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Abstact 
 

Polymer solar cells (PSCs) have gained a lot of attention due to their promising merits such as low 

cost, mechanical flexibility and solution processability for large area fabrication. Of various strategies, 

the surface plasmon resonance (SPR) effect using metal nanoparticles (MNPs), morphology control 

by processing additives, and ternary blend based bulkheterojunction (BHJ) are promising and efficient 

method to lead to maximizing the performance of PSCs. First, SPR effect from a localized 

electromagnetic surface wave at the metal and dielectric interface is effective way to enable active 

layer to absorb more incident light by field enhancement near MNPs. Second, morphology control by 

processing additives is one of the efficient methods to improve the PSCs accompanied with various 

morphology engineerings such as nanofibrilar structure, smooth surface, vertical phase separation etc.. 

Third, ternary blend sytem of PSCs is also promising engineering to achicve many advantages 

including compensated light absorption and tuning of built-in potential of BHJ.    

Here, I report the SPR effect using PEDOT electrode incorporated with silver nanopartices (Ag 

NPs) for highly efficient ITO-free PSCs and polymer light-emitting diodes (PLEDs). Ag NPs can be 

easily synthesized and then dissolved in PEDOT:PSS electorode. This PEDOT:PSS electrode with Ag 

NPs electrode contributes to increments in light absorption/emission in the active layer, respectively, 

by enhanced electric field distribution. I also report morphology engineering of active layer using 

various conjugated polymers and processing additives with thick active layer to obtain more light 

absorption and higher efficieny with thick active layer. PSCs based on semi-crystalline, low band gap 

(LBG) polymers are fabricated with single-cell architecture using diphenyl ether (DPE) as a 

processing additive. By using DPE additive, the semi-crystalline polymer, PPDT2FBT, form a well-

distributed nano-fibrillar networked morphology with PC71BM with balanced hole and electron 

mobilities. Notably, PPDT2FBT:PC71BM with DPE shows high efficiency event at ~ 1μm film 

thickness with well-formed isotropic morphology. DTDPPTT (P2) polymer also demonstrate 

bicontinuous interpenetrating donor:acceptor (D:A) network in both lateral and vertical direction of 

thick BHJ film with DPE additive. Finally, I present efficient ternary PSCs via the incorporation of 

both PC61BM and PC71BM mixture as mixed acceptors and the conjugated polymer, PTBT as a donor. 

This ternary blend system results in a remarkable improvement in the power conversion efficieny 

compared to binary mixtures of the components via enhanced light absorption by PC71BM and 

balanced chargetransport by PC61BM. These virious and efficient methods using plasmonic MNPs, 

morphology engineering, and ternary blend may offer possibility for commercialization of PSCs. 

 

Keywords: Polymer solar cells, surface plasmon resonance effect, metal nanoparticles, morphology 

control, processing additive, conjugated polymer, ternary solar cell. 
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Figure 4.5. Internal Quantum Efficiency for Conventional and Inverted Type PPDT2FBT Devices. 
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Figure 4.12. AFM images of P3HT:PC61BM films with different thicknesses on ITO/ZnO substrates. 

The top images are topographic images while the bottom images are phase images. RMS roughness 

values are included for each topographic image. All scan sizes are 2 μm × 2 μm. 
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annular dark-field images of the conventional and inverted structures, respectively. 

 

 

Figure 4.18. Cross-sectional TEM images of optimized PCDTBT:PC71BM devices. The top images (a, 

b, c) show conventional devices with the architecture of ITO/PEDOT/PCDTBT:PC71BM/Al. The 

bottom images (d, e, f) show inverted devices with the architecture of 

ITO/ZnO/PCDTBT:PC71BM/MoO3/Au. Images (a and b) are in focus while images (d and e) are 

defocused. Images (c and f) show high-angle annular dark-field images of the conventional and 

inverted structures, respectively. 
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Figure 4.19. Cross-sectional TEM images of optimized PTB7:PC71BM devices. The top images (a, b, 

c) show conventional devices with the architecture of ITO/PEDOT/PTB7:PC71BM/Al. The bottom 

images (d, e, f) show inverted devices with the architecture of ITO/ZnO/PTB7:PC71BM/MoO3/Au 

Images (a and b) are in focus while images (d and e) are defocused. Images (c and f) show high-angle 

annular dark-field images of the conventional and inverted structures, respectively. 

