

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/79705835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis

Simple Software Development Techniques for

Wireless Network Simulator

Hyun Woo Choi

Department of Electrical and Computer Engineering

Graduate School of UNIST

2015

Simple Software Development Techniques for

Wireless Network Simulator

A thesis/dissertation

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Hyun Woo Choi

Simple Software Development Techniques for

Wireless Network Simulator

Hyun Woo Choi

This certifies that the thesis/dissertation of Hyun Woo Choi is

approved.

7. 15. 2015

Contents

Ⅰ. Introduction -- 1

Ⅱ. Discrete Simulators --- 3

 2.1 Concepts and Design -- 5

 2.2 The ns-3 Simulator --- 6

 2.3 The Tracing Process --- 8

Ⅲ. Development Technique -- 12

 3.1 Simulator Development Approach --- 15

 3.2 ns-3 simulation algorithm --- 17

 3.3 Simple Network Simulation Development Algorithm -------------------------------------- 19

 3.4 Advantages of SNSDA --- 23

 3.5 Performance Evaluation --- 25

Ⅳ. Conclusion --- 30

References --- 31

List of Figures

Figure 1. The inline function approach in the source code blocks

Figure 2. Discrete event simulation control flow

Figure 3. Ns-3 simulation control flow

Figure 4. The example source code of tracing subsystem in ns-3

Figure 5. Tracing source and sink

Figure 6. Simulation type selection diagram

Figure 7. A simple network simulation flow

Figure 8. A single-hop neighboring network topology for the simple test case

Figure 9. A callback function for the course change

Figure 10. Class structure of SNSDA

Figure 11. A function call graph for CsmaHelper::install() function in ns-3 simulation

Figure 12. OPNET GUI-based network simulator

List of Tables

Table 1. The disadvantages and problems of tracing subsystem

Table 2. The differences between the ns-3 and SNSDA

Table 3. The number of function calls in ns-3 for example simulation in this thesis

Table 4. The number of function calls in SNSDA for example simulation in this thesis

List of Algorithms

Algorithm 1. Ns-3 wireless network simulation algorithm for single-hop wireless network

Algorithm 2. Simple network simulation algorithm

ABSTRACT

Network Simulators have been widely used in many uses of academic and educational areas. In

advance of applying experimental simulation results to real world networks, it is important to verify

their theoretical network performance and some of specific event routines through network simulators

(ns-2, ns-3, OPNET, NetSim, etc.). If the test and verifying procedures are omitted, the system may

cause some unexpected problems which can result in unreliability, unexpected maintenance costs and

so on. Therefore, it is a common practice to demonstrate the performance of network prior to public

release using software simulator. In this context, we focus on problems of the most renowned

simulation package, ns-3. In the point of simulation development performance, the ns-3 uses some of

unnecessary modules compared to a customized solution, in particular, for a small and simple network

simulation. In this thesis, we define several problems and disadvantages of the ns-3, and present

solutions and comparison results to solve high complexity problem of simulations and the

accessibility of simulation source code to the beginners who are about to use the simulation for

educational use: 1) we present a simple software development techniques which reduce the

development times and the number of needless module in C++ objected-oriented programming

environment; As the other way to implement a simple discrete network simulator, 2) we also present

the simple network simulator development algorithm(SNSDA) that describes programming steps for

discrete-event network simulator; Finally, we compare our simple development algorithm to the ns-3

in case of the most general IEEE 802.11 based wireless network scenario so that the SDA has some

advantages in wireless network simulation.

1

1. INTRODUCTION

In recent years, most researchers have verified and proven their network studies through the

various network simulators in response to the various technical requirements and academic

achievement [7].

The two popular discrete network simulation packages (including commercial software) are ns-3 and

OPNET. The former is the most well-known discrete-event network simulator for the network

research communities and the letter provides a powerful and intuitive GUI-based simulation

environment with a variety of features [1] [2]. In case of the ns-3, the network simulator 3 is generally

used in the scientific researches because of its function features and network modules are well defined

and it is even consisted of open source which is easy to be handled and practically comprehensible.

