
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


1 

 

 

 

High-volumetric-energy-density redox-active 

polymer batteries 

 

 

 

 

Minsun Kang 

 

 

 

Department of Energy Engineering 

Graduate School of UNIST 



2 

 

 

 

High-volumetric-energy-density redox-active 

polymer batteries 

 

 

 

A thesis 

submitted to the Graduate School of UNIST 

in partial fulfillment of the 

requirements for the degree of 

Master of Science 

 

 

Minsun Kang 

 

 

 

6. 17. 2015 of submission 

Approved by 

 

_________________________ 

Major Advisor 

Hyun-Kon Song  



3 

 

 

 

 

High-volumetric-energy-density redox-active 

polymer batteries 

 

Minsun Kang 

 

 

This certifies that the thesis of Minsun Kang is 

approved. 

 

6. 17. 2015 of submission  

 

 

 

___________________________ 

Advisor : Hyun-Kon Song 

 

___________________________ 

Tae-Hyuk Kwon 

 

___________________________ 

Soojin Park 

 

 



4 

 



5 

 

Abstract 

 
Lithium ion batteries (LIBs) have conquered the energy storage device market due to its high energy 

densities. Even higher densities are being pursued as LIBs’ applications are extended from small 

devices to larger ones including electric vehicles and energy storage devices. Energy densities (EDs) 

can be considered from two different bases: mass and volume. Volumetric EDs should be emphasized 

in space-limited situations even if gravimetric EDs are more considered in literatures. Here we 

demonstrate lithium metal | redox-active polymer batteries showing high volumetric EDs. 

Polyvinylcarbazole (PVK) was used as an organic redox-active material while polyvinylidene fluoride 

(PVdF) and carbon black were used as a binder and a conducting agent respectively. The high 

volumetric EDs were achieved by spray deposition that we emphasize as a novel electrode-fabrication 

process in this work. The mixtures of the electrode components in solvents were spray-deposited on 

current collectors. Tiny droplets (size = 50um) containing the components were generated from 

nozzles. Solvent of the droplets were rapidly evaporated during the time of flight as well as when they 

met heated current collectors. The components originally included in the droplets were densely 

packed on the current collectors. The electrode densities achieved by the spray deposition were 

several times higher those of conventional blading methods. Accordingly, several times higher EDs 

were obtained from our lithium metal | redox-active polymer cells when compared with the cells 

prepared by blading methods. The volumetric ED gains overwhelmed the loss of porosity leading to 

mass transfer problems so that the volumetric EDs of spray-deposited electrodes were higher even at 

high rates than those of bladed electrodes. We expect that the spray deposition method is appropriate 

for preparing all-polymer-flexible batteries while conventional inorganic materials can be deposited 

by the method. 
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1. Introduction 

 

1.1 Lithium ion batteries 

Fossil fuels bring environmental problems such as emission of CO2 which contribute to global 

warming in earth. Hydrologic cycle changing, global climate problems come out an issues. Also 

shortage of fossil fuel deposits causes fluctuation of price.1-2 To solve these problems, environmental-

friendly energy technologies are required. Green energy like solar and wind velocity will be main 

energy of industry and living before long that is unlimited resources and eco-friendly.3-4 

Green energy sources could be stored in batteries as chemical energy which converse to 

electrical energy when using electric devices (Figure 1.1). Among batteries, Li-ion batteries (LIBs) 

are outstanding in energy density of 150Whkg-1 so lots of energy could be stored. Li-ion batteries are 

composed main four materials like cathode, anode, separator and electrolytes. Cathode materials 

includes lithium cobalt oxide (LCO), lithium manganese oxide (LMO) and Lithium iron phosphate 

(LFP) while the most representative and widely used anode material is graphite.5-6 

 

Figure1.1. Energy problems by using fossil fuels and the utilization of Li-ion batteries. 
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There is principle of LIBs. When charging state, Lithium ions come out from the LCO and 

go to graphite through electrolyte and separator. In electric wire, electrons also move to anode parts. 

Lithium ion intercalated in layered structure of graphite. Due to adequate space between layers, 

lithium ion could remained stable in graphite. The potential gap between cathode and anode become 

large and then energy could be stored in batteries at open circuit state. When connecting the 

application, electrons flow through electric wires in application.7-8 

Li-ion batteries (LIBs) are divided in terms of its size. Small size used to mobile application 

such as cellphone, notebook and tablets. Medium are used to electric vehicle. Large size are using to 

energy storage system (ESS). Due to their suitable performances, Li-ion batteries have been 

commercialized at portable devices long before and aggressively dominated market filed of electric 

vehicles (EV) and energy storage system (ESS).  

EV is attracting as green cars in global market and the scale will be 20 percent increase 

annually. ESS market also will be fast growing as advanced country have a lot of interest and 

developed for the third industrial revolution. The requirement that Li-ion batteries completely settle 

down is low cost, safety, abundant component and prolonged cycle life. Also energy density should be 

developed more and more.         

 

 

` 
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1.2 Organic electrode batteries background 

Inorganic electroactive materials such as lithium transition metal oxides have been widely used as 

cathode materials for LIBs. Many efforts have been devoted to increasing their capacities and 

stabilizing their structures during repeated charging/discharging operations for guaranteeing longer 

discharging time and more operation frequencies of LIBs.9-10 Transition metal such as cobalt in the 

inorganic cathode materials causes concerns about their limited resources and environmental pollution 

issues. 