 

Figure 4.20. Energy dispersive X-ray spectroscopy of cross-sections. Vertical S atom distribution in 

cross sections of P3HT (a, d), PCDTBT (b, e) and PTB7 (c, f) devices in conventional (a, b, c) and 

inverted (d, e, f) architectures. 

 

Figure 4.21. TPC measurements of solar cells with active layers consisting of (a) 650 nm PPDT2FBT, 

(b) 350 nm PPDT2FBT, (c) 130 nm PPDT2FBT, (d) 70 nm PPDT2FBT, (e) 215 nm PTB7, (f) 185 nm 

PTB7, (g) 100 nm PTB7, and (h) 60 nm PTB7. Insets show the integrated charges collected as a 

function of time. Note that a negative voltage corresponds to an increased internal field in the solar 

cell. 

 

Figure 5.1. (a) Chemical structures of components of the active layer. (b) Device structure of solar 

cells. (c) Energy band diagram of materials used in solar cells.. 

 

Figure 5.2. (a) J-V curves and (b) EQE of P2:PC71BM PSCs with different D:A ratio. 

 

Figure 5.3. Current density-voltage (J-V) curves of P2:PC71BM PSCs prepared from (a) CF:DCB, (b) 

CB, and (c) CB:DPE as a function of thicknesses. 

 

Figure 5.4. (a) J-V curves and (b) EQE of P2:PC71BM PSCs with different additives. 

 

Figure 5.5. (a) Current density-voltage (J-V) curves, (b) external quantum efficiency (EQE), (c) UV-

vis absorption spectra, and (d) JSC dependence on light intensity of optimum devices prepared from 

different solvents. 

 

Figure 5.6. AFM topography (upper row) and phase images (lower row) of P2:PC71BM BHJ films 

with different additives, (a, e) DIO, (b, f) ODT, (c, g) CN, and (d, h) DPE. Scale bar is 1 μm.  

 

Figure 5.7. J-V characteristics of the devices prepared from (a) CF:DCB, (b) CB, and (c) CB:DPE as 

a function of light intensity.  
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Figure 5.8. Comparison of measured JSC from J-V characteristics and estimated JSC from optical 

simulation of P2:PC71BM PSCs with structure of ITO/PEDOT:PSS/active layer/Al as a function of 

active layer thickness.  

 

Figure 5.9. AFM topography images of BHJ films with optimum (top row), thin (middle row), and 

thick (bottom row) thickness that were prepared from CF:DCB (a, d, g), CB (b, e, h), and CB:DPE (c, 

f, i). The scale bar is 1 μm. 

 

Figure 5.10. Cross-sectional TEM images (a-c) and EDS S mapping (d-f) of optimum devices 

prepared from CF:DCB (a, d), CB (b, e), and CB:DPE (c, f), respectively. Scale bar is 100 nm. 

 

Figure 5.11. EDS C (red dots, left column) and S mapping (green dots, right column) of optimum 

BHJ film prepared from (a, b) CF:DCB, (c, d) CB, and (e, f) CB:DPE, respectively. Scale bar of EDS 

mapping is 100 nm. 

 

Figure 5.12. GIWAXS patterns of pristine polymer films prepared from CF:DCB (a), CB (b), and 

CB:DPE (c). d-f, GIWAXS patterns of P2:PC71BM BHJ films prepared from CF:DCB (d), CB (e), 

and CB:DPE (f). 

