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Abstract 

With increasing interest in environmental and energy issues, the application fields of lithium ion 

batteries have been used for electric vehicle as well as portable devices. However, lithium ion batteries 

with present technology can’t fulfill the requirement of full-range electric vehicles due to insufficient 

energy density and power density. The promising candidates of cathode materials for those drawbacks 

are Li-rich (Li2MnO3-LiMO2, M=Ni, Mn and Co) and spinel (LiM2O4, M=Al, Li, Mg, etc.) cathode 

materials. However, those materials still has problem which should be overcome for application of 

electric vehicles. For examples, the Li-rich materials have very high gravimetric energy density but 

suffer from low initial coulombic efficiency, voltage decay upon cycling, large side reaction at elevated 

temperature and poor rate capability. The spinel cathode materials have high rate capability and thermal 

stability but suffer from Mn dissolution at elevated temperature. Also it delivers low capacity at high C 

rate if secondary particle size is large (>10㎛). To overcome this barrier, newly developed material 

modification methods for Li-rich and spinel cathode materials are proposed in this dissertation.  

1) The chemical activation is frequently used to improve the first cycle efficiency for Li-rich material. 

However, it causes the formation of lithium impurities. Also the surface coating is carried out to reduce 

side reaction on the surface, but this method can solve the coulombic efficiency at 1st cycle and rate 

capability. To overcome these barriers, we here report an efficient and effective surface modification 

method. The chemical activation (acid treatment) and LiCoPO4 coating were carried out simultaneously. 

During synthesis process, the lithium ions were extracted from the lattice leading to the improved 

columbic efficiency and these ions were used for the formation of LiCoPO4. The Ni and Co doped 

spinel phase was formed at the surface of host material, which gives rise to the facile pathway of lithium 

ions. The LiCoPO4 and highly doped spinel on the surface acted as the double protection layers that 

effectively prevented side reactions on the surface at 60oC. 

2)  The surface coating is widely used to protect surface of spinel cathode material from acidic present 

electrolyte. However, metal compound coatings cause surface resistance because usually coating 

material is electrically and electrochemically inactive. Also even though the coating material is 

electrode material, it still has resistance issues due to structural mismatch (grain boundary). To 

overcome this barrier, we here report an imaginative material design; a novel hetero-structure LiMn2O4 

with epitaxially grown layered (R3̅m) surface phase. No defect was observed at the interface between 

the host spinel and layered surface phase, which provides an efficient path for the ionic and electronic 

mobility, leading to the improved rate capability. In addition, the layered surface phase protects the host 

spinel from being directly exposed to the highly active electrolyte at 60 oC. 
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3) Many researchers have investigated nanosized spinel cathode materials to increase their rate 

capability because the lithium diffusion pathway is reduced and the surface where the electrochemical 

reaction can occur increase. However, the nanosized materials can’t fulfill the requirement of electrode 

density for the application of electric vehicles. Also the carbon coating is not able to be conducted on 

the spinel cathode materials due to the formation of oxygen deficiency. To overcome these problems, 

we report composites with super-p and nanosized spinel material via spray drying process. The acid-

treated super-p was used for better distribution of super-p in secondary particle. The developed material 

showed outstanding rate capabilities at -10 oC as well as 24 oC.  
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1. Introduction 

1. 1. Lithium-Ion Battery 

The needs for energy are still increasing with developing industry and technology, even though the 

prices of fossil fuel are still being raised and reserves of that is decreasing. Also the environmental 

pollutions by consuming fossil fuel as the main energy sources are a serious problem that threatens the 

health of human and conservation of nature. The world have been made to replace the fossil fuels with 

renewable energy such as hydroelectric power, biofuel, geothermal energy, wind energy, solar energy 

and etc. However, most of them generate small energy when it doesn’t need, so it should be stored in 

energy storage devices such as batteries.  

In the 1980s, information technology (IT) advanced significantly with the development of portable 

devices such as video cameras, digital cameras, cell phones, laptop computer and so on. The revolution 

of products led to a demand for rechargeable energy storage devices with higher energy density, reduced 

size and weight. Conventional rechargeable batteries at that time such as lead acid batteries, Ni-Cd 

batteries and Ni-MH batteries used aqueous electrolytes, which hindered increasing operating voltage 

leading to limitations of energy density because the water is decomposed at -1.23 V versus standard 

hydrogen electrode (SHE). 

Li-ion batteries are getting attention as a next generation energy storage devices because it offer a 

higher volumetric and gravimetric energy density than lead acid batteries, Ni-Cd batteries and Ni-MH 

batteries regardless of cell types (Figure 1). The reason is believed that lithium is the most 

electropositive (-3.04 V vs. SHE) and lightest metal (6.94 g mol-1). It also uses the organic electrolytes, 

which guarantee higher working voltage compared to water electrolyte. The research on the lithium ion 

batteries started in 1976 with titanium sulfide as a cathode and lithium metal as an anode. Also in 1979, 

John B. Goodenough first proposed LiCoO2 as a cathode material which is widely used at present. By 

using LiCoO2/Graphite system, the first commercialization was achieved by SONY in 1991. Since then, 

the markets and technologies of lithium ion batteries have grown to be the dominant power sources for 

electric vehicles (EVs) and large-scale energy storage systems (ESSs) as well as portable IT devices.  
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Figure 1.1. Comparison of the gravimetric and volumetric energy densities of various batteries 
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1. 2. Principle of Lithium-Ion Battery 

There are four components of the lithium ion batteries, cathode, anode, electrolyte and separator 

(Figure 1.2). The lithium ion batteries generally produce an average cell voltage of around 3.7 V and 

operate on the relatively simple principle of reversible intercalation of Li ions in the cathode and anode. 

The most widely used and researched materials for the cathode are LiCoO2, LiMn2O4 and LiFePO4 and 

some form of carbon like graphite, hard carbon and soft carbon are generally used for the anode. During 

charge process, lithium ions are released from cathode and diffused to anode through the electrolyte. At 

the same time, the electrons are moved to anode through external circuit. The reverse reaction occurs 

during discharge process. The cell reaction mechanisms during charge are as follows; 

 

Cathode electrode: LiCoO2  Li1-xCoO2 + xLi+ + xe- 

Anode electrode: C6 + xLi+ + xe-
  LixC6 

Overall charge reaction: LiCoO2 + C6  Li1-xCoO2 + LixC6 

 

 

 

 

 

Figure 1.2. Schematic diagram of four components of lithium ion batteries and its charge and 

discharge process. 
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The electrochemical reaction of Li-ion batteries therefore involves three reaction steps: i) a mass-t

ransfer reaction for the solid-state diffusion of Li+ ions in the structure of the electrode materials, ii) a 

charge-transfer reaction at the interface between the electrode and electrolyte, and iii) Li+ ion migratio

n in the electrolyte.[2] The electrochemical performance of Li-ion batteries, such as their cycleability          

and rate capability, is greatly dependent on mass-transfer and charge-transfer reactions. 

 

 

 

 

 

 

 

Figure 1.3. Schematic view of electrochemical reaction 
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2. Cathode Materials 

  The Cathode materials for lithium ion batteries are transition metal oxide containing lithium, and they 

are a type of functional ceramics. Also the lithium ions should be able to diffuse freely through the 

crystal structure. The transition metal ions are oxidized at the charge process and reduced at the 

discharge process. The operating voltages are dependent on its structure and transition metal ions (Table 

2.1). 

 

  

 

 

 

 

 

Table 2.1. Comparison of cathode materials for lithium ion batteries 



6 

 

2. Cathode Materials 

2. 1. Layered Cathode Materials 

The layered structure compounds has the chemical formula of LiMO2 (M=transition metal 

elements). The layered structure has cubic closed packing oxygen framework and MO6 make the 

layer along X and Y direction. The lithium ions are occupied into octahedral sites and transition metal 

ion are also located into octahedral sites. The ideal LiMO2 crystal belongs to α-NaFeO2 structure and 

R3̅𝑚 space group with ABCABC type stacking like O-Li-O-TM-O-Li-O. The lithium ions in lithium 

layers show 2-dimensional diffusion (Figure 2.1). 

 

 

Figure 2.1. Crystal structure of layered cathode materials (LiMO2) 
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2. 1. 1 LiCoO2 

LiCoO2 is widely used cathode material which was the firstly commercialized by SONY for LIBs 

in 1991. This material was proposed by John B. Goodenough and still used in batteries. It is easy to 

synthesize LiCoO2  at > 800 oC. Also this material shows relatively high operating voltage of 3.9V and 

very stable cycling performance. However, if LiCoO2 is highly delithiated state, the structure transition 

and oxygen lease occur causing fast capacity fading and safety issues. Figure 2.2 shows the evolution 

of the lattice constants a and c as a function of x in LixCoO2 
1, and the phase diagram for LixCoO2  In-

situ X-ray diffraction indicates a sequence of three distinct phase transitions when x is changed from 1 

to 0.4. Two of the transitions are situated slightly above and below x=0.5, and are caused by an order-

disorder transition of the lithium ions. The order-disorder (monoclinic-hexagonal phase) transition has 

been studied as a function of temperature, allowing the determination of an order-disorder diagram. The 

other phase transition is shown to be first order (hexagonal Ⅰ+Ⅱ) involving a significant expansion of 

the lattice constant c of the hexagonal unit cell.1-2  Therefore, it can deliver only 150 mAh g-1 in spite of 

its high theoretical capacity of 274 mAh g-1. To overcome these barriers, the surface coating by using 

nano-sized surface layer such as metal oxides, fluorides and phosphates have been investigated.3 The 

surface coating has effect on the thermal stability as well as cycling performance.3a, 3c (Figure 2.3 and 

Figure 2.4) 
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Figure 2.2. Lattice constants a (a) and c (b) as a function of the lithium concentration x in 

LixCoO2. (c) Phase diagram for LixCoO2.
1 
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Figure 2.3. a) The cycling performance of various coating materials coated LiCoO2 and bare 

LiCoO2. b) Lattice constants c in ZrO2 (■), Al2O3 (+), TiO2 (□), B2O3 (△) coated, and bare LiCoO2 

(●) as a function of x in Li1-xCoO2 during the first charge.3a 
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Figure 2.4. Voltage and temperature profiles of cell with a) bare LiCoO2 and b,c) AlPO4 coated LiCoO2 

as a function of time.  The pictures of cell with d) a bare LiCoO2 and e) AlPO4 coated LiCoO2 after the 

12V overcharge test.3c 
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2. 1. 2 LiNiO2 

The LiNiO2 was first developed by Dyer group and considered as promising candidate for cathode 

material as alternatives to LiCoO2.
4 The LiNiO2 has a higher gravimetric capacity of >200 mAh g-1 and 

lower cost than LiCoO2. However, it is very difficult to synthesize stoichiometric LiNiO2. The Ni ions 

prefer Ni2+ instead of Ni3+ and the ionic radius of Ni2+ (rNi+ =0.69Å) is similar to Li+ (rLi+ =0.76Å). 