Recently, it is important that reducing the compilation time and considering putting more resources

to the scalability in network simulators and they are the main issues. Nevertheless, in spite of the

efforts of simulator designer groups, it still remains as an obstacle toward them [5].

From the view point of network researchers, the scalability and compilation time issues are not much

sensitive to their works. Instead, the undiscerning callback function structure of ns-3 can be more

important since it lowers the network simulation performance and incurs significant amount of

function overhead. Since it is not effective that most network researchers configure and customize the

structure of function calls in their simulation, it is on the rise that we should consider the legit

simulation structure for small to large-scale networks.

As part of that effort, it is obviously needed to pay attention to the simulation structure and function

callback system in existing network simulator, such as ns-3. As a first defect of existing simulator,

even though ns-3 or OPNET help network researchers who do not familiar with using programming

language to make up his own simulation source codes, there are strong demand to use a simple

network simulator which does not require in-depth understanding of the structure of network

simulator. Secondly, the structure of simulation in ns-3 often requires many modules, attributes and

callbacks that turn out to be unnecessary. For example, in case of a basic IEEE 802.11a wireless

network simulation, ns-3 imposes insertion of a complete set of network parameters on the users. That

is why we should implement a fully customized network simulator and study an approach to get the

legit output without useless tracing sink through script language such as python.

To resolve these problems, we proposes a simple approach for development of discrete network

simulator and compares it with ns-3 simulator. As the result from consideration of reducing useless

modules and function call overhead, we declare and allocate the function as inline function. In case of

a function that is frequently called, we just use the normal function callback. After consideration of

tracing system and function overhead, we present an approach how to configure discrete network

2

simulation parameters and network topologies. Finally, In order to reduce programming complexity

and unnecessary attributes, we present a programming approach to build a simple network simulator

in response to quick testing needs.

Figure 1. the inline function approach in the source code blocks.

The rest of this thesis is organized as follows. In section 2 we review the concepts and preliminaries

of discrete network simulators and the most popular discrete network simulation package, ns-3, with

focusing on its advantages and disadvantages in the function callback and tracing system. In terms of

tracing system, we study and show how to reduce the unnecessary components to print an exact

output only. Furthermore, the specific example and system flow assist the user to understand the pros

and cons of ns-3 tracing subsystem. In section 3, we describe the advantages of ns-3 operation flow

with the same example network first (a single-hop wireless network with 1 service node and 2 device

nodes). Then we discuss the actual callback overhead through the example wireless network algorithm

of ns-3. After the discussion of ns-3, we present the simple network simulation development

algorithm (SNSDA) for a discrete network simulator and configure base network parameters for

discrete simulator. Furthermore, in section 3.3, we focus on how to design a simple discrete network

simulator with using object-oriented programming approach and its exemplary applications. Lastly,

chapter 4 concludes and describes some advantages of GUI based network simulators.

3

2. DISCRETE SIMULATORS

Some of features of discrete-event simulators are distinct from other simulator types. In a discrete-

event simulator, variables change instantaneously at each different time slot while the variable of

continuous model changes incessantly with respect to time. Since the simplicity of discrete-event

simulators, is has been implemented in many simulations uses. The main components of discrete-

event simulations are:

 a) system state – the set of state variables necessary to describe the system at a particular time;

 b) main program – one of subprogram which executes the main simulation routine and determine

which event come to the next;

c) clock variable – a variable which offers the current simulation time;

d) event set – a set of subprogram routine that updates that simulation state when a specific

condition is satisfied;

e) statistical counter – a set of counter variable to store information that the simulation system

requires;

These 5 essential components must be set before creating of discrete simulator. Eventually, the main

reason to using network simulator is not only reduce the maintenance cost, but also let the target

network be reliable in advance of applying to the real world. In ns-3, the simulation clock is

maintained as a 64-bit integer in a unit specified by user through the Time::SetResolution function.