 

Figure 5.13. (a, c) In-plane and (b, d) out-of-plane linecuts of GIWAXS for pristine polymer (upper 

row) and blend films (lower row) prepared from different solvents. The Insets of Figure 5.13(b) and (d) 

indicate expanded out-of-plane linecuts for visualizing π-π face-on orientation. 

 

Figure 5.14. Transfer (upper row) and output (lower row) characteristics of OFET based on (a, d) 

pristine polymer prepared from CB and (b, c, e-g) blend films prepared from different solvents. 

Bottom-gate/bottom-contact on a Si/SiO2 substrate with a channel length of 160 μm and a channel 

width of 1000 μm are used for OFET characterization. n-decyltrichlorosilane (DTS) was used as the 

self-assembled monolayer on Si/SiO2 substrate. 

 

Figure 5.15. J-V characteristics of (a) hole- and (b) electron-only devices using P2:PC71BM BHJ 

films prepared from different solvents. Blue lines indicate SCLC fits of curves based on Mott-Gurney 

relationship. 
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Figure 6.1. a) Schematics of a ternary blend BHJ solar cell with chemical structures of PTBT, 

PC61BM, and PC71BM and b) energy band diagram of the ternary blend device. 

 

Figure 6.2. a) J-V characteristics, b) IPCE curves, and c) absorption spectra of ternary blend BHJ 

solar cells with changing a blend ratio of PTBT:PC61BM:PC71BM.  

 

Figure 6.3. a) JSC, FF, and b) PCE for the ternary blend BHJ solar cells with changing the 

composition in the photoactive layer. 

 

Figure 6.4. AFM images of PTBT:PC61BM:PC71BM blend films. a), h) 1.0:2.0:0, b), i) 1.0:1.4:0.6, c), 
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Figure 6.5. 2D-GIXRD images with changing the (PTBT:PC61BM:PC71BM) blend ratio. a) 1.0:2.0:0, 
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Figure 6.6. FET characteristics of PTBT itself (a, b) and composite films with changing a blend ratio, 
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Chapter 1. Introduction 
 

1.1 Backgound of Organic Solar Cells (OSCs) 
The discovery of solar cells with photo voltaic effect were begun by Becquerel who found a photo 

current in 1839.1 First, Adams and Smith made reported photoconductivity by use of selenium in 1873 

and 1876, respectively. Pochettino and Volmer discovered anthracene as a first organic compound 

showed photoconductivity in 1906 and 1913, respectively.2 In the 1950s and 1960s, the promising 

utilization of organic materials as photo-sensitizers for imaging system was recognized by many 

researchers. The increasing scientific interest and concentration for commercial potentials resulted in 

increased research into the photoconductivity and related field. In the 1960s, it was discovered that 

many dyes had semiconducting properties. 

After the oil crisis in the 1970s, immense efforts were devoted to the development of photovoltaic 

cells and the industry tried to begin back to nature because manufacturing and costs grew, and the 

manufacturing facilities for producing the photovoltaic modules from silicon-based p-type and n-type 

junction solar cells were made in many countries. Afterward, low-cost solar cells were required for 

use generally, and also organic materials are utilized for the photovoltaic cell. 

Tang et al. reported two organic materials, copper phthalocyanine (CuPc) and perylene 

tetracarboxylic derivatives in use of organic solar cells, which showed power conversion efficiency of 

0.95% in 1986.3  

One of the major breakthroughs in organic solar cell technology was the adoption of C60 fullerene 

and its derivatives (such as [6,6]-phenyl-C61-butyric acid methyl ester, PCBM) to replace the n-type 

molecules in organic solar cel devices. Owing to their strong electronegativity and high electron 

mobility, C60 derivatives have become standard n-type molecules in organic solar cells. 