Therefore, Ni2+ is easily occupied into Li sites which leads to the formation of electrochemically 

inactive cation-disorder layer. This undesired structure hinder lithium ion diffusion causing poor 

electrochemical performances. Unlike LiCoO2, the LiNiO2 exhibits several phase transitions during 

electrochemical charge and discharge. There are four reaction regions of LixNiO2 according to lithium 

stoichiometric x in terms of the change of lattice parameters.5 (Figure 2.5) The final phase transition 

(x=0.25) is irreversible reaction which causes distortion of the crystal lattice structure. In addition, the 

delithiated state of LiNiO2 is very unstable leading to accelerated structural instability. This side 

reaction generally accompanies with partly structure transformation to spinel and NiO-type rock salt 

phases causing fast capacity decay. Also the oxygen release occurs if the LiNiO2 electrode is highly 

charged which resulting in thermal instability.  

 

 

 

Figure 2.5. Phase diagram of the LiNiO2-NiO2 pseude-binary system from experimental data and 

calculation.5b 
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2. 1. 3 LiNi1-x-yCoxMnyO2 

Generally, the LiCoO2 forms a solid solution with LiNiO2, but it doesn’t form a solid solution with 

LiMnO2. Also LiNiO2 can be mixed with LiMnO2 to form LiNi1-xMnxO2.
6 However, the maximum value 

of X is 0.5 (Figure 2.6). Also it is well known that the substitution of Co is an increased ordering of Ni 

in the structure and that of Mn provide the stability of structure.7 Layered binary or ternary Li[Ni1-x-

yCoxMny]O2 has been considered to be a promising cathode materials because the thermal stability, 

capacity and cycling performance can be controlled by changing composition. Among many 

compositions, LiNi0.5Mn0.5O2 and LiNi1/3Co1/3Mn1/3O2 are the representative materials. The oxidation 

states of Ni, Co and Mn are divalence, trivalence and tetravalence, respectively. In these materials, 

Mn4+ is inactive species resulting in contributing to the stability of the overall layered structure. The 

initial capacities of both material are similar to that of LiCoO2. Also these materials show excellent 

cycleability due to no phase transformation in the domain of 0<x<80 (Li1-xMO2), high safety and low 

cost.  
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Figure 2.6. Phase triangle of LiCoO2-LiNiO2-LiMnO2.
6 
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2. 2. Li-rich Layered Cathode Materials: xLi2MnO3-(1-x)LiMO2 (M=Ni, Co, 

Fe, Cr, Mn and etc.) 

Li-rich layered materials have attracted a lot of interest because of their higher specific capacity (> 240 

mAh g-1 between 2.0 and 4.6V) and lower cost. Therefore it is considered as a promising candidate 

cathode materials of batteries for EVs. These materials can be represented in two-component notation, 

xLi2MnO3-(1-x)LiMO2. During the first charge, electrochemical extraction of lithium ions from 

xLi2MnO3-(1-x)LiMO2 lattices occurs in two steps. 

LiMO2  MO2 + Li+ + e- , ~4.45V (1) 

Li2MnO3  MnO2 + 2Li+ +0.5O2 + 2e-, 4.45V~ (2) 

The high cut-off nature can result in simultaneous reaction of lithium extraction and oxygen 

release at the particle surface. This irreversibility bring low coulombic efficiency at 1st cycle. 8 

The released oxygen is reduced at the electrode surface in the discharge process, which results 

in the deposition on the electrode surface leading to the formation of byproducts such as 

Li2CO3.
9 (Figure 2.7) These byproducts cause reversible capacity declines. Also the highly 

oxidizing nature produces many side reactions between the surface of active materials and 

electrolyte. The undesired side reactions form thick solid electrolyte interface (SEI) layer, 

which hinders lithium diffusion and electron conduction. When cycling is carried out at 

elevated temperature, transition metal dissolution appears resulting in the loss of weight for 

active material. Consequently, the surface side reactions cause crucial capacity decay. 

As the biggest issue of Li-rich layered cathode materials is the voltage decay during cycling. 

The energy density (Wh) is defined with multiplication of working voltage (V) and capacity 

(Ah). The decreasing working voltage results in energy decline. When lithium ion are extracted 

in the charge process, the transition metal ions are migrated from transition metal layer to 

lithium layer due to instability caused by vacancies of lithium layers. Consequently, 

electrochemically inactive rock-salt NiO and spinel-like phase are formed.10   
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Figure 2.7. Schemes of the proposed reaction mechanisms in the LixNi0.13Co0.13Mn0.54O2-δ composite 

electrodes consisting of the active material, acetylene black, and PVdF.9 
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2. 3. Spinel Cathode Materials 

The spinel cathode material has been considered as one of the most promising cathode materials to 

be used for EVs due to its advantages of low cost, safety and high power properties. The spinel cathode 

material has cubic spinel structure with space group of Fd-3m and oxygen atoms are stacked by cubic 

closed packing (CCP) (Figure 2.8).11 The unit cell of spinel structure consists of eighth AB2X4 units that 

totally have 64 tetrahedral sites and 32 octahedral sites.  Li ions are occupied into 1/8 of the tetrahedral 

sites (8a sites). The Mn ions are located into 1/2 of the octahedral sites, which forms a three-dimensional 

network of edge-sharing MnO6-octahedra (16d sites). The remained sites exist as a vacancies. 

 The lithium sites (8a) and vacant sites (16c) in M2O4 form diamond-like 3D lithium diffusion channel 

(Figure 2.9).12 In charge and discharge process, lithium ions are diffused along 8a16c8a16c 

three-dimensionally, which offers fast diffusion pathway leading to high power properties. Therefore, 

the spinel cathode materials are attractive for high power applications such as hybrid electric vehicles 

(HEVs) and power tools.  

The spinel LiMn2O4 shows three distinctive steps in the shape of discharge curve, region I and II 

about 4V versus Li/Li+ and region III about 3V versus Li/Li+ (Figure 2.10).13 The reaction related to 

region I and II is reaction at 4V below and region III is reaction at 3V below; 

Mn2O4 + Li+ + e-  LiMn2O4 (Reaction at 4V) 

LiMn2O4 + Li+ e
-  Li2Mn2O4 (Reaction at 3V) 

The reason why the two-plateau voltage behavior is shown is ascribed to rearrangement of lithium 

ion in tetrahedral sites. In region II, the discharge voltage decreases continuously between 3.7 and 4.0V, 

which is consistent with reaction without changing crystal structure of cubic leading to small changes 

of lattice parameter. In the case of region III, during the lithium insertion reaction (Discharge) is 

accompanied with phase transition, which is believed that lithium insertion into octahedral 16c sites 

occurs at around 3V by two phase reaction involving the cubic and tetragonal spinel. The additional 

lithium insertion causes a severe structural changes due to Jahn-teller distortion (Figure 2.11).14 When 

LiMn2O4 is changed to Li2Mn2O4 by lithium insertion reaction, t2g is separated to dxy, dyz and dxy, and 

eg is separated to dx
2-y

2 and dz
2. Therefore, the octahedral MnO6 lengthen along c-axis by 12% and 

shorten along a and b-axis by 3%. Finally the tetragonal phase transition is accompanied by a 16% 

increase in c/a ratio and 6.5% total volume expansion. These repetitive changes affect the contact with 

conductive agent leading to weaken electrical network for electrode. Thus, only 4V region is 

electrochemically available for battery cycling.  
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Mn dissolution is main problem of capacity fading at elevated temperatures (>50 oC) (Figure 2.12). 

15 Mn3+ in spinel LiMn2O4 is separated by disproportionate reaction.  

2 Mn3+ (Solid)  Mn4+ (Solid) + Mn2+ (Soluble) 

The MnO (Mn2+) in LiMn2O4 is dissolved by hydrogen fluoride (HF). It is known that small amount of 

water (H2O) produces HF by reacting LiPF6. 

LIPF6 +H2O  LiF + PO3 + 2HF 

Also, impurity material such as insulator MnF2 is formed by HF. 

2LiMn2O4 + 4H+ + 4F-  3MnO2 + MnF2 + 2LiF + 2H2O 

The dissolved Mn2+ is migrated to anode side and reduced on the graphite surface leading severe 

capacity degradation of full cell.  

   As a factor of capacity fading for spinel LiMn2O4, oxygen deficiency was proposed.16 Yoshio 

and Xia proposed the relation of cycle performance and oxygen deficiency. 17 Also Kanno reported that 

some interstitial oxygen atom is occupied into vacant 8b site instead of original site of 32e, which results 

in impeding lithium ion diffusion.18 The presence of oxygen deficiency can be easily confirmed with 

extra plateau at 3.2V and 4.5V, represented by z value in LiMn2O4-z. The z value is related to the capacity 

at 3.2V and 4.5V. The amount of value z can be confirmed by calculating the capacity of 12z mol Mn 

as following equation; 

Assume (a) the molar ratio of Mn3+/Mn4+=1 

(b) the capacity of 1mol Mn3+ in LiMn2O4 = 148 mAh g-1 

C3.2V (capacity at 3.2V) = 148 x 12z x 0.5 x.0.5 

 

 

 

 



18 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. a) The unit cell structure of spinel LiMn2O4. B) Projection along the [110] zone axis showing 

separate Li, O, and Mn columns. Mn-1 columns has twice higher atomic density than Mn-2 columns. 11 
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Figure 2.9. Three-dimensional lithium diffusion pathway in spinel cathode material.12 
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Figure 2.10. Typical voltage profile of spinel LiMn2O4. (I) phase transition from cubic λ-Mn2O4 to 

Li0.5Mn2O4. (II) from Li0.5Mn2O4 to LiMn2O4, (III) from cubic LiMn2O4 to tetragonal Li2Mn2O4.
13 
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Figure 2.11. X-ray diffraction pattern changes during the reduction of LixMn2O4 in 

the region III in Figure 2.10.13 
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Figure 2.12 Mechanism of Mn3+ dissolution.15 
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3. Experiment 

 

3. 1. Simultaneous Surface Modification Method for 0.4Li2MnO3-

0.6LiNi1/3Co1/3Mn1/3O2 Cathode Material for Lithium Ion Batteries: Acid 

treatment and LiCoPO4 coating  

 

3. 1. 1. Introduction 

Recently, Lithium ion batteries (LIBs) are getting attention as the most promising energy storage 

system for electric vehicles (EVs) as well as small portable devices due to many advantages such as 

low self-discharge rate, high energy density and long cycle life. The EV equipped small-sized LIBs and 

motors which is called hybrid electric vehicles (HEVs) achieved better fuel economy by using mainly 

spinel LiMn2-xMxO4 (M = Li, Al, Mg, Co, etc.) as a cathode material to fulfill HEV’s demanding power 

and durability requirements. However, it can run very short driving range in EV mode due to small-

sized LIBs composed of mainly spinel cathode materials with low energy density.19 

As quickly increased the needs for higher-mileage EVs, the researchers have extensively and 

intensively investigated many possible cathode materials with higher energy density than spinel cathode 

materials such as Li-rich layered materials Li2MnO3-LiMO2 (M=Ni, Co, Mn, Cr, Fe, etc.) 20 and Ni-rich 

layered materials LiNi1-xMxO2 (1-x > 0.6; M= Co, Mn, Al, etc.)21. Among them, the Li-rich layered 

materials have attracted a lot of interest because of their higher specific capacity (> 240 mAh g-1 

between 2.0 and 4.6V) and lower cost. However, it also has many drawbacks such as low coulombic 

efficiency at 1st cycle, voltage decay with cycling, intrinsically poor rate capability, and irreversible side 

reactions with electrolyte due to high cut-off voltage, especially at elevated temperatures (> 60 oC).22 In 

order to overcome such problems, many solutions have been proposed and studied. Surface coating is 

frequently investigated for the improvement of electrochemical performance by using the inert ceramics 

such as metal oxides, fluorides and phosphates (Figure 3.1.1a).8, 20a, 23 These coating materials act as a 

protective layer against the present acidic electrolyte resulting in the diminishment of side reactions on 

the surface. Another approach to overcome the drawbacks is an acid treatment for the chemical 

activation, which is intended to improve the initial efficiency.24 In this process, lithium ions are extracted 
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from the lattice, which results from H+/Li+ exchange reaction. It is believed that the extracted lithium 

ions can be converted to lithium impurities such as Li2CO3 and LiOH, which causes the gas evolution 

at 1st charge, unless fully removed (Figure 3.1.1b and 3.1.2). Recently, our group proposed RGO-coated 

Li-rich material; GO was reduced by hydrazine treatment, and material with submicron-sized flake-

shaped primary particles.10b, 25 Both studies showed significant improvements of performances. 