This means that it is impossible to specify event expiration times with anything better than user-

specified time accuracy [2]. In addition, the synchronizer class in ns-3 manages the simulation events

to some real time and the ns-3 also provides the synchronization between the simulation clock and

real-time clock. Unlike with the ns-3, the proposed simulator development algorithm by this thesis

uses the event clock through the specifically declared time variable.

4

Figure 2. Discrete-event simulation control flow [9].

5

2.1 Concepts and Design

Literally, network simulation is kind of technique where a program models the behavior of a network

either by calculating the interaction between the entities [8]. Unlike with the continuous simulator

which has continuously changed variables that described by differential equations, the discrete-event

simulator has synchronized simulation clock for each different event case.

The main control flow of discrete-event simulator follows these steps:

1) initialization step– the simulator invokes the initialization routine. When the main program calls

initialization functions, it initiates simulation clock, system state and statistical counters. Then, the

main program chooses and initiates event list to run a specific simulation event routine.

2) event routine– the event routine does update the system state and statistical counters. If the target

network model is stochastic and not deterministic, the event routine let library routines generate

random variables.

3) generate report – When the simulation is over, the subprogram which generates report computes

estimates of interest and prints out the simulation results.

Furthermore, the discrete-event simulation has an ability to tamper the simulation so that the network

researchers can pause the simulation at any steps and restore simulation states easily. Therefore, as

remarkable merits of discrete event simulation, conjugating deterministic and stochastic simulation is

possible [9].

6

2.2 The ns-3 Simulator

NS-3 is a discrete-event network simulator which is targeted primarily for research and educational

use.[4] It is free software and licensed under the GNU GPLv2 license and publicly available for

development and use. Since it is released in 2008, it is now the most renowned and generally used

discrete network simulation software package in world.

NS-3 is designed and developed to replace ns-2 which was released in mid-90s. The biggest reason

for redesigning the ns-2 was to overcome the “limited scalability regarding memory usage and

runtime.” as mentioned in [2]. Therefore, the ns-3 is distinct from ns-2 which mainly reduces the

compilation time by using C++ source code.

 In recent years, many simulators are focused more on scalability and performance, not only on

compilation time. The Figure 2 shows that the ns-3 simulation control flow.

The ns-3 topology helper assists creating network topology and makes application. Then, the node

container and InternetStackHelper add protocol stacks to the node in order to communicate among of

them. After setting up the MAC and IP addresses, users create the application class and fill up all

simulation logic.

However, it is not always convenient and it does not have only advantages. Credibility and

validation are still remained as obstacle and the scalability too. The limitations of ns-3 are more

introduced in [5].

Furthermore, in simulation design processes, we mainly focused on the tracing script sources and its

limitations in ns-3 and its performance penalty so that the simple simulator should reduce the

programming parts that can be ignored.

7

Figure 3. ns-3 simulation control flow [1].

8

2.3 The Tracing Process

As stated in [3], the main aspects of ns-3 simulation workflow are helper classes. The helper classes

assist and contribute to programming the network simulation and its topology with protocols and

applications. After the network installation steps, the tracing system come up to generate simulation

output for study. The tracing system (called as tracing in previous version of ns-3) is one of the most

important subsystem in ns-3 and the whole points of running a simulation is to generated output for

the network study as stated in [4]. Using tracing system in ns-3 means that researchers follow the

generic pre-define output mechanism and parsing their content to extract interesting information. In

this context, the user has an advantages from the supported tracing system. In case of programmers

and researchers, it is obviously convenient that using generic pre-define tracing source makes them

not requiring change to the ns-3. In spite of the advantage, researchers should write scripts to parse

and filter for data of interest [3]. Furthermore the simulation program in ns-3 must be written in the

manageable form so that user should consider more than developing own output mechanism. The

format of simulation output, NS_LOG, is only available in debug builds, so it may be a performance

penalty to the network simulation. As illustrated in figure 3, the user designs the tracing sinks that

specify what information capture and what to ignore [5]. In this context, we show the efficiency of

discarding the useless parts of simulation and how to get rid of them in section 3.2.