On the other hand, organic materials have flexibility which is come from intrinsic elastic 

property of polymer and low cost effect. We could obtain certain characteristic by synthesizing 

various functional groups.11 Numerous experiments have been tried to apply redox-active organic 

materials to electrode active materials in batteries for several decades.12-13 Redox-active organic 

materials have been developed since dichloroisocyanuric acid (DCA) as a N‐chloro compound was 

reported in 1969. Conducting polymers and organic sulfides were comprehensively studied in 1980s 

to 1990s. Nitroxyl radical polymers and conjugated carbonyl compounds have been ongoing 

popularly nowadays.14 In aspect of electrochemical performances organic material electrodes have 

high density, power density and cycling stability. However it is still early stages for commercialized 

batteries.15    

            

Figure 1.2. The comparison of (a) conventional secondary batteries and (b) organic electrode batteries. 

A LIB cell is composed of two electrodes (a cathode and an anode) with electrolyte and 

separator (Figure 1.2a). The redox-active materials of different reduction potentials were used for 

(a) (b) 
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developing electromotive forces after charging. The cells are charged by oxidizing the material of 

more positive reduction potential and reducing the material of more negative reduction potential. The 

oxidized and reduced materials during charging process are called cathode and anode, respectively. 

According to the basics of electrochemistry, the naming is not exactly correct because the electrodes 

on which oxidation proceeds should be called anodes. However, cathodes and anodes are defined 

when the cells are discharged in cases of energy storage devices. While the electrochemical reactions 

proceed, lithium ions are released from the cathodes because lithium ions are not attracted any more 

by transition metals that are oxidized. At the same time, reduced anode materials experience 

deficiency of lithium ions so that lithium ions are incorporated to the anode materials. Therefore, 

electrochemical reactions in LIBs involve lithium-ion-relevant faradaic reactions in addition to charge 

neutralization of the ions as the non-faradaic process.  

As the organic counterparts of the conventional inorganic materials for cathodes, Redox-

active organic materials can be also used as active materials in the same configuration only if they 

have reduction potentials different from those of the other electrode (Figure 1.2b). They can replace 

inorganic cathode materials, anode materials and both of them. The property of organic redox-active 

materials most distinguished from its inorganic counterparts is that they are based on redox-activities 

that are not relevant to lithium ions. In other words, the lithium ions can be replaced by other cations, 

playing a role of charge neutralization. Only nonfaradaic (NOT faradaic) processes are involved from 

the viewpoint of lithium ions while electroactive sites of the organic materials are surface-confined on 

electrodes. Therefore, there is every possibility that charge transfer kinetics of the organic are more 

facile than that of the inorganic.16 In addition to the fast kinetics leading to high power in 

electrochemical cells, merits of organic compounds and polymers as electroactive materials for energy 

storage devices could have structure diversity, flexibility and sustainability. 

 The redox-active organic materials are classified into three types according to the faradaic 

reactions of their as-received states (Figure 1.3). N-type materials are reduced while P-type ones are 

oxidized. Bipolar materials can be both reduced and oxidized. Incorporation or influx of cations (Li+, 

Na+, K+ and H+) and anions (ClO4-, PF6
-, BF4

-, TFSI- ) to electrodes are required for keeping neutrality 

in N-type and P-type materials, respectively. When batteries are constructed based on organic 

materials for both electrodes, N-type and P-type materials should be paired.17 

 The demerit points that are exist on redox-active organic materials. The organic polymer are 

dissolved in electrolyte of batteries that is fatal blow as electrode active materials. Moreover low 

electronic conductivity of polymer interrupts efficient flow of electrons and ions in circuit of battery 
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system. Although enormous research have been investigated on various organic materials, it is hard 

work to get over these problems perfectly. In the future, we need to reduce candidates for organic 

electrode materials and focus on possibility about commercialization of organic electrode redox-active 

materials.  

  

 

Figure 1.4. The main four type of organic electrode materials. 

 In several decades, a lot of organic electrode materials have been investigated. And there are 

main four types in structures and redox reaction mechanisms (Figure 1.4).18 First is conducting 

polymers that have electric conductivity in conjugated polymer structures. Second, organosulfides 

have sulfur single bond in materials which have high theoretical capacity by sulfur atom. Third, 

nitroxyl radical has reactive free radical with high reaction. Finally, conjugated carbonyl compounds. 

It has carbonyl group. Conducting polymer and organosulfide compounds have been investigated 

from 1980 to 2000 and nitroxyl radical and conjugated carbonyl compound have been extensively 

studied from 2000 (Figure 1.5).  
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Figure 1.5. The history of organic electrodes.17 
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1.2.1 Sulfur compounds 

 

Figure 1.6. The molecular structure of sulfur compounds and mechanism of it. 

 

Organosulfur compound is composed of S-S bond. The mechanism of redox reaction is Figure 1.6. 

Di-sulfur bond get two electrons that is reduction state. The bond is broken into two sulfur then 

thiolate anion occurs. Lithium ions close to this thiolate anion to compensate charged states. A reverse 

way would be same. When losing two electrons, it is oxidation state. Sulfur atoms are combined 

together and Lithium ions are get out from the sulfur bond. This is the bond-cleavage/formation 

mechanism which could get two electrons in redox reaction.14, 19  

 

Figure 1.7. The structures of main chain type organosulfur polymers.13 

 There are several types in organosulfur compounds. First, it is main-chain type organosulfur 

polymers (Figure 1.7). This is first class of organosulfur cathodes that have disulfide bonds in the 

main chain. It is capable of delivering high energy density because sulfur atom has high capacity 

compounds.20 The most popular materials is 2,5-dimercapto-1,3,4,-thiadiazole (DMcT). However it 

has low redox reaction rate which need operating at high temperature. DMcT also is not electrically 
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conducting then electro-catalyst was added to accelerate the sulfur bond-cleavage/formation 

mechanism.21-24  

 

Figure 1.8. Schematic diagrams for discharged and charged state of DMcT-Pan.25   

 

 As electro-catalyst, polyaniline which is conducting polymer was used. When joining DMcT 

and polyaniline, reversible electron transfer reaction could be possible (Figure 1.8). Polyaniline 

oxidized DMcT in charged state and reduced DMcT in discharged state that means two materials 

exchanged the electrons resulting in high redox reaction rate. Then the capacity of this cell was 

186mAh/g satisfying 80% of theoretical capacity.25 As electro-catalyst, PEDOT conducting polymer 

was used in another paper which resulted more electro active reactions.26-27 

 

 Figure 1.9. The structures of side chain type organosulfur polymers.13 
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However, main chain type organosulfur polymer such as DMcT was dissolved in electrolytes. 