In the early 1990s, Heeger et al. and Yoshino et al. independently demonstrated electron charge 

transfer between a conjugated polymer and fullerene derivatives.4, 5 They observed an extremely fast 

photoinduced electron transfer process of around 50–100 fs, which dominates over all other 

photophysical processes present. These discoveries provided a solid foundation for organic solar cell 

technology. In 1993, researchers made the first demonstrations of planar heterojunction solar cells.  

The discovery of this result resulted in the development of organic solar cells via the polymer-

fullerene composite. In addition, Yu et al. improveed the power conversion efficiency of organic solar 

cells by introduction of bulk heterojunction structure.6 Recently, power conversion efficiencies of 

organic solar cells have been achieved up to 10% by using new conjugated polymer, device 

architectures and various technics.  
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1.2 Physics of OSCs 
 

1.2.1 Principle of OSCs 

The solar cell is the device that generates electricity from the sunlight. Fisrt, an active layer absorbs 

photons in the device, and second electron-hole pair is generated as an exciton under illumination 

state. Third, the exciton diffuses to the donor–acceptor (DA) interface to be dissociated into free 

charge. Afterwards, electrons and holes are transfered to each electrode via their corresponding 

percolation pathway.7 Four main steps are described as shown in Figure 1.1; i) absorption of photon 

(ηA), ii) diffusion of exciton (ηED), iii) dissociation of exciton and charge transport of electron and 

hole (ηCT), vi) charge collection (ηCC). The efficiency is the result of each process.  

 
These four processes determine the solar cell performance closely connected with external 

quantum efficiency (EQE) for the device. EQE is defined as a percentage of the number of charge 

carriers collected at the electrode under short-circuit condition to the number of photons incident on 

the device.8 EQE can be expressed as the product of the above steps. 

 

EQE = ηA × ηED × ηCT × ηCC 

 

 
 

Figure 1.1. Main processes for generating the electricity under the illumination in the device. 
 

Absorption of Photon (ηA) 

The absorption of photon is determined from the absorption spectral band, optical absorption 

coefficient, and thickness of a photoactive layer, as well as internal reflection. Most of 
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semiconducting polymers (e.g., P3HT, MDMO-PPV, etc) have a bandgap larger than 2 eV, which 

limits light absorption range less than 650 nm. Therefore, only a small portion of sunlight can be 

absorbed in polymer solar cells. Usually, the thickness of an active layer is in the order of 100 nm to 

avoid exciton and charge tranport loss. To well balance sufficient light absorption and efficient charge 

transport, both a wide absorption spectral band and a high absorption coefficient become important 

for absorbing enough sunlight. The absorption coefficients of conjugated polymers were reported to 

be much higher than that of silicon so that a thin layer (e.g., 100 nm) of polymer is enough to absorb 

sufficient light. 

 

Exciton diffusion (ηED) 

The efficiency of exciton diffusion to a DA interface is related to its exciton diffusion length (LD) 

and distance (Li) between photoexciton location and DA interface which serves as a dissociation 

center.9 The LD is equal to (Dτ)1/2, where D is diffusion coefficient and τ is exciton lifetime.10 Excitons 

can diffuse to a DA interface with Li ≤ LD, otherwise they may recombine with a reduced ηED. 

Typically, exciton diffusion length is in the range of 4-20 nm for conjugated polymers.11-13 

 

Exciton dissociation and charge transport (ηCT) 

The efficiency of exciton dissociation into free holes and electrons relies on DA LUMO energy 

offsets and internal electric field at a DA heterojunction.8 From current understanding, the minimum 

energy required to dissociate an exciton in a conjugated polymer is what is needed to overcome the 

exciton binding energy.14 This energy can be provided by the offset between the LUMO energy levels 

of the donor and the acceptor. 

The ηCT is charge transport efficiency. The holes are transported in a conjugated polymer, while the 

electrons are transported in an inorganic semiconductor. Both the donor and acceptor materials are 

required to form highly efficient percolation networks spanning the entire active layer to provide 

efficient charge transport.15 The polymers need to have a higher degree of planarity for efficient 

backbone stacking for a high hole mobility. Through the treatments such as thermal and solvent 

annealing, the polymers should also be able to self-assemble into a more organized structure.  