However, there is no investigation at elevated temperature, even though the cell evaluations at the 

elevated temperature (> 60 oC) are very critical factor because lithium ion batteries are usually packed 

in a closed space causing heat accumulation. Also the safety issues should have been handled. Other 

groups reported many investigations of surface coating and acid treatment on the Li-rich cathode 

materials to enhance their electrochemical and thermal weakness.8, 20a, 23-24 For instance, Y. Su. et al. 

reported spinel membrane-encapsulated Li-rich material.26 The cells were performed between 2.0 and 

4.8 V. It showed the improved electrochemical performances such as rate capability, coulombic 

efficiency, cycleability and so on, but no investigation of cycling performance at elevated temperature 

(> 60 oC) mentioned. Also PNNL group found a possible origin of the voltage decay was related to 

uneven distribution of Ni elements in the cathode and a way of minimizing the voltage decay at room 

temperature via hydrothermal method, of which one led to uniform distribution of Ni elements. Set 

aside the inherent voltage decay during cycle originated from spinel-like phase transition, other critical 

considering test criteria, such as, gas evolution from the Li impurities from the cathode surface due to 

acid treatment, rate capability, 1st coulombic efficiency, and cycling performance at elevated 

temperature, and thermal instability have not been tried to solve at the same time. Therefore, it is 

necessary that the efficient and effective methods, which can carry out the surface coating and acid 

treatment for chemical activation simultaneously, should be developed to improve such drawbacks. 

Also the candidate of coating material should react with residual impurities to the eliminate side 

reactions.27 

 

 

 

 

 

 

 



25 

 

 

 

 

 

 

 

 

 

a b

c

Figure 3.1.1. Schematic view of fabrication processes and their final results of (a) surface coating, (b) 

acid treatment, and (c) dual functioned method. 
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Figure 3.1.2. The 1 g of bare power was immerged into 20 ml of 0.25M acetic acid solution, and then 

the mixture was thoroughly stirred for 1h. The black line is the C 1s XPS spectra of the powder filtered 

after mixing and the red one is the result of the sample evaporated at 110 oC until water removal. The 

result powders were heated at 600 oC for 3h. All spectra were calibrated to a peak arising from carbon 

at 284.2 eV. 
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Herein, we reported the LiCoPO4 coated 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 synthesized by 

the efficient dual-functioned coating method (Figure 3.1.1c). The lithium ions in coating material 

LiCoPO4 originated from the host material. These were extracted when stirred in acidic solution with 

cobalt and phosphate ions. During heating process, these ions were consumed to form LiCoPO4 on the 

surface of host particles. Also, the structure, where lithium ions were extracted, was recrystallized to 

form the spinel surface layers. The double protection layers on the surface, Ni and Co doped spinel and 

LiCoPO4, effectively suppressed the side reactions leading to the improved electrochemical 

performances relative to the bare 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2. More importantly, the coated 

cathode demonstrated far less heat evolution at 4.6V, compared to the bare counterpart. 
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3.1.2 Experimental Section 

Synthetic method. To begin, Ni0.2Co0.2Mn0.6(OH)2 powder was synthesized via co-precipitation 

method. Stoichiometric amounts of NiSO4∙6H2O, CoSO4∙6H2O and MnSO4∙5H2O were used as the 

starting materials. An aqueous solution (Ni:Co:Mn=0.2:0.2:0.6 in molar ratio) at a concentration of 2.0 

mol L-1
 was pumped into a continuously stirred tank reactor (CSTR, 4L) under nitrogen atmosphere. 

The pH was adjusted to 10.5 with NaOH solution of 4.0 mol L-1 and desired amount of NH4OH solution 

as a chelating agent was also seperatly fed into the reactor. The obtained powder were filtered and 

washed many times with distilled water, and then dried at 110 oC for 12 h. The dried powders was 

thoroughly mixed with LiOH with a molar ratio of 1:1.44 and calcined at 900 oC for 10 h to obtain 

0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 (bare). To prepare the coated sample, the bare powder was 

immersed into the acidic solution of Co(NO3)2∙6H2O and H3PO4 (85 wt% in H2O) for the chemical 

activation. The mixture was stirred vigorously at 150 oC until water removal, and then the result powder 

was heated at 600 oC for 3 h. 

Characterizations. The crystal structure was confirmed by powder X-ray diffractometer (XRD, 

D/Max-2200 V, Rigaku) using Cu Ka radiation. The morphologies of prepared samples were examined 

using scanning electron microscopy (SEM, S-4800, HITACHI). The samples for transmission electron 

mictoscopy analysis were prepared by focused ion beam (FIB, Quanta 3D FEG, FEI). To analyze a 

struture with an atomic scale, the high resolution-transmission electron mictoscopy (HR-TEM, JEM-

2100F, JEOL) operation at 200kV was used. For DSC analysis, the CR2032 coin-type cells were fully 

charged at 4.6 V and opened carefully in a dry-room. After the current collectors were washed with 

dimethyl carbonate (DMC) and dried, the  sample and 30 wt% electrolyte were sealed inside stainless 

steel high-pressure capsules to prevent leakage of the pressurized solvents. The DSC curves were 

measured from 50 oC to 350 °C at a scan rate of 5 °C min-1. 

Electrochemical characterization. The cathode electrodes were fabricated by blending the 

prepared powders (85 wt%), Super P carbon black (5 wt%), and polyvinylidene fluoride (10 wt%). 

Galvanostatic charge and discharge cycling was carried out using CR2032 coin-type cell, which consists 

of a cathode electrode and a lithium metal anode seperated by the porous polypropylene film, which 

were assembled in an argon-filled glove box. 1.15 M LiPF6 in mixture of ethylene carbonate (EC) and 

ethyl methyl carbonate (EMC) in 3:7 volume ratio (PANAX ETEC Co. Ltd., Korea). All 

electrochemical tests were performed on WBCS-3000 (WonATech Co.). The galvanostatic charge-

discharge tests were conducted in a voltage range of 4.6 to 2.0 V vs. Li/Li+. The active material loading 

was 4 mg cm-2. Electrochemical impedance spectroscopy (EIS) was performed from 0.02 to 250 kHZ 

frequency range using electrochemical interface system (IVIUM) on coin-type half cells at 4.6 V. 
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3.1.3 Results and Discussion 

In order to confirm the crystal structure of the prepared samples, the X-ray powder diffraction 

(XRD) measurement was carried out and its results are shown in Figure 3.1.3. The XRD patterns of the 

bare 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 (denoted as bare) indicated the typical Li2MnO3-LiMO2 

composite phases.20a, 24a Weak super-lattice reflection peaks appeared between 20° and 25°. The 2 wt% 

LiCoPO4 coated sample (denoted as 2LCP) has the similar peaks with bare and almost indiscernible 

impurity peaks are founded. The peaks intensities of this impurity were raised when the coating amount 

increased to 5 wt% (denoted as 5LCP). The impurity is in good agreement with olivine LiCoPO4 of 

space group Pnma. From these results, it is reasonable to infer that the lithium ions were extracted 

through H+/Li+ exchange reaction when stirred at acidic solution, and LiCoPO4 was successfully formed 

with the extracted lithium ions and the introduced cobalt and phosphate ions during further heating 

process. The morphologies of the bare and 2LCP powders were confirmed by the scanning electron 

microscopy (SEM). As can be seen in Figure 3.1.4a and b, no significant change of morphology can be 

observed after coating. Also the evenly distributed phosphorous ions demonstrated that the LiCoPO4 

was well coated on the surface of the bare according to the energy dispersed X-ray (EDX) analysis 

(Figure 3.1.4c-f). The X-ray photoelectron spectroscopy (XPS) profile for C 1s showed no carbon peak 

of Li2CO3, which indicates that the extracted lithium ions were well consumed to form LiCoPO4 on the 

surface (Figure 3.1.5). 
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Figure 3.1.3. Power XRD patterns of bare and coated samples. The arrows (↓) indicate peaks of the 

LiCoPO4 phase. 
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Figure 3.1.4. SEM images of (a) Bare, (b) 2LCP, (c) low magnified image of (b), Energy dispersed X-

ray analysis of each element (d) Co, (e) Mn, and (f) P. 
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Figure 3.1.5. C 1s XPS spectra of bare and 2LCP powders. 
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To analyze the microstructures of samples with an atomic scale, the measurement of the scanning 

transmission electron microscopy (STEM) was carried out. Figure 3.1.6a and c show high-angle annular 

dark-field (HAADF) STEM images of the bare and 2LCP that are cross-sectioned, respectively. No 

coating layers are observed on the surface of the bare particle (Figure 3.1.6a). However, in case of the 

coated sample, the rough coating layers can be found on the host material, which looks like amorphous 

phase (Figure 3.1.6c). It is revealed that the layered structure (R-3m) are based on the cubic close packed 

(ccp) oxygen arrangement, while the olivine structure (Pnma) has the hexagonal close packing (hcp) 

array of the oxygen ions. Also the transition metal and lithium ions sites are dependent on the oxygen 

framework. Therefore, when the zone axis is focused on the host layered material, the olivine coating 

material looks like amorphous phase and seems to be unclear due to the different oxygen array. The 

atomic distribution of this coating layer was confirmed by the EDX analysis (Figure 3.1.6e-h). As can 

be seen, the cobalt and phosphorus atoms were evenly distributed on the host material. From EDX 

results and XRD patterns, it is concluded that olivine LiCoPO4 coating layer was successfully formed 

on the surface. The coating method of this study accompanied with the acid treatment (chemical 

activation) leading to structural changes. Figure 3.1.6b and d indicate the magnified image of Figure 