Thiolate anion was soluble in common electrolyte making capacity fading.28-30 Second type occurred 

that was side-chain type organosulfur polymers (Figure 1.9). This is second generation of 

organosulfur electrode. Disulfide bonds is located at the side chain. When redox reaction occurs, main 

chain is not broken. It leads to capacity retention and recombination efficiency.31 Different type of 

polyamide was compared that was cyclic polyamide (DTA) as side chain type and linear polyamide 

(GTA) as main chain type. As a result, DTA or side chain type organosulfur compounds showed 

higher capacity retention that GTA or main chain type (Figure 1.10). Because side chain types was not 

divided into electrolytes.26         

 

   

 

 

 

 

 

 

Figure 1.10. The energy density of DTA and GTA polymers.26 
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1.2.2. Conducting polymers 

Conducting polymer has been used for batteries and capacitors.32-34 Common polymers do not have 

conductivity. However electron could move along polymer backbone in conducting polymers. Three 

mans got nobel prizes in 2000 for discovering and studying these conducting polymers. One of them, 

Shirakawa synthesized a polyacetylene and the others, Heeger and MacDiarmid put iodine halogen 

into polyacetylene (Figure 1.11).Then polyacetylene as insulator became conductive.35-42 Figure 1.13 

shows conductivity of the materials which is divided into three parts as insulator, semiconductor and 

metal. The conductive rage of conducting polymers is from insulator to metal. 

 

Figure 1.11 Three man who got novel prize for conducting polymers.  

 

 Electric conductivity means that electrons could move out of atom which is determined by 

electronic structure. In atomic model, there is one nucleus and electrons move around it. Electrons 

exist in several electron shells with each specific energy level. When two atoms meet, energy levels in 

one atom and another atom overlap together then bonding of three atoms is also possible. If a large 

number of atoms meet, the size of energy level is broad which causes continuous energy level. It 

called energy band. In conducting polymer like polyacetylene, carbon atoms and hydrogen atoms 

meet and make continuous energy band. This band consists of three parts that is valance band, 

conduction band and band gap. Valance band is filled with electrons with low energy while 

conduction band is empty. Band gap means energy gap between valance and conduction band. The 

electrons in valance band could not move since it is full. If electrons in valance band get energy, it 

could jump to the conduction band where electrons move easily. To reach for conduction band, 
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electrons have energy surpassing the band gap. Actually, original conducting polymer have big band 

gap so it is hard to make electrons jump compared to metal and semiconductor.  

 

Figure 1.12 Structure of polyacetylene polymer. 

 

The structure of conducting polymer is conjugated which is alternating a single bond and 

double bond (Figure 1.12). Bonds in benzene molecule are mixed and become equal with all same 

length which called resonance. Bonds in conducting polymer are not resonance and it is localized. 

And Conducting polymers have amorphous morphology so electrons have to jump from one chain to 

next chain. So there is not conductive itself. 

 The answer of making conductivity in polymer is doping which means putting impurities to 

materials. Oxidation and reduction reaction occurs from doping. When putting iodine molecule into 

the polyacetylene, iodine molecule attracts electrons from polymer chain and get electrons. Then 

polymer chain become positive charged state that is conductive. To explain doing for classic band gap 

theory is not possible. Instead of band gap theory, polaron band model appears. Radical is one 

unpaired electron. After oxidation, radical cation is obtained in polymer that polaron. The unpaired 

electron moves easily along double bond in conducting polymer while positive charge is fixed. There 

is electrostatic attraction bewtween iodidie ion and positive charge so that iodide ion makes electron 

stop. To help positive charge move, a high concentration of counter ions is required. Putting more 

iodide ion is attracting positive charge then polaron cloud move to close counter ions. When 

explaining polaron as band gap, band gap need to be modified. After oxidation, polymer forms a 

polaron which making certain band in the middle of band gap. This called polaron band. Energy level 

gap among valance, polaron and conduction band becomes small than first. Electrons move easily 

through jumping bands.  

http://en.wikipedia.org/wiki/File:Trans-(CH)n.png
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Figure1.13. Various kinds of conducting polymer and its properties.17 

 The merit of conducting polymer is light weight and not expensive and easy to process. 

When it applied to active material for batteries, electric conductivity and redox activity are improved. 

However, energy density, cyclability and coulombic efficiency show low performances. It has been 

used as electroactive materials and conduction additive for rechargeable batteries.43-44  

 

Figure1.13. Conductivity of conducting polymers and the other materials. 
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1.2.3. Free radical compounds 

Radical is unpaired electron in molecular. Compared to occupied electrons, radical is unstable position. 

The polymer having radical site in polymer is radical polymer that is also unstable and reactive 

property.45-46 Radical polymer is composed of two parts which are pendant group and polymer 

backbones. 

Figure1.14. Redox mechanisms of nitroxide radical compounds. 