 

Collection of charge-carriers (ηCC) 

It is the fraction of the charges transported from the active layer to the electrodes with respect to 

the total free charges that are supposed to transport to the electrodes. The ηCC depends on the energy 

levels of the active layer, the electrodes and the interface between them.8 
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1.2.2 Characterization of OSCs 

 Solar cell efficiency can be calculated from its current densityvoltage (J-V) characteristic curves. 

From such curves, open circuit voltage (VOC), short-circuit current density (JSC) and fill factor (FF) can 

be obtained. Then energy conversion efficiency can be determined by equation 1.1 

 

𝜂𝜂 = 𝐽𝐽sc 𝑉𝑉oc 𝐹𝐹𝐹𝐹
Ps

× 100  (1.1) 

 

Where PS is the incident light power density. A standard test condition for solar cells is Air Mass 

1.5 global (AM 1.5 G) with an incident power density of 100 mW cm-2
 at a temperature of 25° C. 

Equivalent circuit of a solar cell is shown as Figure 1.2. A series resistance (RS) originates from 

contact and bulk semiconductor, and a shunt resistance (Rsh) comes from poor diode contact. The J-V 

characteristics can be described as equation 1.2,16  
 

𝐽𝐽 = 𝐽𝐽0 �exp �q(𝑉𝑉−𝐽𝐽𝑅𝑅sA)
nKT

� − 1� +  𝑉𝑉−𝐽𝐽𝑅𝑅sA
𝑅𝑅shA

− 𝐽𝐽ph   (1.2) 

 

Where k is Boltzmann’s constant, T is temperature, q is elementary charge, A is device area, n is 

ideality factor of the diode, J0 is reverse saturation current density, Jph is photocurrent, RS is series 

resistance and Rsh is shunt resistance. The J-V curves and photovoltaic parameters including VOC and 

FF strongly depend on the n, J0, RS, and Rsh.  

 
 

Figure 1.2. The equivalent circuit for solar cell. 

 

Figure 1.3 shows typical dark and illuminated current density-voltage (J-V) curves, in which three 

distinctive regions can be seen.17 The first (I) is the linear region in negative potentials and low 

positive potentials, in which the current density is dominated by the shunt resistance (Rsh). The second 

(II) is the region at mediate positive regions where the curve shows an exponential behavior and the 
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current density is related to the diode. The third (III) is another linear region in high positive potentials 

where the current density is related to the series resistance (RS).17  

The ideality factor (n) is a figure which shows how closely a diode behaves like an ideal diode and 

it is typically deviated from the ideal by recombination in the junction. In polymer-fullerene solar 

cells that can be pictured as an ‘‘extended pn junction’’, recombination can happen at the DA interface 

(junction) when the separated electrons and holes meet,18 causing n to deviate from 1. Thus, the 

ideality factor (n) can be regarded as an indicator of DA morphology, phase separation and their 

interfacial area. Waldauf et al. reported that bulk heterojunction solar cells with their active layers 

made from the same production batch have comparable diode idealities, indicated by similar slopes in 

the exponential regime of their J-V curves. It was also found that different solvents led to different 

morphologies in organic solar cells, resulting in different idealities.19  

The reverse saturation current density (J0) is also an important parameter affecting the J-V curves 

in the exponential regimes and thus cell performance. The J0 is an indicator of how many charges can 

overcome the energetic barrier in the reverse direction. These charges are regarded as minority 

charges at the donor/acceptor interface. In a typical pn junction, J0 can be described as equation 1.3  

 

𝐽𝐽0 = 𝐽𝐽i exp �−qф
nKT

�  (1.3) 

 

Where Ji depends on material purity and f is energetic barrier voltage. ф was found to be in good 

agreement with energy difference of the acceptor’s LUMO and the donor’s HOMO. The J0 value 

increases with increasing temperature (T), but decreases as the material quality (purity) and energetic 

barrier improve.  