3.1.6a (bare) and c (2LCP) respectively. The crystal structure of bare corresponds to the layered 

structure (R-3m) when the viewing direction is [010]trigonal and thin NiO layer on the outermost surface 

was observed. After the surface modification, interestingly, the surface structure of 2LCP was obviously 

changed to spinel (inner) and spinel-like phase (outer) (Figure 3.1.6d) 11a, 28; the spinel phase has a 

diamond configuration with eight Mn columns (Figure 3.1.6j) along the [110]cubic zone axis and the 

spinel-like has weak contrast in the center of the Mn diamond. It was reported that the structure of Li-

rich materials is continuously changed from layered to spinel structure during the electrochemical 

cycling and the spinel-like phase is considered as a medium state between layered and spinel.10b When 

the lithium ions are extracted, the transition metal ions are migrated to the empty lithium sites which 

lead to the formation of spinel phase, and ultimately the rock salt NiO phase appeared. In this study, the 

spinel phase is clearly observed. The reason is believed that when the bare materials were immersed in 

the acidic solution where the coating precursors were dissolved, the lithium ions were extracted from 

the lattice at the surface and the lithium deficient phase was formed. Accordingly, after the heat 

treatment, the structures of the surface were transformed to thermodynamically more stable spinel phase.  
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Figure 3.1.6. (a) STEM image of bare, (b) magnified image of (a), (c) STEM image of 2LCP, (d) 

magnified image of (c), (e-h) EDX mapping results of 2LCP, structural schematic diagrams of (i) 

layered structure with cation-disorder surface and (j) spinel structure. 
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The atomic distribution of bare and 2LCP samples was confirmed by the EDX analysis (Figure 

3.1.7). In the case of the bare, the atomic ratio of Ni, Co, and Mn is approximately 20, 20 and 60 %, 

respectively, as we synthesized (Figure 3.1.7a and d). The outermost surface showed slightly higher Ni 

composition due to the small amount of cation disorder (NiO). However, the transition metal 

distribution of surface is fully changed after coating. As can be seen in Figure 3.1.7b and e, the 

concentration of Ni and Mn are deficient, while that of Co is rich compared to the bare. However, in 

the case of the inner part, the content of Mn is steeply increased, while that of Co is decreased (Figure 

3.1.7c and f). The composition of region 2 in Figure 3.1.7c and f is almost similar to that of the bare. 

Consequently, it is reasonable to deduce that, at heating process, the Co ions preferentially moved to 

empty lithium sites at the surface region, which resulted in the formation of spinel structure at inner 

surface and spinel-like phase at outer surface. 
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Figure 3.1.7. EDX composition analysis of (a) bare, (b) 2LCP, and (c) low-magnified image of (b), (e-

h) EDX mapping results. 
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Figure 3.1.8a exhibits the initial charge and discharge curves of the bare and 2LCP 

electrodes between 2.0 and 4.6 V at 0.1 C rate (20 mA g-1) at 24 oC. The bare electrode delivered 

a relatively higher charge capacity of 280 mAh g-1, while the 2LCP electrode showed lower 

charge capacity of 270 mAh g-1. The reason is believed that the lithium ions are extracted from 

the lattice of Li2MnO3 during coating process leading to the decreased charge capacity above 

4.4 V region.20a, 24a, 29 The discharge capacity slightly decreased, which could be due to the 

reduced portion of active materials. As a result, the coulombic efficiency was improved after 

the surface modification. Also the unknown plateaus near 2.55 V were found at the 2LCP 

electrode. This is regarded as the spinel 2.8V plateau based on STEM analysis. However, there 

is no investigation in this study why it showed the lower potential than that in other reports.20a, 

30 Figure 3.1.8b shows the capacity retentions of the bare and 2LCP electrodes as a function of 

various C rates from 0.5 C (100 mA g-1) to 12 C (2400 mA g-1) at 24 oC. The charge rate was 

fixed at 0.5 C rate. It is obvious that the rate capability of the 2LCP electrode was higher than 

that of the bare. For an example, the discharge capacity retention of the 2LCP electrode at 12 

C was 62.0% (135 mAh g-1) of its discharge capacity at 0.5 C rate, while that of the bare 

electrode delivered 49.2% (107 mAh g-1). The improved rate capability can be explained by 

higher lithium diffusion coefficients (DLi
+), which were determined by warburg impedance in 

the low frequency region (Figure 3.1.9). The DLi
+ of 2LCP is 6.92 cm2 S-1, while that of bare is 

1.02 cm2 S-1. Also the reduced total impedance affected the properties of fast charge and 

discharge (Figure 3.1.9). The improved DLi
+ and reduced resistance are related to the presence 

of spinel phase on the surface of Li-rich materials. It gives rise to the enhanced electrochemical 

performances because the 3D structure of spinel provides more facile pathway of lithium 

ions.26, 31 Figure 3.1.9c shows exhibits the continuous cycling results of the bare and 2LCP 

electrodes at 24 oC, and the charge and discharge current densities were maintained at 1 C rate 

(200 mA g-1). The capacity retention and working voltages of 2LCP were slightly improved 

compared to that of bare at 24 oC (Figure 3.1.9c, d and Figure 3.1.10). These trends of cycling 

performances were fully changed when the evaluations were carried out at the accelerated test 

condition (60 oC). As can be seen in Figure 3.1.9e, f and Figure 3.1.11, the difference of cycling 

and working voltage retentions between the bare and 2LCP electrodes at 60 oC became bigger 

than at 24 oC due to higher reactivity between the surface of the electrode materials and the 

acidic electrolyte. The bare electrode showed the dramatic capacity fading due to the 

dissolution of transition metal and the increased surface resistance resulting from the 
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byproducts on the surface, while the 2LCP electrode exhibited the much improved cycling 

performance (Figure 3.1.12). It is well known that the mechanisms of voltage decay in Li-rich 

layered materials come from the structural change in bulk and the side reaction on surface 

resulted in large polarization. It was reported that the spinel phase at surface reduced voltage 

decay in previous papers20a, 26. In our result, the artificially induced spinel structure might partly 

prevent transition metal migration to lithium layers because half of lithium slabs were already 

occupied by cations to form spinel structure, which led to the alleviated voltage decay at both 

of 24 oC and 60 oC.  Also the double protection layers, Ni and Co doped spinel and LiCoPO4 

structures, effectively reduced the side reactions on the surface. This result is in good agreement 

with the electrochemical impedance spectroscopy (EIS) results. Figure 5 shows typical Nyquist 

plots of the bare and 2LCP samples after every 25 cycles at 60 oC. Even though it was very 

difficult to deconvolute each of the surface film (Rsf) and charge-transfer resistance (Rct) values 

from the overlapped semicircles in this study, it is definite that the total impedance of the bare 

electrode dramatically increased more than that of the 2LCP electrode with increasing cycle 

numbers. From this, it can be certain that harsher side reactions occurred on the surface of the 

bare electrode, which leads to worse cycling performance and severer voltage decay.  
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Figure 3.1.8. (a) First charge-discharge curves, (b) discharge capacity retention as a function of various 

C rates from 0.5 C to 12 C. (c) continuous cycling results at 24 oC and (d) its working voltages, (e) 

continuous cycling results at 60 oC and (f) its working voltage. 
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Figure 3.1.9. Nyquist plot for (a) bare, and (b) 2LCP with respect to cycle numbers: 1st, 25th, 50th, 75th, 

100th cycles. 
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Figure 3.1.10. Charge and discharge profiles of a) bare and b) 2LCP at 24 °C after 1st, 25th, 50th, 

75th, 100th cycles. 
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Figure 3.1.11. Charge and discharge profiles of a) bare and b) 2LCP at 60 °C after 1st, 25th, 50th, 75th, 

100th cycles. 
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Figure 3.1.12. Transition metals dissolution for electrolyte of the fully charged (4.6V) bare and 2LCP 

electrodes during 2 weeks at 60 oC. 
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The safety issues of cathode materials should be considered for commercialization because it 

directly affects a battery safety. To evaluate the thermal stability, differential scanning calorimetry (DSC) 

analysis were carried out. Figure 3.1.13a shows the DSC measurement results of the bare and 2LCP 

electrodes charged to 4.6 V in the presence of the electrolyte. The main peak of 2LCP at 259 oC is higher 

than that of bare at 240 oC. Moreover, the 2LCP electrode generated significantly lower heat of 398 J g-

1 than bare electrode (985 J g-1). The improved thermal property is ascribed to the double protection of 

cation-doped spinel and LiCoPO4 layers, which have a relatively good thermal stability because those 

materials are not fully delithiated when charged to 4.6V,32 which causes less structural instability. These 

stable layers protected the cathode surface from being exposed directly to a highly active electrolyte, 

thus reducing the exothermic reaction. The measured powders were collected and their structures were 

characterized by XRD (Figure 3.1.13b). After the DSC analyses up to 350 oC, the structure of delithiated 

materials were significantly destroyed. In the case of bare sample, MnF2 and LiF peaks were observed. 

In contrast, the patterns of 2LCP sample showed much smaller the peaks intensity of those impurities 

than bare. When the oxygen released during DSC measurements, Li and Mn ions, which were extricated 

from oxygen framework, reacted with F ions from lithium salt (LiPF6), which resulted in the formation 

of MnF2 and LiF. These results revealed that the double protection layers effectively reduced contact 

area between the surface of 2LCP and electrolyte, which contributed to the cycling and thermal stability. 
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Figure 3.1.13. (a) DSC of bare and 2LCP at 4.6 V, (b) Ex-situ XRD patterns of samples; powders after 

DSC measurement from 50 oC to 350 oC. 
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3.1.4 Conclusions 

In summary, we successfully synthesized LiCoPO4 coated 0.4Li2-xMnO3-

0.6LiNi1/3Co1/3Mn1/3O2 material by using the dual functioned coating method without formation of 

lithium impurities. The chemical activation and surface coating with LiCoPO4 were carried out 

simultaneously. The spinel structure with higher Co and lower Mn content than inner part was observed 

on the surface of host particles, and the concentration of Co was gradually reduced to inward direction, 

which was identified via STEM and EDX analyses. The presence of spinel on the surface provided the 

facile pathway of lithium, which led to the superior rate capability. The double protective layers, 

LiCoPO4 and cation-doped spinel, not only effectively suppressed the side reactions resulting in the 

improved cycling performances, especially at 60 oC, but also protected the highly oxidized cathode 

materials from direct contact with the electrolyte leading to the superior thermal stability. In addition, 

the spinel structure on the surface might hinder transition metal ions from migrating to lithium layers. 

Consequently, the simultaneous surface modification method of the chemical activation and surface 

coating is the simple and efficient strategy to enhance the electrochemical and thermal properties. We 

believe that this concept could contribute the progress of industry as well as research area. Since the 

voltage decay originates from change of bulk structure as well as surface structure during cycling, 

fundamental researches on bulk structure is necessary to completely prevent voltage decay. 