 

In pendant group, there is a redox reaction site where reduction/oxidation reaction occurs. As 

pendant group of free radical compounds in organic electrodes, nitroxyl and phenoxyl group are used 

a lot typically that are less reactive in unpaired electrons. About active materials, appropriate reactive 

degree is needed. Not too much and little. Radical electron is originally reactive, so among them less 

reactive pendant should be used to control the degree of it such as nitroxyl and phenoxyl group 

(Figure 1.15). These groups have conjugated structure which has resonance effect and substituent 

groups have sterically hindered effect also.  

 

Figure. 1.15. Schematic diagrams for nitroxyl and phenoxyl strucures. 

Commonly nitroxyl radical compounds are more commercialized nowadays in papers then 

the Figure 1.15 explains the redox mechanism of it. Generating radical species, reduction/oxidation 

occurs in nitroxide-based polymers. In reduction state, nitroxide group gets electrons then become 

oxoammonium cation that is positively charged. In oxidation state, it loss electrons then become 
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aminoxyl anion which is negatively charged.47 These radical polymers could become both positively 

and negatively charged state (Figure 1.14). Using n-and p-doping mechanism, bipolar redox-active 

radical polymer was applied to rechargeable system (Figure1.16).48 Positively charged radical 

polymer had redox reaction at 1.4V and negatively charged radical polymer had redox reaction at -

1.0V which was applied to cathode and anode respectively. Using the potential gap between them, 

batteries could be made in same materials.49  

 

Figure1.16. Redox reaction mechanisms and cyclic voltammograms of nitroxide radical active 

materials.48  

 

 Polymer backbones act connecting pendant groups which should achieve properties of 

insolubility because organic electrode materials are usually dissolved in electrolytes. To improve ionic 

conductivity, affinity to electrolyte is important. Considering main two factor and others like process 

ability and mechanical strength, PMA (poly methyl acrylate) polymeric backbone was selected a lot in 

papers. Among pendants group, TEMPO (Poly 2,2,6,6-tetramethylpeperidinyloxy-4-yl methacrylate) 

was used a lot as nitoxoxide group (Figure 1.17). In 2002, using TEMPO with PMA backbone, 

nakahara made organic batteries.50 Theoretical capacity of TEMPO was 111mAh g-1 and redox 

reaction plateau was 3.5V (versus li/Li-1). As battery electrode materials, TEMPO had high rate 

capability and good cyclability due to its fast kinetics.51-56 However poor electric conductivity of 

polymers caused adding 50% carbon to electrode composite. To improve conductivity, single-walled 

carbon nanotubes (SWNTs) were added into TEMPO electrode composite as conductive agents.57       
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Figure1.17. Stable radical pendants and backbones used as redox-active materials.16 
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1.2.4. Carbonyl compounds 

The carbonyl compound is last material in organic electrode materials which contain carbonyl group 

(C=O) in functional group of polymer. In carbonyl group, redox reaction occurs. There is a 

mechanism of redox reaction. One electron goes into carbonyl compounds then oxygen atom gets 

negatively charged where carbon-oxygen double bonds become single bonds. Lithium ions naturally 

stick to anionic oxygen to compensate charged state. When oxidizing, anionic oxygen lose electrons 

and become carbon-oxygen double bond again. Also, lithium ion is out of carbonyl compounds. In the 

presence of R group which is stabilizing role in molecule, the carbonyl compounds have reversible 

one-electron reaction. Quinone-type structure which has two carbonyl groups with aromatic molecule 

has reversible two-electron reaction. Each carbonyl group undergoes redox reaction respectively.58-59 

Enhancing structural stability for adding aromatic molecule, Quinone structure has been popular in 

carbonyl compounds electrode materials.60-68 

Figure1.18. Redox mechanism of carbonyl compound and quinone group. 

 

 Small organic molecules of carbonyl compounds such as quinone and dianhydried group 

have appropriate capacity and energy density. However, organic molecule is dissolved into 

electrolytes causing capacity fading and bad cycle performance. To complement dissolution of 

molecule, solid and polymer electrolytes were applied to batteries system though it did not achieved 

complete capacity performance. Organic molecules were synthesized to organic polymers to prevent 

dissolution problem. The main merit of organic polymers of carbonyl compounds are improving 

insolubility for electrolytes resulting in high cyclability, rate capability and coulombic efficiency. The 

polymeric backbone connects each molecule and make enormous massive which is not easily dissolve. 

The demerit of these polymeric carbonyl compounds is also exists. There is charge repulsion 

interaction between pendant units and fundamental insulation of polymer making low conductivity. 
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 Among quinone type structures, anthraquinone based polymer was appled to cathode 

materials for rechargeable lithium batteries (Figure 1.19). Polyanthraquinone (PAQS) was 

synthesized from dichloroanthraquione (DCAQ) in NMP solution at 200℃. Compared to organic 

molecules, PAQS had high coulombic efficiency cyclability and rate capacbility in battery 

performances.63 

Figure 1.19. Discharge capacity of AQ and PAQS.63 

 

 In recent, there have been a lot of papers about carbonyl compounds as cathode materials for 

stable cyclability and rate capability in rechargeable batteries. The main problems of it are insolubility 

and conductivity of polymer. To improve these properties, many trials have been done in three 

directions about molecular engineering, nanostructured organic materials and quasi-solid electrolyte. 