The series resistance (RS) is another parameter that affects the J-V characteristics and solar cell 

performance. The RS results from limited conductivity of organic layer, contact resistance between 

organic layer and its corresponding electrodes, and connecting resistance between the electrodes and 

external circuit. The RS can reduce the FF and it can also reduce the JSC if it is too high. Generally the 

RS has no impact on open circuit voltage (VOC) since the entire current flows through the diode at the 

VOC condition, but no current flows though the RS. However, at the points close to the VOC, the RS 

greatly affects the J-V curves, providing a simplified method to estimate the RS by measuring the 

slope of the J-V curves in the regime close to the VOC. The RS should be minimized to reduce the 

energy loss, especially in large area solar cells.20  

The shunt resistance (Rsh) is also a parameter affecting the J-V characteristics and solar cell 

performance. The Rsh may be related to the device structure and film morphology. For example, Rsh 

can be lowered by the leakage current through the pinholes and recombination of charge carriers in 

the devices.21 The morphology and thickness can be processed with care to reduce the pinholes and 
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recombination in the devices so that the Rsh can be increased. The Rsh needs to be maximized to reduce 

the power loss caused by the current that by passes the solar cell junction and load through an 

alternate current path from the low Rsh. A small Rsh lowers the current flowing through the diode 

(junction) and thus reduces the VOC. A simplified way to approximately calculate the Rsh is to measure 

the slope of the J-V curves in the regime close to the JSC.  

 

 
 

Figure 1.3. J-V curves of solar cell. 

 

The above discussed n, J0, Rs and Rsh can strongly affect the photovoltaic parameters including VOC, 

FF, JSC and cell efficiency (η). VOC is defined as the voltage across the cell under illumination with a 

zero current at which the dark current and short circuit photocurrent was exactly cancelled out. By 

solving the current density verse voltage equation (equation 1.3) at J=0 and V= VOC can be derived as 

equation 1.4 

 

𝑉𝑉oc = nKT
q

ln �𝐽𝐽ph
𝐽𝐽0

+ 1 − 𝑉𝑉oc
𝐽𝐽0𝑅𝑅sh

�  (1.4) 

 

Figure 1.4 shows the dependence of VOC on n and J0, calculated using equation 1.5 that is derived 

from equation 1.4 by assuming an infinitely large Rsh.  

 

𝑉𝑉oc = nKT
q

ln �𝐽𝐽ph
𝐽𝐽0

+ 1�  (1.5) 
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When the Rsh is not large enough, it can also affect the VOC of organic solar cells.  

The FF is greatly affected by the RS and Rsh. The relationship has been reported previously. High 

FF can be achieved with low RS and high Rsh (ideally RS = 0, Rsh = ∞). Therefore, the RS needs to be 

minimized and the Rsh should be maximized to ensure a high FF. The dependence of FF on RS and Rsh 

can be approximated as equation 1.6 

               𝐹𝐹𝐹𝐹(𝑅𝑅s,𝑅𝑅sh) = 𝐹𝐹𝐹𝐹(0,∞)[�1 − 𝐽𝐽sc𝑅𝑅s
𝑉𝑉oc

� − ( 𝑉𝑉oc
𝐽𝐽sc𝑅𝑅sh

)]                 (1.6) 

 

Another useful measurement is the incident photon-to-current conversion efficiency (IPCE), which 

is also called EQE, for monochromatic radiation. The IPCE value is the ratio of the observed 

photocurrent divided by the incident photon flux, uncorrected for reflective losses during optical 

excitation through the conducting glass electrode. The IPCE is a percentage of incident photons 

converted to electrons and predominantly coincident with the absorbance spectrum of the solar cells. 