The figure 3 shows that the structure of tracing subsystem which is 1:n relation that a trace source

can have n trace sinks. Since the trace source cannot independently exist in the simulation, the user

must match the trace sinks as a source consumer with the trace source. Thus, because of these inherent

characteristics of ns-3, it is practically difficult to fine-grained control of output without tracing

subsystem. That is the reason so that we carefully note the complexity of tracing system. In summary,

we briefly analyze the drawbacks and the operating flow of the tracing subsystem with a simple

example source code in ns-3. In figure 4, since the tracing system is connected with the attributes and

the attributes are associated with the objects, the trace source must be inherited the objects [3]. The

most important part of the source code in figure 4 is the declaration of TracedVaule and call of

AddTraceSource() function. Since it is obvious that the AddTraceSource() function provides a hook to

connect the main simulation event routine and TracedValue, it produces chronic problems. We

describe the problems of tracing subsystem in the Table 1.

9

Table 1. The kinds of problems, and the locations, and the degree of risks

that may be occur through the tracing subsystem.

10

Figure 4. An example code of tracing subsystem in ns-3 [3].

11

Figure 5. Tracing sources and sinks [5].

12

3. DEVELOPMENT TECHNIQUES

So far, we described the simulation characteristics and disadvantages so that we elicit the solutions

which resolve the 3 problems of ns-3 network simulator. As the aforementioned solutions, we firstly

follow the direction of simulation flow of ns-3 with a specific network example. Secondly, after the

analyzing ns-3, we propose a simple network simulation development approach and the algorithm of

our simulation. Finally, we describe the advantages of the proposed simulation based on the fact that

we compare the ns-3 and the proposed network simulation. As stated in Section 2.1, user should

design and follow several steps to create discrete simulator.

1) find the best simulation type – the simulation type has to be matched and closed to the research

problems. If the set of input data is certain and never changed, the simulator has to be a deterministic.

If it is not, users should consider it as stochastic randomness. In case of chaotic model, the simulation

type must be the deterministic and there are no predictable elements [9].

2) time aspects – after 1), user should figure out the time model between the static and dynamic model.

The former does not need the time scale, and letter changes time variables across the time.

3) discrete and continuous model – when the dynamic model is decided, the time scale of simulation

should be decided. The discrete time scale model slices whole time into normally formed slots and

they can be numbered in integer field. In other way, the continuous time scale model can also be

selected if there is no need to divide time scale into time slots. In that case, the time variable is

remained as continuous variables.

In figure 5, the diagram shows the flow chart of a simple network simulator. As mentioned in the last

chapter, it is important to decide and define the simulation model, topology and protocol before

creation of simulator so that it can be easily implemented. The tracing process can be ignored here so

the useless procedure makes the number of program source code line.

13

Figure 6. Simulation type selection diagram [9].

14

Figure 7. A simple network simulator flow [8].

15

3.1 Simulator Development Approach

In this chapter, we start to create an example discrete simulator in IEEE 802.11 wireless network. In

advance of creating the simulator, we should choose the running and programming environment

where is compatible with multi-platform (Linux, Microsoft windows, etc.). For that reason, we adopt

the C++ programming language with using standard library to let it be operated and compiled in

multiple operating platform, e.g., Linux and Microsoft windows OS.

 For reference there are two reasons why we do not use the script language such as Python:

1) nested functions – can often be a drawback which is hard to modify the set of variables in outer

scope.

2) hard to catch the syntax errors – if the simulator is a simple and concise source-coded program, it

does not matter to use. However, it rises potentially to the debugging surface. Since the main goal on

this thesis is creating a simple and general use discrete-event simulator, we avoid that risk in advance.

Since the complexity of simulation source code, the installation of network topology and its

applications are tend to be overlooked.