In molecular engineering, Yanliang Liang putted other hetero atoms such as oxygen, sulfur, nitrogen 

atoms into anthraquinone materials (Figure 1.20).69 That heteroatom molecular engineering changed 

the LUMO and HOMO energy causing difference of redox voltage, morphology and ion diffusion. In 

a graph of reduction potentials of materials, PID and BFFD polymer had highest point which means 

LUMO energy. Discharge capacity showed DFFD and PID was best among other rused organic 

compounds. Also when looking at SEM image, the mixture of BFFD and PID was well blended 

together that showed interpenetrating structure. In other hands, BDTD and AQ was not mixed 

crystalizing itself like particles and rods. Electronic/ionic conductivity performances of BFFD and 

PID went up. Finally, the important properties in batteries were affected by heteroatoms in carbonyl 

http://endic.naver.com/search.nhn?sLn=kr&query=%E2%84%83&searchOption=all&preQuery=&forceRedirect=N
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groups. This paper showed that we could control these properties by synthesizing organic carbonyl 

compounds. 

 

 

Figure1.20. Molecular structures of fused aromatic compounds, reduction potential and discharge 

capacity of them.69 

 

 Carbonyl molecules were made to nano-size structures such as nanosheets and 

nanoparticles.70 The organic molecules, DHTPA had redox reaction of both negatively charged state 

and positively charged state at 0.8V and 2.6V respectively with 4 electrons movement. The bulk 

structure of DHTPA was changed into nanosheet and nanoparticles. Figure 1.21 shows that the 

capacity performance of nanosheets molecule was best because nanosheets could get numerous active 

sited in structure then facile electric/ionic transfer was possible. 
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Figure1.21. Electrochemical performances and SEM images of nanostructures in DHTPA.70  

 

 The liquid electrolytes in carbonyl cathode electrode batteries were replaced to gel polymer 

electrolytes (Figure 1.22).71 Calix materials were used which was phenol based oligomers. When it 

was oxidized, 8-electrons fully have redox reaction with low hindrance of quionone molecules. Gel 

polymer electrolytes were that PMA (poly methacrylate) and PEG (poly ethylene glycol) hybrid 

electrolytes. Gel polymer electrolytes were PMA and PEG hybrid electrolytes. Polymer chain 

segments is mobile that lithium ion was solvating. PMA/PEG gel electrolyte was 20 folds low 

conductivity compared with liquid electrolyte. But still it could be used in rechargeable batteries. The 

redox potentials was 2.64V (versus Li/Li+). The capacity is 422mAh g-1 and coulombic efficiency is 

over 95% in 100cycles at 0.2C. 

 

Figure 1.22. Calix structure and PMA/PEG hybrid electrolytes.71 
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 Summarizing organic electrode compounds, organosulfur materials have high capacities 

about 300-800mAh g-1 and low cyclability and rate capability. Radical materials have good rate 

capability and low capacity. Finally carbonyl materials have stable cycling and low rate capability. 

Most organic compounds are electric insulators which need 30-80% conductive carbon. Dissolution of 

active materials in electrolytes causes capacity fading. Among organic electrodes compounds, the true 

material satisfying all of high energy/power density and cycling stability simultaneously has not been 

existed so far. To find special advantage compared to inorganic electrode material, we need to 

investigate these polymers by synthesizing functional groups in the future.          

 

Figure 1.23. The voltage and specific capacity windows for organic electrode materials. 
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1.3 Poly vinyl carbazole (PVK) 

One of the organic electrode polymer is non-conjugated redox polymers. Poly (N-vinylcarbazole) 

(PVK or PVCz) is a series of several non-conjugated pendant-type polymers. It has non-conjugated 

alkyl backbones and redox point of carbazole pendent. PVK is a photoconductive polymer among 

several pendant-type polymers. In the carbazole moiety, there are many π-bonds of benzene ring that 

can be stacked with each polymer.72 The structures of PVK is very stable. And between π-bonds, there 

is conduction in PVK polymer, so it has fast kinetics. Also PVK has reduction/oxidation reaction in 

carbazole which is appropriate to positive organic material in rechargeable batteries (Figure 1.3.1). 

PVK is not dissolved in electrolyte in conventional Li-ion batteries. Theoretical capacity of PVK is 

138mAh/g and the redox potential is 3.7V vs Li/Li+. Attractive organic materials for lithium-ion 

batteries at positive electrode. 90 percent of carbarzole pendant undergo redox reaction. 

 

 

Figure 1.3.1. PVK redox mechanism. 

 In 2012, Masaru Yao recognized the electrochemical property of PVK polymer and used it as 

positive electrode materials applied in rechargeable lithium batteries.72 The cycle-life performances 

are stable and show 120mAhg-1 with 20mAg-1 current density (Figure 1.3.2). Also, PVK was 

accessed as binder in LFP cathode electrode due to adhesion and cohesion property of PVK. 
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Figure 1.3.2. The SEM image of PVK and cycle-life performance of PVK electrode.72 

In 2014, using PVK as cathode in Li-ion batteries, Jieun Kim changed PVdF binder to 

PEDOT which has electronic conductivity itself.73 For better performance in batteries, ionic pathway 

and electric pathway should be favorably connected which was satisfied by using PEDOT polymer. 

The active site of PVK polymer was well blended with PEDOT polymer without binder and the single 

lithium-ion cell achieved high-rate capacity. Figure 1.3.3 shows the capacity performance of 

electrodes using 1% PEDOT was superior to the 10% PVDF one at 100C-rate.  

        

Figure 1.3.3. The capacity of using (a) 10% PVdF binder and (b) 1% PEDOT binder in PVK 

electrode.73  
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1.4 Spray method 

 

Figure 1.4.1 The picture of (a), (b) spray method and (c), (d) blade method.   

Two techniques were selected for fabricating electrodes. First is doctor blade that is conventional 

method for lithium ion batteries electrodes. Second is spray deposition that equipped ultrasonic 

machines. Doctor blade method is simple process to fabricating electrodes and could get the flat 

surface with some thickness. Spray deposition is easy method to make various surface of electrode 

like curved surface or fabric. Controlling the thickness is possible by changing cycle number in 

equipment. With sonic machines, the solution would be more miscible (Figure 1.4.1).   
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2. Experimental 

2.1 Cell preparation 

Composite were prepared as working electrodes of cathode by doctor blade and spray equipment. 