 

 IPCE = number of electrons through the external circuit
number of photons incident

            (1.7) 

= [1240 (eV nm)][photocurrent density(µA cm−2) 
[wavelength (nm)][irradiation(mW cm−2)]

  

 

Solar irradiance varies with wavelength and roughly traces out a curve in the visible and infrared 

regions. Additional changes in intensity occur because of different pathways by which the sun’s rays 

traverse through the earth’s atmosphere. The property of light illuminated on a solar cell is expressed 

by Air Mass which is a measure of how absorption in the atmosphere affects the spectral content and 

intensity of the solar radiation reaching the earth’s surface.  
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Figure 1.4. Reverse saturation current and ideality factor depending on different VOC. 

 

 

1.3 Development of Polymer Solar Cells (PSCs) 
The polymer solar cells (PSCs) are fabricated through the solution-process and have promising 

potential to achieve the low-cost solar energy harvesting,due to their many advantages such as various 

material and easy manufacturing techniques. The PSCs can be possibly applied to the flexible 

electronic devices and semitransparent solar devices in windows, and also to building applications and 

even for photon recycling in liquid-crystal displays. Various approaches, such as surface plasmon 

effect using metal nanoparticels, morphology engineering of bulkheterojunction film, and ternary 

blend based solar cells, have resulted in enhanced device performance. 

 

1.3.1 Surface plasmon resonace (SPR) effect 
 

Plasmonic metallic structures are characterized by their strong interaction with resonant photons 

through an excitation of surface plasmon resonance (SPR). SPR can be described as the resonant 

photon-induced collective oscillation of valence electrons, established when the frequency of photons 

matches the natural frequency of surface electrons oscillating against the restoring force of positive 

nuclei. The resonant photon wavelength is different for different metals. For example, gold, silver, and 

copper nanostructures exhibit resonant behavior when interacting with ultraviolet (UV) and visible 

(vis) photons. Because a large fraction of the abundant solar flux consists of UV-vis photons, these 

noble metals are of particular interest. The resonant wavelength and SPR intensity depend not only on 
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the nature of the metal, but also on the size and shape of metallic nanostructures22-25 By manipulating 

the composition, shape and size of plasmonic nanoparticles, it is possible to design nanostructures that 

interact with the entire solar spectrum and beyond (Figure 1.5).26, 27  

 

 
Figure 1.5. Extinction spectra of a) different types of metal nanoparticles, b) different shape of metal 

nanoparticles, and c) silver nanocubes with different size.  

 

Plasmonic structures can offer at least three ways of reducing the physical thickness of the 

photovoltaic absorber layers while keeping their optical thickness constant.28 First, metallic 

nanoparticles can be used as subwavelength scattering elements to couple and trap freely propagating 

plane waves from the Sun into an absorbing semiconductor thin film, by folding the light into a thin 

absorber layer (Figure 1.6a). Second, metallic nanoparticles can be used as subwavelength antennas 

in which the plasmonic near-field is coupled to the semiconductor, increasing its effective absorption 

cross-section (Figure 1.6b). Third, a corrugated metallic film on the back surface of a thin 

photovoltaic absorber layer can couple sunlight into SPP modes supported at the metal/semiconductor 

interface as well as guided modes in the semiconductor slab, whereupon the light is converted to 

photocarriers in the semiconductor (Figure 1.6c). 

 

 
Figure 1.6. a) Light trapping by scattering from metal nanoparticles at the surface of the device. Light 

is preferentially scattered and trapped into the semiconductor thin film by multiple and high-angle 

scattering, causing an increase in the effective optical path length in the cell. b) Light trapping by the 
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excitation of localized surface plasmons in metal nanoparticles embedded in the semiconductor. The 

excited particles near-field causes the creation of electron–hole pairs in the semiconductor. c) Light 

trapping by the excitation of surface plasmon polaritons at the metal/semiconductor interface. 