Moreover, what we should concern at the next step is design the main simulation case and network

parameters. In this context, we present an exemplary test case which is single-hop wireless network

that each service device has a single server queue:

· randomly generated packets – packets are randomly generated with probability 0.33 and they are

stacked into the queue of service node (the probability 0.33 is considered for the convenience of

simple calculation in this example network). When the queue of service node has the packet to send,

the service node transmits packets to the device nodes. Since the example network has just 2 device

node, they are about to receive the packets by Bernoulli random process in each unit time slot. Also,

we assume that the queue is unbounded.

· separated communicate region – the simulation topology has two transmission flows. a) the service

node transmits its packet to the device node 2. b) since the limited communication environment, the

device node2 cannot transmit the packet to the node 3. c) when the packet is transmitted from service

node 1, it randomly decides whether the receiver is node 2 or 3 by the probability of 1/2.

16

Figure 8. A single-hop neighboring network topology for simple test

17

3.2 Simulation Algorithm in ns-3

As described in figure 6, we present the whole process according to the example scenarios with using

ns-3. The main reason that we perform this simulation through ns-3 is to compare the advantages and

disadvantages with the proposed simulation algorithm in this thesis. Before we start to run our

network simulation in ns-3, the helper class assists to program the actual network topology and the

used protocols. The only thing that researcher should know is understanding ns-3 components and

network modules so that the user can simply consider the specific network topology, trace sink and its

applications. In figure 6, there is no tracing source code to obtain simulation output so that the users

should connect their trace sink to the pre-defined trace sources. Since it is practically difficult to

control and add the new network function and even the parameters, the users have to consider the

network functions to put on the source codes of main event routine. For example, if the users want to

check and modify the above network topology and the conditions, they must use callback function

call from the other classes. We attach the example callback function, CourseChange() to quickly

inquire the structure of callback function of ns-3.

Figure 9. A callback function for course change [4]

This above function prototype conducts a rule as trace source in the simulation. As we described in

section 2.3, the tracing system, the users must create a trace sink in advance to use this callback

function. Moreover, the trace sink for this case is even somewhat complicated because it contains a

certain amount of script language and function usage.

In ns-3, all detailed functions are triggered by callback mechanism that the goal is to allow one piece

of simulation code to call a function without any specific inter-module dependency. Optionally it can

be seemingly simple that the users call the ns-3 functions without any necessary background

knowledge, but it also has a drawback that it may take a many steps of lookup during the linking and

compilation time. Moreover, if there is no parameter type which cannot be supported by ns-3

callbacks, the user must add and modify the prototype of function in the specific header. Nevertheless,

the ns-3 simulator is the easiest simulation tool if the condition that user knows the system mechanism

and helper classes.

18

Algorithm 1. ns-3 wireless network simulation algorithm for single-hop wireless network

19

3.3 Simple Network Simulator Development Algorithm (SNSDA)

Considering the 3-node simulation scenario, we present our simple network simulation development

algorithm (SNSDA). We first consider the classes and the parameters that we have to design, and then

descript the development steps of the simulation.

The essential network classes and parameters include:

a) node class – is similar with the ns-3 node container which calculates the transmission costs and

keeps the track of a set of node device structure and pointers;

b) event clock timer – is the synchronized timer which is triggered by every event routine. Moreover,

it gives us the information of current time value of a simulation event;

c) the number of generated packets – the cumulative amount of generated packet is one of main

factor to figure out the throughput;

d) the number of transmitted packets – is determined by the sender’s arrival rate and one of

important statistical parameter to calculate throughput;

e) the number of received packets – when the receiver node receives the packet from sender

successfully, the number of received packets triggers the formulation of throughput;

f) arrival rate – affects to the number of generated packets from sender node;

g) flow decision probability – in this simulation scenario, it is decided by half and half probability;

h) transmission time – is theoretically fixed at 10 micro seconds and one of the key components to

calculate throughput;

In figure 8, the event clock timer is set and run by transmission time and waiting time (as a packet

length). After the setting of the network topology, node and link object header, the user really does not

have to define or declare more steps such as unessential IEEE 802.11a standard parameters. Since the

trace process and trace sink source are omitted, the user can easily obtain the appropriate simulation

outputs through the simple calculating source code (in this simulation scenario,

) and not a complex tracing subsystem in ns-3 written in

python script language. Sequentially, the programming steps in algorithm 2 are:

1) design the topology – is often described in the main program source scope with abstraction of the

nodes and links. The theoretical locations of service node and device nodes are very important if there

are an assumption that the concept of carrier sensing range is applied.

