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In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959

is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams

including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity

beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant

for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in

transverse configuration space, determined by the generalized matrix envelope equation.
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Modern high-intensity beams have many important ap-
plications ranging from high energy density physics and
ion-beam-driven fusion to high-flux neutron sources and
light sources. It is becoming increasingly important to
understand the self-field effects of high-intensity beams
including self-electric and self-magnetic fields in a fully
self-consistent manner, from the nonlinear Vlasov-
Maxwell equations [1]. In an uncoupled lattice, the
Kapchinskij-Vladimirskij (KV) distribution function ana-
lyzed in 1959 [2] is the only known exact self-consistent
solution of the nonlinear Vlasov-Maxwell equations for
high-intensity beams. In practical accelerators and beam
transport systems, the transverse coupling between the
horizontal and vertical directions, induced by error fields
and misalignments, is always a significant effect [3–8].
Strong coupling of the transverse dynamics is introduced
intentionally in certain types of cooling channels [9] and in
the final focusing system for high energy density physics
experiments [10], as well as in the conceptual design of the
Möbius accelerator [11]. In this Letter, we generalize the
KV solution to describe high-intensity beam dynamics in a
coupled transverse focusing lattice using the recently de-
veloped generalized Courant-Snyder invariant [12,13] for
coupled transverse dynamics.

In a coupled transverse focusing lattice, the Vlasov-
Maxwell equations that govern the evolution of the distri-
bution function f of a high-intensity beam and the corre-
sponding space-charge potential c are [1]
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@x
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Here, particle motion in the beam frame is assumed to be
nonrelativistic, c is the space-charge potential normalized
by �3

bm�2
bc

2=qb, �bc is the directed beam velocity in the

longitudinal direction, �b ¼ ð1� �2
bÞ�1=2 is the relativis-

tic mass factor, s is the time variable normalized by 1=�bc,
Kb ¼ 2Nbq

2
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2 is the beam self-field perveance,

Nb ¼
R
fdxdydvxdvy is the line density, x ¼ ðx; yÞT rep-

resents the normalized transverse displacement of a beam
particle, v ¼ dx=ds ¼ ðvx; vyÞT ¼ ð _x; _yÞT is the normal-

ized transverse velocity in the beam frame, and �qx is the

coupled linear focusing force. In Eq. (1)

�q ¼ �qx �qxy

�qyx �qy

� �
(3)

is the matrix of coupling coefficients, �qx and �qy are the

focusing coefficients for the quadrupole lattice, and �qxy ¼
�qyx are the coupling coefficients produced by the skew-

quadrupole component of the lattice. In general, the
coupled linear focusing force can also depend on trans-
verse velocity, as in the case of a solenoidal lattice, which
can be transformed into the form of Eqs. (1)–(3) if we
choose the local Lamor frame [1,13]. For simplicity of
presentation, we consider here only the coupling due to
skew quadrupoles given by Eq. (3). The �rc term in
Eq. (1) describes the self-field force, and is nonlinearly
coupled to f through Eq. (2). Equations (1) and (2) form a
set of nonlinear integro-differential equations, whose ana-
lytical solutions are difficult to find in general.
For the case of an uncoupled lattice, i.e., �qxy ¼ �qyx ¼

0, Eqs. (1) and (2) admit a remarkable solution known as
the Kapchinskij-Vladimirskij (KV) distribution [2], which
has played an important role in high-intensity beam phys-
ics [14–17]. The KV distribution function is constructed as
a function of the Courant-Snyder (CS) invariants of the
transverse dynamics [18]. Since the CS invariants are valid
for linear, uncoupled transverse forces, the KV distribution
must self-consistently generate a linear, uncoupled space-
charge force. The KV distribution indeed satisfies this
requirement. It is given by [1,2]

fKV ¼ Nb

�2"x"y
�

�
Ix
"x

þ Iy
"y

� 1

�
; (4)
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Ix ¼ x2

w2
x

þ ðwx _x� x _wxÞ2; Iy ¼ y2

w2
y

þ ðwy _y� y _wyÞ2:
(5)

Here, Ix and Iy are the CS invariants for the x- and y-

motions, respectively, "x and "y are the constant transverse

emittances, and wx and wy are the envelope functions

satisfying the envelope equations,

€w x þ �xwx ¼ w�3
x ; €wy þ �ywy ¼ w�3

y ; (6)

�x ¼ �qx � 2Kb

aðaþ bÞ ; �y ¼ �qy � 2Kb

bðaþ bÞ ; (7)

a � ffiffiffiffiffi
"x

p
wx; b � ffiffiffiffiffi

"y
p

wy: (8)

The density profile in the transverse configuration space
projected by the distribution function fKV in Eq. (4) is
given by

nðx; y; sÞ ¼
Z

d _xd _yfKV

¼
�
Nb=�ab ¼ const; 0 � x2=a2 þ y2=b2 < 1;
0; 1< x2=a2 þ y2=b2:

(9)

which corresponds to a constant-density beam with ellip-
tical cross section and pulsating transverse dimensions a
and b [see Fig. 1(a)]. The associated space-charge potential
inside the beam, determined from Eq. (2), is given by

c ¼�Kb

aþb

�
x2

a
þy2

b

�
; 0�x2=a2þy2=b2<1: (10)

The KV distribution (4) reduces the original nonlinear
Vlasov-Maxwell equations (1) and (2) to the two envelope
equations in Eq. (6) for wx and wy, or equivalently, for a ¼ffiffiffiffiffi
"x

p
wx and b ¼ ffiffiffiffiffi

"y
p

wy [Eq. (8)]. As the only known

solution of the nonlinear Vlasov-Maxwell equations (1)
and (2), the KV distribution and the associated envelope
equations provide very important elementary theoretical

tools for our understanding of high-intensity beam dynam-
ics [14–17]. The KV distribution in Eq. (4) is constructed
from the exact dynamical invariants Ix and Iy in Eq. (5),

and constitutes an exact solution of the Vlasov equa-
tion (1), which also generates the uncoupled linear space-
charge force assumed a priori.
We now show how to generalize this KV solution to the

case of coupled transverse dynamics when �qxy ¼ �qyx �

0, using the recently developed generalized CS invariant
for coupled transverse lattice [12,13]. In the coupled case,
the generalized KV distribution that solves the nonlinear
Vlasov-Maxwell system (1) and (2) projects to a rotating,
pulsating beam with elliptical cross section in transverse
configuration space with constant density inside the beam.
Both the dimensions a and b, and the tilt angle � are
functions of s ¼ �bct [see Fig. 1(b)], in contrast with the
pulsating upright elliptical beam cross section for the un-
coupled case [see Fig. 1(a)]. The rotating, pulsating beam
with elliptical cross section in transverse configuration
space, and constant density inside the beam, generates a
coupled linear space-charge force of the form

�rc ¼ ��sx; �s ¼ �sx �sxy

�syx �sy

� �
; (11)

where �sxy ¼ �syx, which allows us to apply the general-

ized CS invariant for the coupled transverse dynamics. The
exact form of �s will be determined self-consistently [see
Eq. (24)]. Our strategy is to use the generalized CS invari-
ant to construct a generalized KV solution of the Vlasov
equation (1), which also projects to a rotating, pulsating
elliptical beam with constant density inside the beam. In
this manner, a self-consistent solution of the nonlinear
Vlasov-Maxwell equations (1) and (2) is found for high-
intensity beams in a coupled transverse focusing lattice.
For a charged particle subject to the coupled linear

focusing force and the coupled linear space-charge force

�rc � �qx ¼ ��x; � ¼ �q þ �s; (12)

the generalized CS invariant is given by [12,13]

ICS ¼ xTw�1w�1Txþ ð _xTwT � xT _wTÞðw _x� _wxÞ; (13)

where

w ¼ w1 w2

w3 w4

� �
is the 2� 2 envelope matrix determined from the matrix
envelope equation

€wþ w� ¼ ðw�1ÞTw�1ðw�1ÞT: (14)

Since ICS is an invariant of the particle dynamics, any
function of ICS is a solution of the Vlasov equation (1).
However, in order to solve the nonlinear Vlasov-Maxwell
equations (1) and (2), the distribution function must gen-
erate the coupled linear space-charge force of the form in
Eq. (11) as well. For this purpose, we select the distribution

FIG. 1 (color online). Beam cross sections for the KV distri-
bution. (a) Uncoupled lattice: the cross section is determined by
0 � x2=a2 þ y2=b2 < 1; and (b) coupled lattice: the cross sec-
tion is determined by 0 � xTw�1w�1Tx< ".
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function to be the following generalized KV distribution

fKV ¼ Nbjwj
A"�

�

�
ICS
"

� 1

�
: (15)

Here, Nb and " are constants, where Nb is the line-density,
and " is the transverse emittance. Moreover, jwj is the
determinant of the envelope matrix w, and A is the area
of the beam cross section determined by jwj and ". Both
jwj and A are functions of s ¼ �bct. The beam density
profile in transverse configuration space is

nðx; y; sÞ ¼
Z

d _xd _yfKV ¼
Z

d

�
r2

"

�
Nb

A
�

�
ICS
"

� 1

�

¼
�
Nb=A; 0 � xTw�1w�1Tx< ";
0; " < xTw�1w�1Tx:

(16)

In the above calculation, the velocity integration with
respect to d _xd _y is carried out in the new velocity coordi-
nates (p, q) through the transformation

d _xd _y ¼ 1

jwj dpdq ¼ 2�

jwj rdr; (17)

p � w1 _xþ w2 _y� _w1x� _w2y; (18)

q � w3 _xþ w4 _y� _w3x� _w4y; (19)

r2 � p2 þ q2: (20)