 

 

 

 

 

 

 

 

 

 

 



47 

 

3. 2. High Performance LiMn2O4 Cathode Materials Grown with Epitaxial 

Layered Nanostructure for Li-ion Batteries 

 

3. 2. 1. Introduction 

Lithium ion batteries achieved a great success as an energy source for small portable electronic 

devices such as cell phones and lab-top computers. Now, interest of people moves to electric vehicles 

(EVs) that equip an engine operated by lithium ion batteries instead of gasoline. The commercialization 

of lithium ion batteries for the electric vehicles (EVs) requires a cathode material with high energy and 

power, high thermal stability, low cost, and other criteria such as excellent cycle life and low ion and 

electronic transport resistance. To meet the above requirement, many research groups have extensively 

and intensively investigated many possible cathode materials such as LiCoO2, LiNi1-x-yCoxMnyO2, 

LiMn2O4, and LiFePO4 for the applications in EVs’ batteries. Among many cathode candidates, the 

LiMn2O4 has been considered as one of the most promising cathode material to be used for EVs due to 

its advantages of low cost, abundance, environmental affinity, and low safety hazard, which are the key 

factors for a large scale EV battery. 19a, 19b, 33 However, it still suffers from a fast capacity fading at 60 

oC because the manganese on the surface of the LiMn2O4 dissolves in the liquid electrolyte solution 

containing acidic species.34 To solve this problem, many researchers have attempted to have the 

LiMn2O4 surface coated by inorganic materials such as Al2O3, AlPO4, AlF3, ZrO2 and SiO2.
35 The 

coating materials acted as a protective layer that prevents the host LiMn2O4 from being exposed directly 

to the electrolyte. However, the coating layer also acted as a resistance layer when its thickness is too 

large, which results in deteriorating electrochemical performance. For this reason, the electrochemically 

and electrically active materials have been considered as potential coating candidates for the LiMn2O4 

cathode.  

Recently, our group found that the electrically conductive carbon coated on the surface of the 

LiMn2O4 is very effective for improving its electrochemical performances and stability at the room 

temperature. However, when the carbon coated LiMn2O4 was tested at the high temperature of 60 oC 

under the same experimental condition, its electrochemical performances deteriorated rapidly.36 Other 

groups reported that surface coating with electrochemically active materials such as LiNi0.5Mn1.5O4, 

LiCoO2, Li4Ti5O12, and LiNi0.05Mn1.95O4 are also effective ways to improve the electrochemical 

performances of the LiMn2O4 at the room temperature. 35a, 37 However, those attempts have not been 
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well successful at the elevated temperature. For example, Li4Ti5O12-coated LiMn2O4 exhibited a 

discharge capacity of ~90 mAh g-1 and retained less than 80% of its initial capacity at 55 oC after 40 

cycles. 35a 

Therefore, it has been requested to find a new strategy of designing the optimized coating layer for 

the LiMn2O4 cathode that can be operated in harsh and high temperature EV environments. In addition 

to morphology, thickness, and electronic and electrochemical properties, the coating layer needs to 

satisfy an additional requirement such as a chemical affinity between a host material and a surface layer. 

This condition may provide a better sustainable coating layer on its host cathode material without 

forming any crystal defect so that it can be operated in a harsh environment for a longer time. For this 

reason, the Mn rich layered phase has been considered as the one of the potential coating candidates for 

the LiMn2O4 cathode. The Mn rich layered phase that consists of Mn4+ such as LiNi0.5Mn0.5O2
21a, 38 was 

additionally considered to eliminate the possibility of the Mn2+ dissolution in electrolyte. 
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Figure 3.2.1. Schematic view of fabrication process and a spinel particle surrounded by layered phase 

surface. 
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After many experimental trials and errors, herein, we reported a new class of the hetero-structured 

spinel cathode. This material was synthesized via the simple method of spray drying coating solution 

and further heat treatment (Figure 3.2.1). The Mn rich layered phase (< 10 nm thick) was epitaxially 

grown on the surface of the spinel LiMn2O4 host cathode without forming any defect. To the best of our 

knowledge, this unique structure is first reported and shown with an atomic scale. The developed 

material showed excellent electrochemical performances at various temperature range relative to the 

spinel LiMn2O4. 
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3. 2. 2. Experimental 

Synthesis. Bare LiMn2O4 powder was synthesized via a typical solid-state reaction. Mn3O4 and 

Li2CO3 were mixed based on the desired amount of stoichiometric LiMn2O4, then calcined at 770 oC 

for 17hr in a box furnace under a flow of oxygen gas. One percent of excess lithium in molar ratio was 

used due to the volatilization of lithium at high temperature. After calcination, LiMn2O4 powder was 

thoroughly mixed and heated additionally at 750 oC for 3h to eliminate the heat treatment effect on its 

electrochemical performances39 and this sample was used for the BLMO. The no addition-heated 

LiMn2O4 samples were coated by 5 wt% of layered LiNi0.5Mn0.5O2 via a spray drying process. The 

coating via spray drying process has an advantage of uniformly covering particle but it is difficult to 

get uniform thickness due to rough particle surface. A desired amount of Li(CH3COO)·2H2O, 

Ni(CH3COO)2·4H2O and Mn(CH3COO)2·4H2O were dissolved in distilled water at 80 oC and the as-

prepared LiMn2O4 powder was slowly immerged to coating solution under stirring. After stirring for 

15min, the solution with LiMn2O4 powder was spray-dried at 200 oC. In order to obtain the hetero-

structure LiMn2O4 coated by layered phase, the dried powder was heated in box furnace at 750 oC for 

3h under oxygen atmosphere. 

Characterization. The crystalline phase was analyzed by powder X-ray diffractometer (XRD, 

D/MAX-2200V, Rigaku) using Cu Ka radiation. The morphology of prepared powders was examined 

using scanning electron microscopy (SEM, S-4800, HITACHI). Transmission electron microscopy 

sample was prepared by focused ion beam (FIB, Quanta 3D FEG, FEI). The high resolution-

transmission electron microscopy (HR-TEM, JEM-2100F, JEOL) operating at 200 kV was used for 

analyzing a microstructure with an atomic scale. 

Electrochemical test. Galvanostatic charge and discharge cycling was carried out using CR2016 

coin-type, which consists of a cathode and a lithium metal anode separated by the porous polypropylene 

film. The cathode electrodes were fabricated by blending the prepared powders (95 wt%), Super P 

carbon black (2.5 wt%) and polyvinylidene fluoride (2.5 wt%) in N-methyl-2-pyrrolidone. The slurry 

was applied on Al foil and dried in an oven at 110 oC for 20min. The dried electrode was roll-pressed. 

The cells were assembled in a glove box filled with dried argon gas. The electrolyte solution was 1.1 M 

LiPF6 in mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) in 1 : 1 volume ratio (PANAX 

ETEC CO. Ltd., Korea). For the test at low temperature, the coin type cells were charged to 4.3 V at 

0.1 C rate, kept 4.3 V until when the current decreased to 0.05 C rate (6.5 mA g-1), and then discharged 

to 3.0 V at the constant current of 0.1 C. For the GITT measurement, the cells were galvanostatically 

charged and discharged in two cycles at 0.1 C rate between 3.0 and 4.3 V at 24 oC. The GITT was 

employed at a constant current pulse of 13 mA g-1 (=0.1C rate) for 40 min, and then an open-circuit 
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stands for 60 min to relax the cell voltage to the steady state. Electrochemical impedance spectroscopy 

(EIS) was performed from 0.02 to 250 kHZ frequency range using electrochemical interface system 

(IVIUM) on coin-type half cells at SOC 90%. 
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3. 2. .3 Results and Discussion 

The XRD patterns of the bare LiMn2O4 (denoted as BLMO) and the epitaxially grown layer 

coated LiMn2O4 (denoted as EGLMO) powders exhibited a well-defined cubic spinel phase of space 

group Fd3̅m without impurity peaks (Figure 3.2.2). The XRD peaks of the layered surface phase were 

not able to be observed because of the similarity of XRD patterns between the layered surface and spinel 

host structure as well as the small content of the layered phase (5 wt%). It could be possible for a small 

amount of Li and Ni atoms of the layered phase to diffuse into the host spinel particle during annealing 

at 750 oC. This speculation can be explained that the lattice parameter of BLMO (8.233 Å) was slightly 

changed to that of EGLMO (8.229 Å) after coating due to the decrease in quantity of the larger Mn3+.40 

The surface morphologies of three samples, BLMO, BLMO covered by coating precursor (right 

after spray drying), and EGLMO, were confirmed by SEM (Figure 3.2.3a, b and c). The surface 

morphology of the BLMO was spherical and dense with secondary particle size of approximately 15 

μm in diameter. Just after spray drying, the dried coating precursor (Li:Ni:Mn = 1:0.5:0.5) was well 

covered on the surface of the BLMO. After heating at 750 oC, the morphology of the EGLMO was 

similar to that of the BLMO, where nickel elements were observed to be evenly distributed according 

to the energy dispersed X-ray analysis (Figure 3.2.3d, e and f). An average particle size (D50) and tap 

density of EGLMO were ~ 15 μm and 2.3g/cc, respectively.  
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Figure 3.2.2. Power XRD patterns of BLMO (Bare LiMn2O4) and EGLMO (epitaxially grown layer 

coated LiMn2O4). 
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Figure 3.2.3. SEM images of a) BLMO, b) BLMO covered by coating precursor (right after spray 

drying), c) EGLMO and d) low magnified image of the EGLMO. Energy dispersed X-ray analysis of 

each element e) Ni and f) Mn. 
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To analyze microstructures of the samples with an atomic scale, the measurement of the high-

resolution scanning transmission electron microscopy (STEM) was performed. Figure 3.2.4a shows 

high-angle annular dark-field (HAADF) STEM image of the EGLMO particles that are cross-sectioned. 

The selected area (red square) in Figure 3.2.4a is magnified in Figure 3.2.4b. It is obviously observed 

in the STEM image of Figure 3.2.4b that the structure of the region B (surface layer) is different from 

that of the region A (host). They are directly connected each other without forming any defect. This is 

called the epitaxial layer that indicates the deposited overlayer on the surface of the host material along 

with the same lattice orientation.41 In order to form this unique structure, the coating material with a < 

10nm thickness must have a same oxygen framework with respect to the host spinel crystal structure. 

The cubic spinel and hexagonal layered phase are based on the cubic close packing (CCP) array of the 

oxygen ions42, where the transition metal ions of both phases are located in octahedral sites. Based on 

the chemical and structural affinities between the host and coating materials, the hexagonal layered 

phase can be epitaxially formed on the surface of the bulk spinel phase, which results in the formation 

of the hetero-structure. Figure 3.2.4c is a fourier filtered image of the region A and its structural 

schematic diagram is shown in Figure 3.2.4e. These figures indicates a typical cubic spinel phase (Fd3̅m) 

along the [110]cubic zone axis.42 The manganese atoms are arranged like a diamond shape with Mn 

columns showing two different contrasts. The brighter Mn columns in Figure 3.2.4c have twice higher 

atomic density than that of the less bright Mn columns along the [110]cubic direction. Surely, no contrast 

from Li sites can be confirmed because Li is a light element. Figure 3.2.4d (Region B in Figure 3.2.4b) 

corresponds the layered structure (R3̅m) along the [22̅1]hexagonal zone axis, and its structural diagram is 

shown in Figure 3.2.4f. In contrast to the host structure (Figure 3.2.4e), there is no empty site in the 

structure of the surface phase (Figure 3.2.4f), which means the column consists of only invisible atoms 

such as Li when viewing direction is the [22̅1]hexagonal. Also all columns have same contrast due to same 

density of transition metal atoms (Ni or Mn) along the viewing direction. The epitaxial relationships 

between the host spinel and the surface layered phase determined from the STEM images (Figure 3.2.5) 

are (22̅2)spinel//(102̅)layered and (2̅22)spinel//(012)layered. As can be seen, the d spacing values of the host 

(2.37Å) and surface (2.36Å) lattice are well matched each other. Based upon the TEM results, we 

confirmed that the surface of the EGLMO was not a spinel phase but a layered phase as we designed. 