Electrode mixture were composed of PVK as active material, PVdF or PEDOT:PSS as binder and 

Super P as conductive agents which were dissolved into N-methiyl-2-pyrrolidone (NMP) solution. 

The composition ratio of PVK, PVdF and carbon black was 50 : 10 : 40 while the composition ratio of 

PVK, PEDOT:PSS and carbon black is 50 : 1: 40. In spray equipment, liquid mixture were contained 

in syringe and sprayed out with constant speed of flow rate on Al foils. The cycle number of spray 

method was 30cycles with 0.3mg g-1 active materials mass. Flow rate of solution in syringe to spray 

nozzle was 150ul/min. The temperature of bottom heater below Al foils was 120℃. By doctor blade 

coater, electrode mixture which had viscous property was pasted on Al-foils and setting thickness of 

doctor blade was 130um. Electrode mixture dried under vacuum at 120℃ for 2hr. 

After making each electrodes, half coin cells were manufactured by piling a working 

electrode, separator and lithium metals as counter electrode in these orders. 1M LiPF6 in ethylene 

carbonate/dimethylcarbonate (1 : 1 v/v EC : DMC) was used for electrolyte in coin cells.  

 

2.2 Electrochemical analysis 

By using a potentiostat, cyclic voltammogram and impedance spectroscopy were analyzed (Biologic, 

VMP3). The coin cells were galvanostatically cycled between 2.0V and 4.7V voltage range versus 

Li/Li+ (WonAtech, WBCS3000). The current was 1C that was defined as 120mA g-1 based on active 

material mass. 

 

2.3 Physical properties 

The electrode morphology was observed by scanning electron microscopy (SEM; Hitachi, S-4800). 

Conductivities of composite were measured by four-point-probe equipment (Dasol, Rs8-1G). 

Thickness of composite was measured by Vernier caliper.  
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3. Result & Discussion  

 

Figure 3.1. Schematic illustrations of fabricating the electrodes by (a) Doctor blade and (b) Spray 

deposition. 

 

Figure 3.1 shows schematic illustrations of fabricating the electrodes by doctor blade and 

spray deposition. Left figure is about electrodes making by doctor blade. Mixtures containing certain 

amount of solvent were pasted, when blade cut are pushed horizontally. With sharped blade cut, 

doctor blade make surface of mixtures flat. After fabricating, the electrode was put into the vacuum 

oven and dried. Right figure explains how ultrasonic spray deposition equipment make electrodes. 

The mixtures with low viscosity went into the one tube and reached the ultrasonicated point where the 

mixtures blend together well. Then getting out of the tube, the liquid of mixtures sprayed with tiny 

droplets (=50um) on the current collector. With nitrogen gas pressure, force was added vertically. 

Solvent of the droplets were rapidly evaporated during the time of flight as well as when they met 

heated current collectors. The components originally included in the droplets were densely packed on 

the current collectors.                 
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Figure 3.2. The top view of motion when electrode is fabricated by (a) Doctor blade and (b) Spray 

deposition.  

 

Figure 3.2 indicates the top view of motion when electrode is fabricated by two different 

methods. First figure is the electrode using doctor blade technique (Fig 3.2a). The mixture were 

pushed with one direction at once. In spray deposition, the nozzle of spray equipment moved like 

Hangeul consonant ‘ㄹ’ with fixed speed programmed. There is a constant thickness for each cycles 

due to perfect evaporation of solvent. It can be easier to estimate the thickness and loading weight of 

electrode which is practical compared to doctor blade. Regarding doctor blade, thickness of electrode 

that finish drying in vacuum oven are thinner than origin which result from both fluidity of pasted 

mixtures and evaporation of solvent. On the other hand, the nozzle of spray equipment moved in order 

of designated coordinates (X, Y, Z). The size of electrodes could be changed from small to big area. 

Also it can be possible to spray out the diverse surface (ex. fabrics, curved object) since force of spray 

deposition is vertical, not horizontal. Spray deposition can be applicable to variable substrates of 

electro equipment.   
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Figure 3.3. The pictures of electrodes by (a) Doctor blade and (b) Spray deposition method. 

This is the picture of fabricated electrodes (Figure 3.3). Electrodes done by both spray 

coating and blade technique was well fabricated. It seems that the linear polymers of PVK and 

PEDOT:PSS or PVDF got tangled each other[ref]. Especially the polarity of respective polymer are 

same which means all of these polymers has polar property. Solvent of electrode was NMP that has a 

polar property and it dissolved PVK, PEDOT and PVdF. As we know ‘like dissolve like’ indicate that 

NMP or polar solvent dissolved polymers and then polymer also had polar property. About PVK, an 

amine atom pulled the other atoms around, making a difference of electronegativity between them. In 

PVdF, double fluorine atoms attracted highly a carbon atom and then asymmetry was occurred in that 

polymer unit, resulting in a big difference of electronegativity or polar property (Figure 3.4). 

Similarity, PSS polymer in PEDOT:PSS had enormous polarity coming from drawing of SO3- group. 

Therefore PVK polymers, PVdF binder and PEDOT, all had polar property and got high possibility to 

get blended together well with carbon black. Also, good adhesion property of PVK took a role to 

making electrodes. In addition, binder which was PEDOT:PSS or PVdF.  
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   Figure 3.4. The molecular structures of polymers in electrodes composite. 

 

 



35 

 

 

Figure 3.5. The SEM image of blade electrodes (a), (c) and spray electrode (b), (d) using PVdF binder. 