The density profile n (x, y, s) obtained in Eq. (16) is
indeed of the desired form. That is, n (x, y, s) is constant
inside the ellipse defined by

x T��x ¼ "; �� � w�1w�1T; (21)

and nðx; y; sÞ ¼ 0 outside the ellipse. The ellipse defined
by Eq. (21) is pulsating and rotating. Its transverse dimen-
sions aðsÞ and bðsÞ, and tilt angle �ðsÞ depend on s ¼ �bct
and are determined from the matrix ��. Because �� is
obviously real, symmetric, and positive definite, the two
eigenvectors v1 and v2 of �� are orthogonal with two
positive eigenvalues �1 and �2. It is an elementary result
[19] that the transverse dimensions of the ellipse are given

by a ¼ ffiffiffiffiffiffiffiffiffiffiffi
"=�1

p
and b ¼ ffiffiffiffiffiffiffiffiffiffiffi

"=�2

p
, and the tilt angle � is that

of v1. The principal axis theorem [19] states that the
diagonalizing matrix Q of �� can be constructed as Q ¼
ðv1; v2Þ with Q�1 ¼ QT and

Q�1��Q ¼ �1 0
0 �2

� �
:

We now introduce the rotating frame

X
Y

� �
¼ Q�1 x

y

� �
:

The ellipse in (X, Y) coordinates is given

X2

a2
þ Y2

b2
¼ 1; (22)

and the self-field force is

� @c =@X
@c =@Y

� �
¼ 2Kb

aþ b

1=a 0
0 1=b

� �
X
Y

� �
: (23)

Transforming back to (x, y) coordinate, the self-field force
can be expressed as

� @c =@x

@c =@y

 !
¼ ��s

x

y

 !
;

�s ¼ �2Kb

aþ b
Q

1=a 0

0 1=b

 !
Q�1:

(24)

The coupled linear space-charge coefficient �s is a func-
tion of the envelope matrixw and the constant emittance ".
When Eq. (24) is substituted back into Eq. (12), the enve-
lope equation (14) becomes a closed nonlinear matrix
equation for the envelope matrix w. Therefore, we have
succeeded in finding a class of self-consistent solutions of
the nonlinear Vlasov-Maxwell equations for high-intensity
beams in a coupled transverse focusing lattice. The solu-
tion reduces to a nonlinear matrix ordinary differential
equation for the envelope matrix w, which determines the
geometry of the pulsating and rotating beam ellipse. The
matrix envelope equation (14) can be numerically solved in
a straightforward manner. We note that the self-consistent
solution constructed for the coupled lattice has one emit-
tance " in the transverse directions [11], whereas in an
uncoupled lattice, the standard KV distribution contains
two emittances, i.e., "x and "y. This should not come as a

surprise because a coupled lattice is more complex than an
uncoupled lattice, and it is natural for the self-consistent
solution to have less freedom in a coupled lattice than in an
uncoupled lattice. In accelerators and storage rings with
coupling, a single emittance in the transverse directions
implies an equilibrium between the x direction and the y
direction, which can be reached in certain situations, but
not always. Therefore, the self-consistent distribution con-
structed only applies to those cases where such an equilib-
rium is reached, such as in a strongly coupled system or in
the lattice of transport lines.
As a specific example, we consider a periodic quadru-

pole FODO lattice with the middle magnet being mis-
aligned by a small angle �. The misaligned magnet
induces a skew-quadrupole component of the form [4]
�qxy ¼ �qyx ¼ �q sin2�. The strength of the quadrupole

component of the misaligned magnet is reduced to �qx ¼
��qy ¼ �q cos2�. The normalized quadrupole focusing

field is �q � qbB
0
q=�bm�bc

2 ¼ 15 with a filling factor

	 ¼ 0:15. The misalignment is � ¼ 11:4�, and the nor-
malized self-field perveance is Kb=" ¼ 0:1. The matrix
envelope equation (14) has been solved numerically to
find a matched solution. The numerical result, plotted in
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Fig. 2, shows the beam cross section as a function of s=S ¼
�bct=S, where S is the lattice period. The dynamics of the
beam pulsation and rotation is clearly demonstrated in the
plots. The rotation dynamics result in a wobbling motion of
the tilt angle between � ¼ 14:28� at s=S ¼ 0 and � ¼
81:35� at s=S ¼ 0:5. As expected, in the rotating frame
the transverse dimensions a and b of the beam ellipse
oscillate with time. Note that the dynamics of beam rota-
tion and pulsation is matched with the lattice period.

In conclusion, the KV distribution function, the exact
self-consistent solution of the nonlinear Vlasov-Maxwell
equations for high-intensity charged particle beams in an
uncoupled focusing lattice including self-electric and self-
magnetic fields, has been generalized to describe high-
intensity beam dynamics in a coupled transverse focusing
lattice using the recently developed generalized Courant-
Snyder invariant [12,13] for coupled transverse dynamics.
The fully self-consistent solution reduces the nonlinear
Vlasov-Maxwell equations to a nonlinear matrix ordinary
differential equation for the envelope matrix w, which
determines the geometry of the pulsating and rotating

beam ellipse. This result provides us with a new theoretical
tool to investigate the dynamics of high-intensity beams in
a coupled transverse lattice.
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FIG. 2 (color online). Beam cross sections as a function of
s=S ¼ �bct=S over the interval 0 � s=S � 1. The dynamics of
the beam pulsation and rotation is evident from the figure.
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