Furthermore, the HAADF STEM image (Figure 3.2.6) that was taken from another region of the 

primary particle at the surface supports the existence of the layered phase even at inner surface. 
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Figure 3.2.4. a) HAADF STEM images of surface of cross sectioned particle of EGLMO. b) 

Magnified images of a). c and d) Fourier filtered images of region A and B, respectively, in b). e 

and f) Structural schematic diagrams of c and d) 
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Figure 3.2.5. HAADF STEM image of surface of cross sectioned particle of EGLMO. 
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Figure 3.2.6. HAADF STEM images of a) surface of cross sectioned particle of EGLMO. b) magnified 

image of selected area in a). 
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To understand the formation mechanism of the epitaxial layer, the BLMO covered by the dried 

coating precursor heated at 600 oC for 10 min was prepared and analyzed by using the STEM (Figure 

3.2.7). As shown in the images of the surface in the sample, three types of structure could be found, and 

it was already confirmed that the region A and B indicated layered phase and spinel phase respectively. 

The region C indicates M3O4 (M=Ni, Mn) with space group I41/amd along the [100]tetragonal zone axis 

and its structural diagram is shown in Figure 3.2.7c. It also has CCP oxygen array11a, 43, and is epitaxially 

connected to region B. Figure 3.2.7b shows the distribution of Ni and Mn atoms by EDX mapping in 

the crystalline regions B and C of the layered and M3O4 (M=Ni, Mn) phases, and amorphous region of 

outside of crystalline region. It was confirmed that Ni atoms were distributed on two regions as well as 

the amorphous surface region. Accordingly, M3O4
 (M=Ni, Mn) was epitaxially formed on the surface 

of BLMO at first, and then Li ions diffused to M3O4, leading to the formation of the layered phase. 

These processes were repeated continuously until all Ni and Mn atoms were used entirely.  

There may be controversy over the same column projection of layered structure and rock salt 

NiO. In order to confirm this, the intensity profile of Z-contrast was measured (Figure 3.2.8a and b). As 

mentioned above, brighter Mn columns (Mnα) have twice higher atomic density than less bright (Mnβ) 

columns when viewing direction is [110] (Figure 3.2.8c). The atomic density of Mnβ is as same as that 

of layered structure along the [22̅1] zone axis (Figure 3.2.8d). Also that of Mnα is equal to that of rock 

salt NiO (Figure 3.2.8e). As can be seen in Figurexx, the intensity of Mnβ is similar with that of layered 

region, which is the strong evidence that layered phase was successfully formed on the surface of spinel 

cathode material, not NiO phase.  
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Figure 3.2.7. a) HAADF STEM image of a primary particle at the surface of a sample prepared by 

heating at 600 oC for 10 min and quenching. b) EDX mapping of manganese (blue) and nickel (red) 

of region B and C in a). c) Structural schematic diagram of region C 
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Figure 3.2.8. a) HAADF STEM image of a primary particle at the surface of a sample prepared by 

heating at 600 oC for 10min and quenching. b) Intensity profile along blue line in a). c) Structural 

schematic diagram of spinel, d) layered and e) rock salt NiO phase 
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It should be noted that the experimental preparation of our electrodes was optimized to meet 

the need of industry that uses relatively high loading level of the active material (9.0~9.2 mg cm-2) and 

a small content of conductive agent (2.5 wt%). Figure 3.2.9a exhibits the first charge and discharge 

curves of the BLMO and EGLMO electrode, respectively, between 3.0 and 4.3 V at 0.1 C rate (=13 mA 

g-1) at 24 oC. The BLMO electrode delivered a relatively high discharge capacity of 131 mAh g-1
 with 

the coulombic efficiency of 99% while the EGLMO showed a slightly lower capacity of 123 mAh g-1
 

with the coulombic efficiency of 100%. During the heating process, a small amount of Li and Ni in the 

surface layer was diffused into the host LiMn2O4, which led to the decrease in quantity of the Mn3+.40 

This could be the major cause for the decrease in the EGLMO’s initial discharge capacity. Also the 

decreased initial irreversible capacity of the EGLMO (Figure 3.2.9a) was due to the suppression of a 

solid electrolyte interphase (SEI) formation by the stable surface.44 Figure 3.2.9b exhibits the 

continuous cycling results of the BLMO and EGLMO, respectively, at 60 oC, and the discharge current 

density were maintained at 1C. The structural stability of the spinel cathode is directly related to the 

dissolution of Mn2+ ions into the electrolyte at elevated temperatures, and especially the temperature of 

60 oC has been widely regarded as the most critical temperature in the industries23. In addition, since 

reduction of Mn2+ ions has influences on the anode electrode regardless of using metallic lithium or 

graphite 34c, 37a, 37b, 40b, 45, it is very important to stabilize the surface structure of the spinel. After 

100cycles, the discharge capacity of the EGLMO retained approximately 85% of its initial capacity, 

while the BLMO showed the poor capacity retention of 56% at 60 oC. Also the discharge working 

voltage of the BLMO electrode dramatically decreased upon increasing the cycle number (Figure 

3.2.10). On the other hand, the discharge voltage of the EGLMO electrode maintained approximately 

4.0 V from 1st to 100th cycles. Ex-situ XRD was carried out to investigate a structure change of the 

BLMO and EGLMO after 100 cycles (Figure 3.2.11). The XRD peaks of both electrodes were 

significantly broadened compared to those of powder before cycling. After cycling, the manganese 

compounds such as MnF, MnF2
15 on the surface and the degraded crystallinity caused the broadening 

of XRD peaks. The XRD pattern of the BLMO showed the impurity phase of a tetragonal Li2Mn2O4 

(I41/amd), which was reported that under dynamic and non-equilibrium conditions, over-lithiated 

Li1+xMn2O4 phase was formed on the spinel surface as the degradation product of the cycled LiMn2O4 

at ambient and elevated temperature. 46 However, no impurity peaks were observed in the XRD pattern 

of the EGLMO. This was believed to be that the layered phase on the EGLMO’s surface suppressed the 

formation of tetragonal Li2Mn2O4 (I41/amd). The discharge capacity variations of the BLMO and 

EGLMO stored in the charged state at 60 oC are exhibited in Figure 3.2.9c and d, respectively. The 

capacity loss of the EGLMO was only 1% after storing for 2 weeks, whereas the BLMO showed 10% 

loss of its initial capacity. It has been well established that the effects of manganese content in the spinel 

and layered phase on their electrochemical performances were entirely different. In the case of the spinel 
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cathode material, the relatively higher manganese content contributes to its higher gravimetric capacity, 

but its negative effect is the decrease in cycling performance due to the manganese dissolution.40 On 

the other hand, the layered cathode material with relatively high manganese content exhibits a lower 

capacity but better cycling performance and thermal stability.47 As a result, the improved cycling and 

storage performance of the EGLMO at 60 oC could be related to the Mn-rich layered phase formed on 

the EGLMO’s surface. The newly developed material of the EGLMO has the advantages of the layered 

and spinel structures with high manganese contents. The bulk of spinel phase with a high manganese 

content delivers a high capacity because its valence state of manganese is +3.5 which shows the 

maximum capacity among the spinel materials. The layered phase on the EGLMO’s surface provides a 

longer cycle life and better thermal stability by acting as the protecting layer that prevents the bulk 

spinel from being exposed directly a highly active electrolyte at 60 oC. 
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Figure 3.2.9. a) The first charge-discharge curves of BLMO and EGLMO at 0.1C rate at 24 oC. b) 

Continuous cycling results of BLMO and EGLMO at 1C rate at 60 oC. Discharge capacity variation of 

c) BLMO and d) EGLMO after stored in the charged state at 0.1C rate at 60 oC. 
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Figure 3.2.10. Charge and discharge profiles of a) BLMO and b) EGLMO at 60 °C after 1st, 20th, 40th, 

60th, 80th, 100th cycles. 
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Figure 3.2.11. Ex-situ X-ray diffraction patterns of samples; as-prepared powders before cycling 

(black) and electrodes after 100 cycles at 60 oC (red). 
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Figure 3.2.12a and b show the charge and discharge capacities of the BLMO and EGLMO as a 

function of various C rates from 0.5 C (65 mA g-1) to 10 C (1300 mA g-1) between 3.0 and 4.3 V at 24 

oC. Either discharge or charge rate was fixed at 0.5 C rate. It is clearly shown that the rate capabilities 

of the EGLMO were much higher than that of the BLMO, especially at higher C-rates. For an example, 

the discharge capacity retention of the EGLMO electrode at 10 C rate was 74.2% (88 mAh g-1) of its 

discharge capacity at 0.5 C rate, while that of the BLMO electrode delivered only 35.2% (41 mAh g-1). 

Figure 3.2.12c and d show the discharge profiles of the BLMO and EGLMO as a function of 

temperature. With decreasing temperature, the EGLMO electrode exhibited much improved capacity 

retention relative to the BLMO. The capacity retention of the EGLMO and BLMO were 96% and 77% 

at -10 oC, 83% and 55% at -20 oC, respectively. 
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Figure 3.2.12. a) Charge and b) discharge capacity retention of BLMO and EGLMO as a function of 

various C rates from 0.5 C (65 mA g-1) to 10 C (1300 mA g-1) between 3.0 and 4.3 V at 24 oC. Discharge 

profiles of c) BLMO and d) EGLMO as a function of temperatures at 0.1 C rate. 
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In order to figure out the reasons why the EGLMO electrode presented higher rate capability 

and low temperature performance than the BLMO, we first performed an electrochemical impedance 

spectroscopy (EIS) which is a powerful technique of identifying the kinetics of Li ions in oxide cathodes. 