2) node and link class – after design the network topology, the user should code the node and link

header that perform the basic routine of node and link. In general, node class has queue operation

source code there, since it is natural that each link has its queue so that it manages the queue length

and the number of empty slots. Link class takes on the role that connects each links and logical

20

connection among the nodes. In this context, it is also obvious that link class includes the transmission

and receive packet function that triggers to the each node’s queue.

3) packet class – the packet class must have two properties that should be contained. The former is

the source destination address and the letter is the destination address and sequential number in this

simulation model (other properties are declared in the main program scope).

4) main event routine – in this example network mechanism, the AP node only transmits the packet

to the station nodes by packet arrival rate and decision probability that chooses a station node. Though

the mechanism of simulation is simple, the user must consider and calculate that the event clock timer

should be accumulated at every action tick. Furthermore, unlike with ns-3, the tracing part and output

generate source codes are mostly located in the main event routine not external scope.

Then we need to discuss to the programming point. Since this simulation code is written in C++

language, it is optionally suggested not to use pointer so that the simulation can avoid memory fault

problems (use STL or other library enabling not to use memory arbitrarily [9]). Moreover, the user can

use C++ preprocessor to cut out unnecessary part of code in advance of the running time.

Figure 10. Class structure of SNSDA

In addition, we have found some problems that must be overcome while users create the discrete-

event simulator. In case of the development of deterministic simulation, we must predict and prevent

the unexpected situation that one of nodes processes more than 2 tasks at once. In other words, letting

all of nodes be conceded right action priority by legit simulation procedure. In order to address this

problem, user must program the anti-exceptional routine processing source code. In [9] and [10], they

recommend that users should implement the queue as one of part of the node class. In object-oriented

programming environment, it is more reasonable and take the compile time less that one instance

handles every task in the particular node. In section 3.4, we discuss the comparative advantages which

are the proofs of not using tracing system and callback function inheritance structure.

21

22

Algorithm 2. simple network simulation algorithm

23

3.4 Advantages of SNSDA

In Sections 3.2 and 3.3, we have clarified the differences between ns-3 simulation and the Simple

Network Simulation Development Algorithm (SNSDA). In case of the ns-3 which mainly uses the

tracing subsystem, the main program (main event routine) is obviously simpler than the SNSDA

because of the callback trigger and included headers encapsulate and hide the core attributes and

objects. However, in spite of the clear advantages of ns-3, we found out some of drawbacks from

tracing and callback function so that the network simulator has longer periods of linking and loading

processes than the others.

In the latest linking process, the linker decomposes the many of source file to the manageable

modules that can be modified and compiled separately [11]. Since the simulation source files are not

the one monolithic file, the linker and loader must go through many decomposition processes. The

more object files guarantee the slower compilation time so that the reason to cut out of useless

modules and attributes appears. For that reason, the user should cut off the indiscreet uses of callbacks

and network modules in the network simulators. In particular, the ns-3 does not provide the delicate

modification of the trace source, the use should type the source code for the trace sink which calls the

callback functions. In the SNSDA, we originally allocated the frequently called functions inside of

main program scope and called it as inline function to let the linker do not refer to. In addition to these

approach, we can freely modify the function prototypes through the direct access to the node, link and

packet classes. It makes the proposed simulator tool more intuitive and let the simulation have less

function call overhead.