We can compare morphology of composite on electrodes (Figure 3.5). The thickness by 

spray deposition is nearly three times thinner than doctor blade. As you can see from the pictures, 

electrode composites using doctor blade have a lot of pores in inner parts while sprayed composites 

are densely stacked with little pores. About a view on adhesive property, electrode composite by spray 

deposition is easily stick to Al foil as well as composite each other. The adhesion have different causes. 

One of them is miscibility of components that is cohesion. The other is spacious contact area of binder 

with current collector and composites that is adhesion. When looking at the interface of Al foils and 

composites, spraying electrode have large contact points between them. However blading electrode 

have less contact points contrasting to spraying one due to lot of pores. About composites to 

composites, this could be equally applied. Spraying composite electrode has more strong interaction 

between composites than blading one.                
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Figure 3.7. Gravimetric capacity of (a) Blade electrode, (b) spray electrode using PVdF and (c) blade 

electrode, (d) spray electrode using PEDOT. 

  

When looking into views on gravimetric performance of potential profiles, we could explain 

the results with the morphology of electrode composites (Figure 3.7). About using PVdF binder, the 

capacity of blade electrode was 100mAh g-1 at 1C and 70mAh g-1 at 100C while the capacity of spray 

electrode was 82mAh g-1 at 1C and 40mAh g-1 at 100C. The decreasing capacity percent between 1C 

and 100C of blading one was about 30% and spraying one is 50%. The rate capability of blade 

electrode was better than spray one. About using PEDOT:PSS, the capacity of blade electrode was 

98mAh g-1 at 1C and 72mAh g-1 at 100C while the capacity of spray electrode was 95mAh g-1at 1C 

and 39mAh g-1 at 100C. The rate capability of blade electrode was also better than spray electrode 

when using PEDOT:PSS. The difference in performances results from two factors that were electronic 

pathway and ionic pathway. For a complete performance in batteries, electronic pathway and ionic 

pathway go together. However in our experiments, the conditions for electronic pathway were 

sufficient, since the composition ratio of conductive material, carbon black was forty percent. 

Electronic conductivity of electrode composites was optimized. Also, PVK polymers had intrinsic 

good kinetics due to pie-pie interaction when carbazole moieties were piled up. Through pie-pie 
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bonds, electrons moved fast among polymer chains. The affordable reason for bad performance at 

100C was ionic pathway. The spray electrode composites was three times dense so it had little pores 

in composites. While an hour was enough time that lithium ion could move into both composite that 

was the condition of 1C. 36 seconds was very short time for lithium ion to move into both composite 

that was the condition of 100C. Especially lithium ion movement was highly limited in spay electrode 

composites with little pores. Ionic pathway was less developed in spray electrodes for poor pores 

structure. Therefore, the rate capability of blade electrode was higher than spray electrode.      

 

Figure 3.8. Volumetric Potential profiles at 1C, 10C, 50C and 100C discharge rates (a) PVDF-Blade 

(b) PVDF-spray (c) PEDOT-Blade (d) PEDOT-spray. Active material density (dA) = 0.3 mg cm2.  

When calculating capacity as volumetric value, not gravimetric values the performance data 

were exchanged between them. Figure 3.8 shows potential profiles of each samples tested at various 

C-rates in volumetric capacity. For PVDF binder electrodes, the volumetric capacity of blade 

electrode was about 20mAh cm-3 at 1C while the spray electrode was 64mAh cm-3 at 1C. The 

volumetric capacity performance of spray electrode was three times bigger than blade electrode at 1C. 

Even at 100C, spray electrode was nearly doubles compared to blade electrode. Likewise for 
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PEDOT:PSS, the volumetric capacity of blade electrode was near 20mAh cm-3 at 1C while spray 

electrode was 38mAh cm-3 at 1C. The volumetric capacity of spray electrode was about twice bigger 

than spray electrode at 1C. The thickness of spray electrode was three times thinner than the blade one 

and these differences of thickness value affected volumetric capacity overall in cell performance.  

 

Figure 3.9. Capacity retention of electrodes using (a) PVdF and (b)PEDOT. 

 

Figure 3.9 showed capacity retention of each electrode at 10C during 500 cycles. The speed 

of 10C-rate was very harsh condition for battery cycle test. In using PVdF binder, the capacity 

retention of spray electrode was 90% while blade electrode was 84%. The capacity retention of spray 

electrode was better than blade electrode. In using PEDOT:PSS, the capacity retention of spray one 

was 95% while blade one was 88%. Also for PEDOT:PSS, the performance of spray electrode was 

better than blade electrode in capacity retention. When using PEDOT:PSS overall capacity retention 

was better than PVdF binder which means PEDOT:PSS was superior to PVdF as binder. Suppose that 

small amount of 1wt% PEDOT:PSS in composite could be helpful to lithiation/delithiation of ions 

when long cycle of charging/discharging compared to 10wt% PVdF binder. Anyway total two graphs 

showed that spray one is better than blade one. The outcome data results from the adhesion property. 
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Figure 3.10. The explanation pictures of adhesion property in blade and spray electrode. 

 

The adhesion property about polymers came from two factors. First was interfacial contact 

area and second was intrinsic adhesion force of polymer contents itself according to its functional 

groups. In Figure 3.10, the adhesion data between spray and blade electrode was compared, in same 

binder which means that all components in each electrode are same. The intrinsic adhesion force 

which came from the polymer was same. Therefore the interfacial contact areas only made effects to 

adhesion of electrodes that was directly connected to capacity retention. When looking into the 

interface between Al current collector and electrode composites, the amount of red line in blade 

electrode was more than spray electrode because spray electrode had bigger density than blade one. 