Figure 3.2.13a indicates the equivalent circuit of the impedance results with electronic resistance (Re), 

surface film resistance (Rsf), two overlapped semicircles and Warburg impedance, and Figure 3.2.13b 

and c show typical Nyquist plots of the BLMO and EGLMO at different temperature from 25 oC to 0 

oC. Even though it is very difficult to identify each of the above resistance value from the overlapped 

semicircles in the middle frequency region, it is obvious that the total impedance of the EGLMO is 

lower than that of the BLMO at any temperatures. Also the smaller circle of Rsf in the high frequency 

region supports that the side reactions were reduced in the present electrolyte on the surface due to the 

stable surface of the EGLMO. 
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Figure 3.2.13. a) Equivalent circuit for the electrochemical impedance of BLMO and EGLMO. Nyquist 

plot for b) BLMO and c) EGLMO at different temperatures from 25 oC to 0 oC. 
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Secondly, we measured lithium diffusion coefficient which is an important kinetic parameter of 

intercalation materials and was determined by galvanostatic intermittent titration technique (GITT). 48 

Before measurement, the cells were galvanostatically charged and discharged in two cycles at 0.1 C 

rate between 3.0 and 4.3 V at 24 oC. The GITT was employed at a constant current pulse of 13 mA g-1 

(=0.1C rate) for 40 min, and then an open-circuit stands for 60 min to relax the cell voltage to the steady 

state. Based on GITT measurement and corresponding data calculation, the lithium diffusion 

coefficients as a function of the stoichiometry δ are presented in Figure 3.2.14a and b. During the charge 

and discharge process, the lithium diffusion coefficient of the BLMO was almost similar to that of the 

EGLMO in the region of 0.5 < δ < 1.0. However, it dramatically decreased at some specific 

stoichiometry δ (0.05 < δ < 0.4 in charge process, 0.1 < δ < 0.5 in discharge process). In that 

stoichiometry region, the diffusivity of the EGLMO was much higher than that of the BLMO. Figure 

3.2.14c shows an Arrhenius plots of the BLMO and EGLMO, respectively, indicating the temperature 

dependency for the lithium diffusion coefficient obtained from Warburg impedance in the low frequency 

region (Figure 3.2.13). 39, 49 The calculated activation energies of the BLMO and EGLMO were 50.7 kJ 

mol-1 and 34.3 kJ mol-1, respectively. The improved kinetic parameters, lithium diffusion coefficient 

and activation energy, are related to the epitaxially grown surface of the layered phase. If the coating 

material only acts as a physical protection layer with defect, the lithium diffusion coefficient and 

activation energy should not be changed. The EGLMO has the stable surface which reduces the side 

reactions, and the surface phase is epitaxially connected to the host material without any defect, which 

provides the efficient path for lithium ion diffusion. Consequently, epitaxially grown nanoscale surface 

layer provides a chance for bare LiMn2O4 to show its innate properties not improved. 
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Figure 3.2.14. The lithium diffusion coefficients determined by the GITT curves as a function of the 

stoichiometry δ at current pulse of 13 mAg-1 during a) charge and b) discharge process. c) Arrhenius 

plots for lithium diffusion. 
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3. 2. 4. Conclusion 

In summary, the hetero-structure LiMn2O4 that has the thin layered phase formed on the surface 

of the spinel bulk phase was synthesized. The coexistence of the layered structure (R3̅m) and spinel 

structure (Fd3̅m) without forming any defect was confirmed via STEM analysis. The newly developed 

material enhanced the cycle performance and thermal stabilities at the high temperature of 60 oC as well 

as improved the charge-discharge rate capability at various temperature ranges compared to those of 

the spinel LiMn2O4. 
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3. 3. Ultra-fast lithium ion insertion/extraction properties of spinel cathode 

material for Li-ion batteries.   

 

3. 3. 1. Introduction 

Lithium-ion batteries (LIBs) have been succeeded in small-sized battery markets since being 

used for portable devices due to the advantages of high energy density, low self-discharge rate and long 

cycle life. 5b, 19c, 50 Nowadays, the LIBs are considered to be the energy storage of choice for future 

electric vehicles (EVs). However, the EVs with present battery technology take several hours to fully 

charge the battery. Also, the driving range will be sharply reduced if the vehicle runs under severe 

conditions such as low temperature, a burst of speed, high velocity, and so on. Therefore, the battery 

with high power capability should be developed.  

To meet the above requirements, 4V spinel cathode materials, LiMxMn2-xO4 (M=Al, Mg, Co, Ni, 

etc.), have received significant attention as a cathode material of batteries for their use in electric 

vehicles (EVs) due to its advantages of high power properties, low cost, abundance, high safety and 

environmental friendly.51 The spinel cathode materials (LMO) have a three-dimensional channel 

structure which is desirable for faster diffusion of lithium ion. Thus it offers fast charge and discharge 

properties compared to commonly used cathode materials such as layered LiCoO2 etc. In order to 

strengthen the rate capability of spinel cathode materials, the nanostructured morphologies have been 

proposed. The nanosized materials have the advantages of shorter distance of lithium diffusion and 

larger surface area, facilitates faster electrochemical reaction and resulting in higher rate capability than 

microsized bulk materials.33, 34d, 45, 52 However, it cannot fulfill high electrode density because of its 

larger surface-to-volume ratio. 36 Therefore, if the battery was manufactured by using the nanosized 

material, it should be bigger than that made by the microsized material in spite of their same cell capacity. 

The nanosized single particles agglomerated the microsized secondary particle may be a solution of 

electrode density issues. However, under high current operation, the electron transport from inner 

particle to the outermost surface should be delayed due to no conducting agent and large amount of 

grain boundary causing high overpotential.  

  Recently, as a solution of above drawbacks, our group reported carbon-coated spinel 

nanoparticle clusters. 36 The carbon layer was synthesized by sucrose carbonization. This concept 

acquired both advantages of nanosized and microsized materials: large surface area, short diffusion 

length and electrode density. Also the carbon coating layer provides facile electron pathway within the 
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secondary particle. This material affords fast lithium ion insertion/extraction resulting in significantly 

improved rate capability. However, the carbon coating by using organic compounds on the spinel 

cathode material is extremely difficult synthesis. For example, when the sucrose coated spinel 

LiMxMn2-xO4 (M=Al, Mg, Co, Ni, etc.) was heated for carbonization in either air or oxygen atmosphere, 

the carbon preferentially takes oxygen from spinel lattice leading to the formation of oxygen defects 

(Figure 3.3.1) because the solid phase has higher oxygen concentration than the gas phase. Surely, it is 

impossible that spinel materials stay in inert or reduction atmosphere without oxygen release. Therefore, 

practically possible synthesis method toward high rate capability should be proposed as an alternative 

approach of carbon coating.  
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Figure 3.3.1. The carbon coating on the spinel cathode material was carried out by using sucrose-

carbonization method. The coating amount of sucrose was 10 wt%. SEM images of a) bare b) heated at 

600 oC for 8min after sucrose coating, c) 20min and d) 60min. As can be seen in formation profiles e) 

and f), the plateau related to oxygen deficiency between 3.2 and 3.4V can be found. g) The carbon 

layers can help increase rate capability. However, h) the cycling performance became worse than bare 

electrode due to structural instability.  
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Herein, we report a new concept of composites with super-p and nanosized spinel material 

(Denoted as nanosized LMO) (Figure 3.3.2). The nanosized single particles obtained by ball-milling 

and the acid-treated super-p were reassembled by spray-drying method resulting in the synthesis of 

7~40 ㎛-sized secondary particles. This large particle ensured the high electrode density. Also the acid-

treat super-p whose surface was changed from hydrophobic to hydrophilic by nitric acid can be well 

mixed with nanosized spinel particles in water. Therefore, the super-p can be properly distributed in a 

secondary particle after spray drying to form spherical secondary particle, which can provide facile 

electron pathway when high current loaded. The developed material showed extremely high charge and 

discharge rate capability even at low temperature resulting from reduced polarization.  
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Figure 3.3.2. Schematic diagram of synthesis process and composite samples with nanosized spinel and 

two kinds of super-p. 
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3.3.2 Experimental Section 

The Bare Li1.015Al0.06Mn1.925O4 powder was synthesized via a typical sol-gel reaction and further 

heat treatment. A desired amount of Li(CH3COO)ㆍ2H2O, Al(NO3)3ㆍ9H2O, and Mn(CH3COO)2ㆍ

4H2O was dissolved in distilled water with equivalent amount of citric acid as a chelating agent. The 

aqueous solution was concentrated to produce sols and then dried at 100 oC. The dried sample was 

heated at 400 oC for 5h and then thoroughly mixed. The mixed powder was calcined at 770 oC for 10h 

to obtain the bare spinel material. The nanosized spinel powder was prepared by ball-milling for 10h. 

The acid treatment on super-P was carried out with 40ml of 0.05 M nitric acid solution and 2 g of super-

P. The mixture was stirred for 12 h, then filtered and washed several times to remove nitric acid. The 

obtained super-p was dried at 150 oC for 24 h. By using nanosized spinel powder and two kinds of 

super-p, the composite samples were prepared by spray drying process at 160 oC, then the dried powders 

were heated at 300 oC in inert atmosphere to eliminate residual moisture.  

The crystalline structures were confirmed by powder X-ray diffractometer (XRD, D/MAX-

2200 V, Rigaku) using Cu Ka radiation at 2θ = 10 °-80 °. The morphologies of three samples were 

checked by using scanning electron microscopy (SEM, S-4800, HITACHI). 

The cathode electrodes were composed of cathode materials, super-p and polyvinylidene 

fluoride as a binder (80:10:10 for composite electrodes and 72:18:10 for bare electrode, weight ratio). 

The galvanostatic charge-discharge cycling was performed by using CR2032 coin-type cell, which 

consisted of a cathode electrode and a lithium metal as an anode separated by the porous polypropylene 

film. Coin-type cells were assembled in an argon-filled glove box and 1.15M LiPF6 in ethylene 

carbonate/dimethyl carbonate/diethyl carbonate (3/4/3 vol.% Panax Staryle) was used as an electrolyte. 

Before electrochemical tests, the cells were galvanostatically charged to 4.5 V at 0.1 C rate, and kept at 

4.5 V until the current decreased to 0.02 C rate, then discharged to 3.0 V vs Li/Li+. The active material 

loading was 1 mg cm-2. The gravimetric capacities were calculated based on the weight of spinel 

materials. The electrochemical impedance spectroscopy (EIS, IVIUM) was carried out to check 

impedance from 0.05 to 250 kHZ frequency range on coin-type half cells at SOC 100% in temperature 

bath. The obtained results were analyzed by using ZView software. 
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3.3.3 Result and discussions 

The morphologies of samples, bare Li1.015Al0.06Mn1.925O4 (Denoted as BLMO), composite with 

super-p and nanosized particles (Denoted as CSLMO) and composite with acid-treated super-p and 

nanosized particles (Denoted as CASLMO) were confirmed by scanning electron microscopy (SEM). 

The BLMO synthesized by sol-gel reaction and further heat treatment resulted in irregular morphology 

(Figure 3.3.3a and b). After ball-milling, the nanosized single particles could be obtained (Figure 3.3.3c). 

By using this powder, two kinds of samples were synthesized. As can be seen, the CSLMO has a 

spherical morphology of 8-20 ㎛ sized secondary particle where the super-p and nanosized LMO 

coexisted in a particle (Figure 3.3.3d-f). However, it was confirmed that the nanosized LMO and super-

p were not well mixed. On the other hand, in the case of CASLMO, it looks denser than CSLMO, and 

nanosized LMO and super-p were evenly distributed in secondary particle (Figure 3.3.3g-i). These 

results of super-p distribution were matched with the energy dispersed X-ray analysis (Figure 3.3.4). 