In Table 2, we summarize the pros and cons of each network simulator. As the first criterion of this

comparison, the function overhead frequency means that the callback function structure in ns-3 and

SNSDA let the callback functions be called frequently from the stack so that it consumes the amount

of free memory space of the stack. Secondly, as we aforementioned in the previous Section 2.3, the

relation between tracing source and sinks makes the fine-grained function control practically

impossible. In SNSDA, it is easier than the ns-3 in terms of the modification of function prototypes

because the SNSDA does not connect all the attribute of simulation and objects so the users do not

have to consider the trigger effect of function and network parameters. Furthermore, we discussed

shortly about the memory fault problems in network simulations. Since the usage of pointer increases

the probability that the memory faults and the segmentation faults occur, the SNSDA adopts STL

which is the standard template library so that a simple memory management approach and even it

provides a simple method for many data structural functions. It is definitely risky that the users make

many pointers which indicate a same objects. If the one of objects is deleted, the other side has an

invalid address value. In ns-3, the pointers are used in every classes and attributes though they use the

24

smart pointer which is a class declaration of STL. In these context, we realize that a simple network

simulation scenario does not have to have unnecessary modules and attributes so that the users satisfy

with the performance of network simulation. In terms of extendibility for adding new modules and the

platform compatibility, the SNSDA is even intuitive than ns-3 because of its light-weighted

characteristics.

Table 2. The differences between ns-3 and Simple Network Simulation Development Algorithm (SNSDA) and five

standards stand for SNSDA which does not use the tracing subsystem but inline function style.

25

3.5 Performance Evaluation

So far, we have clearly described the pros and cons of ns-3 and SNSDA. In this section, we

numerically compare their performance. We excluded the comparison of the number of the program

source code lines, because a) the programming styles are often different, and b) in general, the amount

of source code line does not have an effect on the linking and compile processes [11].

We measure the function overhead frequency and the function control difficulties by the number of

function used and relation among the objects, attributes and function prototypes. Along with an

example callback structure of ns-3 and SNSDA in figure 11, then we attached the results which is

records that traced all of function calls in the Table 3.

 In figure 11, we describe the results of CsmaHelper::install() function which creates an

ns3::CsmaChannel with the attributes configured by CsmaHelper::SetChannelAttribute() with the

attributes configured by CsmaHelper::SetDeviceAttributes() and then adds the device to the node and

attaches the channel to the device. Even though it seems complicated, we omitted the unimportant

function calls behind ns3::Object::ConstructSelf(). Given these facts, we counted the number of

function call in the ns-3 simulation and the SNSDA. In case of SNSDA, it is obvious that the function

callback is not happened since we allocated the function call inside of the main simulation program

source. As we can see in the figure 11, the function series of object class in ns-3 are redundantly

referenced by most of the functions in the example simulation and it may cause the stack overflow if

the redundant function call consumes the most of memory space in the stack. If it happens while the

ns-3 simulator runs, the users confront the segmentation fault after simulation compile.

26

Figure 11. A function call graph for CsmaHelper::install() function in ns-3 simulation [4]

27

Table 3. The number of function calls in ns-3 for example simulation in this thesis.

28

Unlike with ns-3, the SNSDA shows somewhat different results to us since it adopts the different

simulation structure. In Table 5, we put the result of function calls from SNSDA. Considering the

results of Table 3 and 4, we found that the ns-3 is overwhelmingly higher than SNSDA in case of the

probability of happens of potential segmentation fault through function overhead.

Regarding to the function control difficulty, we introduce a call graph for one of the ns-3’s function

in figure 11. In fact, the ns3::CsmaHelper::install() function provide its information to the object and

object factory classes to create a CsmaNetDevice and truly updated when the information goes

through around 50 single callback processes. If a user makes more than 100,000 device nodes in

simulator, the number of function calls can be up to 500,000 times. Since this structural environment

of ns-3, it is practically difficult to control a function prototypes or add a new module.

Table 4. The number of function call in SNSDA for example simulation in this thesis.

29

Instead of the functional indicators, the interoperability of ns-3 and SNSDA is also one of

fundamental issues to users. In official, a version of ns-3 which can be built using a native Microsoft

Windows compiler is provided [3]. Despite such efforts to use ns-3 on windows, only the most

essential components of the simulator are included. Since the purely Unix-centric source code is still

excluded, the more improvement is required. In case of the SNSDA, it has an opportunity to extend its

module since it only uses the standard library and works on LINUX and WINDOWS as stated in

Section 3.1.