The red line indicated interfacial contact areas between current collector and electrode composite 

which means interfacial contact area of spray electrode was higher than blade one. Also it means 

adhesion between Al current collector and composites was bigger than blade. Also among electrode 

composite itself that is cohesion properties, spray one was better than blade one due to the difference 

of its density. These good adhesive properties bound electrode components well together then caused 

good capacity retention at long cycle life in spray electrode.     
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Figure 3.11. High rate capacity from 1C to 100C using PVdF binder at (a) gravimetric and (b) 

volumetric capacity. 
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Figure 3.11 shows the rate capability on various discharged rates in cells when using PVdF 

binder. Figure 3.11(a) express gravimetric capacity. The decreasing rate line of gravimetric capacity 

was similar in both spray and blade electrode until 10C, while gravimetric point of spray one was 

little higher. However after 20C in graph, the decreasing rate line of spray was nearly twice bigger 

than blade one. Previous data already shown that less developed ionic pathway in spray electrode 

composites caused fading capacity at high rate. In this graph, the property of ionic pathway in spray 

electrode affected properly from 20C-rate point compared to the value of decreasing rate in blade one. 

Before 20C point, the capacity was relatively affected by electric pathway property. The limitation 

boundary of ionic pathway and electric pathway which made effect on capacity was 20C point in PVK 

cathode electrode composite of battery system. 

When compared with capacity of electrodes at low rate from 0.1C to 1C, the decreasing rate 

was similar between spray and blade electrode which were affected by electric pathway property 

(Figure 3.12). In volumetric capacity, the value of spray electrode was four times bigger than blade 

electrodes calculating each density to gravimetric capacity.  

 

Figure 3.12. Low rate capacity from 0.1C to 1C using PVdF binder at (a) gravimetric and (b) 

volumetric capacity.  
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Figure 3.13. (a) Conductivity and (b) sheet resistance of PVdF binder and (c) Conductivity and (d) 

sheet resistance of PEDOT:PSS binder. 

 

Electric conductivities were measured in Figure 3.13. The electric conductivity of spray 

composite was 4.5mS cm-1 and blade one is 1.5mS cm-1 for PVdF binder. The conductivity was nearly 

three times bigger in spray composite than blading one because spray composite three times thinner 

than blade composite. The factors of thickness of composites directly affect its electric conductivity. 

The sheet resistance of spray electrode also exceed to blade. Due to its low porosity, spray electrode 

had bigger density which was plus factor for sheet resistance. This was why sheet resistance of spray 

electrodes was better.   

When using PEDOT:PSS binder, the electric conductivity of spray composite was also 

superior to blade composite. However, the sheet resistance of PEDOT:PSS binder electrode was 

different from the data of PVDF binder electrode. The PEDOT:PSS intrinsic property was added to 

the factors of sheet resistance in addition to its density. When using PEDOT binder to battery 

(c) (d) 
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electrodes, the composition ratio of PEDOT binder is optimized at one percent for its low density. The 

efficiency of electric conductivity decreased over one percent ratio of PEDOT:PSS after then some 

aggregation would occur [ref]. At spray electrode composites, PEDOT:PSS content per area were 

tripled due to dense packaging which made sheet resistance efficiency go worse compared to blade 

electrode. We estimated that over amount of PEDOT:PSS caused aggregation since PEDOT:PSS 

originally made thin film coating with low porosity. Also, the insulator content of PSS interrupted the 

PEDOT conductive pathway as the more amounts of them increased.  

 

Figure 3.15. PVDF-EIS of (a) PVDF and (b) PEDOT binder. 

 

The impedance spectra were obtained (Figure 3.15). The equivalent circuit model shows the 

electrochemical process roughly composing of Charge transfer resistance (Rct), capacitance for double 

layer formation (Cdl) and diffusion of lithium ions as Warburg element (W). The semicircles indicate 

nonideal charge transfer. Rct using PVdF binder was 40 Ohm similarly both blade and spray cell 

which means that the charge transfer kinetics was same between interface of electrode. Because Rct 

originally represents charge transfer kinetic on components. Actually when there was no 

charging/discharging cycles, Rct value of blade cell was better than spray one because ionic pathway 

was not build up especially dense spray cell. After several cycles charging/discharging in both cells, 

ionic pathway was well build up and these values got obtained which also applied to capacity value. 

When using PEDOT binder, Rct of spray electrodes was bigger than spray one. Already said, the low 

density of PEDOT binder causes some aggregation in densely packed spray electrodes.   
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Figure 3.16. Cyclic voltammetry of (a) PVdF and (b) PEDOT. 

 

The cyclic voltammetry was tested in coin cells (Figure 3.16). The voltage of redox reaction 

was around 3.7V (vs. Li/Li+). The current density of PVdF electrodes was bigger than PEDOT 

electrodes. In our experiment, PEDOT binder did not affect the conductivity of electrodes.  

 

 

 

 

 

 

 

 

 

 



45 

 

4. Conclusion 

 

Poly vinyl carbazole (PVK) were used as redox-active materials. PVdF and carbon black were mixed 

as binder and conducting agent. Also PEDOT:PSS was used as conductive binder. Using spray 

deposition with ultrasonic equipment, high volumetric energy density was achieved compared to 

conventional blading method. Due to rapid evaporation of solvent, spray electrodes were densely 

packed. Compared to conventional fabrication method, spray deposition method naturally exhibited 

high performance in volumetric capacity. Spray method made electrode several times thinner than 

conventional method with same loading mass. Using these advantages, spray electrodes would be 

applied to various surface of electrode such as curved surface or fabrics. We expect that spray 

deposition method is applied to all polymer flexible batteries and conventional inorganic materials as 

well. 
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