As can be seen, there are some regions of red dots with higher concentration in a CSLMO particle, 

which are consistent with the agglomerated super-p (Figure 3.3.4a) On the other hand, in the case of 

CASLMO, the carbon elements are evenly distributed throughout the secondary particle (Figure 3.3.4b). 

It is believed that better distribution of super-P for CASLMO will provide more efficient electron 

pathway. Also the pellet densities of BLMO, CSLMO and CASLMO were 2.6 g/cc, 2.33 g/cc and 2.41 

g/cc, respectively. The slightly reduced pellet densities were attributed to the volume of super-p in 

secondary particles. The crystal structures of samples were identified by XRD analysis (Figure 3.3.5a). 

The patterns of three samples exhibited a well-defined cubic spinel phase of space group Fd3̅m without 

any discernible impurity peaks, which means there is no phase transition during synthesis process. The 

thermal gravimetric analysis (TGA) was carried out to confirm the amount of super-p. The rate of 

increasing temperature is 5 oC min-1. As can be seen in Figure xx, the content of super-p was 10 wt% as 

designed. (Figure 3.3.5b)  
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Figure 3.3.3. SEM images of (a) BLMO, (b) magnified image of (a), (c) BLMO after ball-milling, (d) 

CSLMO, (e and f) magnified images of (d), (g) CASLMO, and (h and i) magnified images of (g). 
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Figure 3.3.4. Energy dispersed X-ray mapping analysis of manganese and carbon of (a) CSLMO and 

(b) CASLMO. 
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Figure 3.3.5. (a) Powder XRD patterns of BLMO, CSLMO and CASLMO. (b) TGA results of 

CASLMO with scan rate of 5 oC min-1. 
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The electrochemical test of three electrodes were performed by coin-type half cells. The 1 C 

rate was fixed to 120 mA g-1. Figure 3.3.6a exhibits the first charge and discharge curves of the BLMO, 

CSLMO and CASLMO between 3.0 and 4.5 V at 0.1C rate (12 mA g-1) at 24 oC. The bare electrode 

delivered 117.1 mAh g-1, while the CSLMO and CASLMO showed slightly higher capacities of 120.5 

mAh g-1 and 120.5 mAh g-1, respectively. It can be explained by reduced overpotential. In Figure 3.3.6b, 

it can be known that the charge capacity of BLMO from constant voltage (CV) mode was larger than 

those of composite samples (CSLMO and CASLMO). The difference with the measured and real 

voltage is polarization and its value can be defined as an overpotential. The loss of capacity due to 

polarization can be achieved by using CV mode at the end of charge. The large amount of capacity at 

CV mode is consistent with the large overpotential. From this results, we can know that the composite 

electrodes has significantly reduced overpotential compared to BLMO.  

Figure 3.3.7 exhibits the charge capacities as a function of various C rates from 0.5 C (60 mA 

g-1) to 300 C (36 A g-1) between 3.0 and 4.5 V at 24 oC. The discharge current was fixed at 0.5 C rate. 

As can be seen in Figure 3.3.7a, the three electrodes showed similar charge capacities at 0.5 C. The 

capacity of BLMO dramatically decreased as increasing charging current because there is no conducting 

agent in secondary particles. It caused large amount of resistance at the electron transfer through grain 

boundary. However, the composite electrodes had much improved fast charging properties. The 

CSLMO and CASLMO had comparable capacity retentions until 10 C rate, whereas the charge rate 

capability of CASLMO was higher than that of CSLMO at higher C rate (> 10 C). The CSLMO has 

worse distribution of conducting agent in secondary particles. Some regions have higher concentration 

of super-p and others do not (Figure 3.3.4). When low current loaded, the amount of super-p surrounding 

nanosized LMO in low concentration region was enough to conduct certain amount of electrons, thus 

showing similar performance to CASLMO. However, the poor distribution of super-p provided 

insufficient electron pathway under higher current application leading to high overpotential, thus 

presenting worse charge rate capability. Consequently, the well distributed conducting agent acted a key 

role to electron conducting, therefore, the CASLMO showed the outstanding charge rate capability. For 

example, a cycle at 100 C rate takes only 26 seconds with the cell retaining 73% of its initial capacity. 

The discharge rate capabilities was also investigated by maintaining the charge rate of 0.5 C in the 

applied discharge current range between 0.5 C (60 mA g-1) and 1000 C (120 A g-1) (Figure 3.3.8). The 

results indicated similar trend to charge rate capability. The CASLMO presented the best discharge rate 

capability among three electrodes. It retained 98.8% at 10 C and 77.8 % at 500 C compared to its 

capacity at 0.5 C, while the BLMO and CSLMO showed worse capacity retention of 86.8% and 98.0 % 

at 10C, and 2.2% and 16.6% at 500 C, respectively. Also the CASLMO showed significant improvement 

in low temperature performance (Figure 3.3.9). At -10 oC, it exhibited superior capacity retention 
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compared to BLMO and CSLMO from 0.5 C rate to 200 C rate. Many factors could affect the battery 

performance at low temperature (< 0 oC). The viscosity of electrolyte increases resulting in low ionic 

conductivity, thus, the kinetics of electrochemical cell will be deteriorated.53 Also the charge delivery 

hinders leading to increasing the charge transfer and ohmic resistances.54 Therefore, the efficient 

structure for facile electron pathway of CASLMO facilitated the charge delivery to the surface of 

material resulting in the faster charge transfer reaction. Consequently, the CASLMO showed faster 

kinetic properties than CSLMO and BLMO at -10 oC.  
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Figure 3.3.6. (a) First charge-discharge curves of BLMO, CSLMO and CASLMO at 0.1 C rate (12 mA 

g-1) at 24 oC. (b) Expended image of (a). 
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Figure 3.3.7. (a) Charge capacity retention of three electrode as a function of various from 0.5 C (60 

mA g-1) to 300 C (36 A g-1) between 3.0 and 4.5 V at 24 oC. The discharge current was fixed at 0.5 C. 

Charge voltage profiles of (b) BLMO, (c) CSLMO, and (d) CASLMO.  
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Figure 3.3.8. (a) Discharge capacity retention of three electrode as a function of various from 0.5 C (60 

mA g-1) to 1000 C (120 A g-1) between 3.0 and 4.5 V at 24 oC. The charge current was fixed at 0.5 C. 

Discharge voltage profiles of (b) BLMO, (c) CSLMO, and (d) CASLMO. 
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Figure 3.3.9. (a) Discharge capacity retention of three electrode as a function of various from 0.5 C 

(60 mA g-1) to 200 C (24 A g-1) between 3.0 and 4.5 V at -10 oC. The charge current was fixed at 0.5 

C. Discharge voltage profiles of (b) BLMO, (c) CSLMO, and (d) CASLMO. 
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Figure 3.3.10a-c show the electrochemical impedance results of BLMO, CSLMO and 

CASLMO as a function of temperature from 25 oC to 5 oC. The cell was charged at 5 C at SOC 100%. 

As can be seen, with decrease in temperatures, total impedances of three electrode steeply increased. 

The BLMO electrode showed slightly lower impedance than composite electrodes, whereas it exhibited 

much highest values at the lower temperatures. Also the impedance of CASLMO presented slightly 

lower than that of CSLMO.  The activation energies (Ea) for charge transfer were calculated from 

temperature dependencies of EIS results by using Arrhenius equation which is described below 

𝑘 = Aㆍ𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇
) 

(k= rate constant of reaction, A is pre-exponential factor, R is gas constant, and T is absolute 

temperature.) 

The activation energies for charge-transfer reaction are given in Figure 3.3.8d. The values of BLMO, 

CSLMO and CASLMO were 68.1, 55.7 and 51.9 kJ mol-1, respectively. The one of factor of rate 

capability is the charge transfer reaction. The lower activation barrier indicates a higher charge transfer 

reaction kinetics in CASLMO.   

The higher rate capability depends on the polarization as well as the charge transfer reaction. 

The polarizations of three electrode were measured by means of galvanostatic intermittent titration 

technique (GITT). The constant current of 3 C rate (360 mA g-1) for 90 seconds and rest for 60 min to 

relax the cell voltage were alternately applied for GITT measurement during charge and discharge 

(Figure 3.3.11a and b). As can be seen in Figure 3.3.11c-f, the composite electrodes showed much lower 

overpotential throughout the entire state of charge (SOC) and depth of discharge (DOD). Also the 

polarization of CASLMO is smaller than that of CSLMO. The electrodes and materials which are used 

for battery are not ideal. The large size particle with polycrystalline structure has a lot of grain boundary. 

So the electron conduction from inside of particle takes relative longer time than outside. Also the 

sufficient amount of conductive agent is not added in electrode due to concern for decreasing cell 

capacity even though it is known that larger amount of conductive carbon results in higher rate capability. 

Hence, the rate determined step for fast charge and discharge may be the electron delivery. When the 

relatively high currents are applied, the lithium ions that are not reacted may be accumulated on the 

surface of electrode material because the lower kinetics of electrons from current collector and materials. 

As a result, the concentration gradient appears between the surface of material and inside of material. 

During the rest time after constant current pulse applied in GITT test, the concentration gradient will be 

reduced by accepting electrons until reaching equilibrium state, which leads to decreasing (charge) and 
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increasing (discharge) voltages (Figure 3.3.11 g and h). The CASLMO took the shortest time to be 

equilibrium state among three electrodes because of the facile electron pathway. Consequently, the 

lowest activation energy for charge transfer reaction and the smallest polarization of CASLMO during 

charge and discharge are ascribed to the best rate capability during three electrode.   
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Figure 3.3.10. Nyquist plot of (a) BLMO, (b) CSLMO and (c) CALMO as a function of temperatures 

from 25 oC to 5 oC. (d) Arrhenius plots of the charge-transfer reaction for BLMO, CSLMO and 

CASLMO.  
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Figure 3.3.11. GITT potential response during (a) charge and (b) discharge. Polarization of BLMO, 

CSLMO and CASLMO during (c) charge and (d) discharge. (e and f) expended images of the regions 

in (a and b), respectively. (g and h) expended images of the regions in (e and f), respectively.  
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3. 2. 4. Conclusion 

In, summary, we successfully synthesized microsized composite secondary particles consisting 

of super-p and nanosized spinel with minimizing the loss of electrode density. The acid treatment was 

carried out to change the state of surface from hydrophobic to hydrophilic, thus, super-p could be evenly 

distributed in a secondary particle when the water based solution was spray-dried, which was obviously 

observed by EDX analysis. As a result, the well mixed acid-treated super-p can provide more facile 

charge delivery compare to bare and composite with normal super-p. The newly developed material 

showed outstanding lithium ions insertion/extraction properties at -10 oC as well as 24 oC. The reasons 

are attributed to: 1) fast lithium ion diffusion in solid state due to nanosized primary particles, 2) lower 

activation energy for charge transfer reaction owing to facile electron pathway, and 3) low polarization 

during charge and discharge due to 1) and 2).  We believe that this concept could provide a direct path 

to improving battery performances leading to commercialization of high performance electric vehicles.  
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