30

4. CONCLUSION

Simulations are a common method to verify performance and reliability of newly designed networks

and its applications. In this thesis, we present general-purpose discrete simulators that can deal with

both deterministic and stochastic models. Furthermore the proposed simulator can reduce the

complexity of useless program components (tracing subsystem, excessive attributes, etc.). In [2] and

[3], we already have a brilliant discrete simulation software packages (ns-3, OPNET, NetSim, etc.) so

that freely test and verify our research materials. However, network topologies and parameters are not

perfectly matched with these network simulator (and hard to get license of commercial software

either), we need to design and program the network simulation software by on our own and decide

whether the necessary simulation components or not.

 Since we only present the methodology that implements a simple discrete-event simulator in this

thesis, there are some drawbacks (time scalability and reducing compilation time) in it. a) in this

thesis, we intentionally do not consider the compilation time because it is not the main concern of this

thesis. However, it is mandatory that the simulator for large-scale network should consider the whole

compilation time before running simulator.

 Furthermore, for the future work, implementing a free-licensed network simulator with GUI

interface is also one of huge challenge so that the end-user can control the simulator easily and get the

graphic based report with using the Linux-based graphic library such as ncurses.

Figure 12. OPNET GUI-based network simulator [2]

31

REFERENCES

1. Mathieu Lacage, Tomas R Henderson, 2006, ‘Yet Another Network Simulator’.

2. Inc. OPNET Technologies, ‘Opnet network simulator’
 http://www.opnet.com/solutions/network_rd/ modeler.html.

3. NS-3 development team, ‘Ns-3 network simulator’, https://www.nsnam.org/

4. NS-3 development team, ‘Ns-3 network simulator’, ‘ns-3 tutorial’,

http://www.nsnam.org/ docs/release/3.16/tutorial/ns-3-tutorial.pdf.

5. Sebastian Rampfl, Florian Wohlfart, Daniel Raumer, 2013, ‘Network Simulation and its

Limitations’, Seminar Future Internet SS2013.

6. Schwetman, H, 1995, ‘Object-oriented Simulation Modeling with C++/CSIM17’, Winter

Simulation Conference, p529-533.

7. Nurul I. Sarkar, Roger McHaney, 2012, ‘Modeling and Simulation of IEEE 802.11 Wireless LANs:

A Case Study of Network Simulator’.

8. Wikipedia, ‘network simulation’, https://en.wikipedia.org/wiki/Network_simulation

9. Grzegorz Chmaj, Dawid Zydek, 2011, ‘Software Development Approach For Discrete Simulators’.

10. Law, Kelton, 2000, ‘Simulation, Modeling & Analysis 3

rd
 edition’

11. Randal E. Bryant, David R. O’Hallaron, ‘Computer Systems: A Programmer’s Perspective, 3
rd

edition’, Carnegie Mellon University, p623-637

https://en.wikipedia.org/wiki/Network_simulation

	Ⅰ. Introduction
	Ⅱ. Discrete Simulators
	2.1 Concepts and Design
	2.2 The ns-3 Simulator
	2.3 The Tracing Process

	Ⅲ. Development Technique
	3.1 Simulator Development Approach
	3.2 ns-3 simulation algorithm
	3.3 Simple Network Simulation Development Algorithm
	3.4 Advantages of SNSDA
	3.5 Performance Evaluation

	Ⅳ. Conclusion
	References

<startpage>10
Ⅰ. Introduction 1
Ⅱ. Discrete Simulators 3
 2.1 Concepts and Design 5
 2.2 The ns-3 Simulator 6
 2.3 The Tracing Process 8
Ⅲ. Development Technique 12
 3.1 Simulator Development Approach 15
 3.2 ns-3 simulation algorithm 17
 3.3 Simple Network Simulation Development Algorithm 19
 3.4 Advantages of SNSDA 23
 3.5 Performance Evaluation 25
Ⅳ. Conclusion 30
References 31
</body>

