation of hydroxyapatite
reinforced polyhydroxybutyrate composite,” Materials Science
and Engineering C, vol. 20, no. 1-2, pp. 101–109, 2002.

[8] Y. Liu and M. Wang, “Developing a composite material for
bone tissue repair,” Current Applied Physics, vol. 7, no. 5, pp.
547–554, 2007.

[9] N. Sultana and M. Wang, “Fabrication of HA/PHBV com-
posite scaffolds through the emulsion freezing/freeze-drying
process and characterisation of the scaffolds,” Journal of
Materials Science: Materials in Medicine, vol. 19, no. 7, pp.
2555–2561, 2008.

[10] K. S. Jack, S. Velayudhan, P. Luckman, M. Trau, L. Grøndahl,
and J. Cooper-White, “The fabrication and characterization
of biodegradable HA/PHBV nanoparticle-polymer composite
scaffolds,” Acta Biomaterialia, vol. 5, no. 7, pp. 2657–2667,
2009.

[11] S. Dasgupta, “Surface modification of polyolefins for
hydrophilicity and bondability. Ozonization and grafting
hydrophilic monomers on ozonized polyolefins,” Journal of
Applied Polymer Science, vol. 41, no. 1-2, pp. 233–248, 1990.

[12] Y. G. Ko, Y. H. Kim, K. D. Park et al., “Immobilization of
poly(ethylene glycol) or its sulfonate onto polymer surfaces by
ozone oxidation,” Biomaterials, vol. 22, no. 15, pp. 2115–2123,
2001.

[13] J. O. Karlsson and P. Gatenholm, “Preparation and characteri-
zation of cellulose-supported HEMA hydrogels,” Polymer, vol.
38, no. 18, pp. 4727–4731, 1997.

[14] J. C. Park, Y. S. Hwang, J. E. Lee et al., “Type I atelocol-
lagen grafting onto ozone-treated polyurethane films: cell
attachment, proliferation, and collagen synthesis,” Journal of
Biomedical Materials Research, vol. 52, no. 4, pp. 669–677,
2000.

[15] K. Anselme, “Osteoblast adhesion on biomaterials,” Biomate-
rials, vol. 21, no. 7, pp. 667–681, 2000.

[16] J. Dobkowski, R. Kolos, J. Kaminski, and H. M. Kowalczynska,
“Cell adhesion to polymeric surfaces: experimental study and
simple theoretical approach,” Journal of Biomedical Materials
Research, vol. 47, no. 2, pp. 234–242, 1999.

[17] H. B. Lin, C. Garcia-Echeverria, S. Asakura, W. Sun, D. F.
Mosher, and S. L. Cooper, “Endothelial cell adhesion on
polyurethanes containing covalently attached RGD-peptides,”
Biomaterials, vol. 13, no. 13, pp. 905–914, 1992.

[18] A. Dekker, T. Beugeling, H. Wind et al., “Deposition of
cellular fibronectin and desorption of human serum albumin
during adhesion and spreading of human endothelial cells on
polymers,” Journal of Materials Science, vol. 2, no. 4, pp. 227–
233, 1991.

[19] J. P. Ranieri, R. Bellamkonda, J. Jacob, T. G. Vargo, J. A.
Gardella, and P. Aebischer, “Selective neuronal cell attachment
to a covalently patterned monoamine on fluorinated ethylene
propylene films,” Journal of Biomedical Materials Research, vol.
27, no. 7, pp. 917–925, 1993.

[20] C. Mauch, A. Hatamochi, K. Scharffetter, and T. Krieg,
“Regulation of collagen synthesis in fibroblasts within a three-
dimensional collagen gel,” Experimental Cell Research, vol. 178,
no. 2, pp. 493–503, 1988.

[21] S. Nehrer, H. A. Breinan, A. Ramappa et al., “Chondrocyte-
seeded collagen matrices implanted in a chondral defect in a
canine model,” Biomaterials, vol. 19, no. 24, pp. 2313–2328,
1998.

[22] Y. Tesema, D. Raghavan, and J. Stubbs, “Bone cell viability on
collagen immobilized poly(3-hydroxybutrate-co-3- hydroxy-
valerate) membrane: Effect of surface chemistry,” Journal of
Applied Polymer Science, vol. 93, no. 5, pp. 2445–2453, 2004.



Journal of Nanomaterials 11

[23] H. M. Kim, W. P. Chae, K. W. Chang et al., “Composite na-
nofiber mats consisting of hydroxyapatite and titania for
biomedical applications,” Journal of Biomedical Materials
Research B, vol. 94, no. 2, pp. 380–387, 2010.

[24] M. Yamaura, R. L. Camilo, L. C. Sampaio, M. A. Macêdo,
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