 
Metal nanoparticles 

The introduction of metal nanoparticles is an effective strategy for enhancing the performance of 

polymer solar cells because of its easy application to device fabrication. Various designs using metal 

nanoparticles have been extensively explored for inorganic solar cells.28 In OSCs, metal nanoparticles 

with different types, concentrations, shapes, sizes, distributions, etc. have been introduced into various 

layers and at interfaces within the devices.29, 30 

 

Metal nanoparticles outside the active layer 

 

Device structure of OSC with metallic nanoparticles outside the active layer is as shown in Figure 

1.7a. Various method such as vapor phase deposition, pulse-current electrodeposition, and thermal 

annealing, have been used to deposit metal nanoparticles on ITO or inside a PEDOT:PSS buffer 

layer.31-33 Metal nanoparticles synthesized by chemical method were assembled on top of or embedded 

in a PEDOT:PSS layer (Figure 1.7 b).34-36 The dependence of the localized surface plasmon 

resonance (LSPR) on the size and composition of the nanoparticles have been investigated, and there 

were many reports on the enhancement in the PCE of OSCs by LSPR of metal nanoparticles. For 

instance, the PCEs of OSCs based on P3HT:PCBM as the active layer were increased by 20~70% by 

adding Ag or Au nanoparticles within the PEDOT:PSS buffer layer.36, 37 As shown in Figure 1.7c, 

LSPR effect of Au nanoparticles enhanced the photocurrent by increasing light absorption in the 

active layer. The addition of Au nanoparticles (~15 nm in diameter) into PEDOT:PSS layer led to the 

enhancement in PCE from 1.99% to 2.36% in OSC based on poly(2-methoxy-5(20-ethylhexyloxy)-

1,4-phenylenevinylene (MEH-PPV) as the active layer.38 In order to enhance the plasmon excitation 

and far-field scattering, Au nanowire and nanomeshes with random distribution were also introduced 

at the interface between PEDOT:PSS and ITO layers, and improved PCE (Au nanowires: 2.31% → 

2.45%, Au mesh: 1.9% → 3.2%).39 The introduction of a mixture of Ag and Au nanoparticles (40~50 

nm in diameter) into PEDOT:PSS layer showed a PCE of 8.67% in OSC based a polythieno[3,4-b]-

thiophene/benzodithiophene (PTB7) and PC71BM. Cooperative plasmonic effect from dual resonant 

enhancement of Ag and Au nanoparticles resulted in 20% increase in PCE, and this enhancement was 

larger than those of devices with only Ag or Au NPs in same buffer layer.40  
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Figure 1.7. Outside type of metal nanoparticles in the active layer for OSCs; a) schemetic of OSC 

with plasmonic nanoparticles outside the active layer. b) SEM image of PEDOT:PSS layer with 

embedded gold nanoparticles c) J-V cruve of polymer solar cells with (plasmonic device) and without 

(reference device) Au nanoparticles dispersed in the PEDOT:PSS layer. 
 

Recently, surface modification of metal nanoparticles for manipulating chemical and electrical 

properties led to the enhancement in PCE and device stability.41, 42 For example, plasma-polymerized 

fluorocarbon (CFx)-modified Ag nanoparticles embedded at the interface between ITO and OSC 

layers enhanced the PCE of a zinc phthalocyanine (ZnPc): fullerene-based OSCs from 2.7% to 3.5%. 

This enhancement was attributed to increased light absorption in the active layer due to broadband 

scattering from the Ag nanoparticles. The CFx played important role to improve charge collection at 

the electrode/organic interface due to an increase of 1 eV in the work function of the modified 

electrode. In addition, metallic nanoparticles or clusters were also applied to enhance the PCE of 

tandem solar cells. Originally, Forrest’s group proposed that metallic clusters (5 nm-diameter Ag 

clusters) can be effective recombination centers for electrons and holes at multiple junction interfaces 

of tandem solar cells.43 More recently, metallic nanoparticles act as a sub-wavelength scattering 

element which couples and traps freely propagating plane waves in the absorbing OSC layers.44 For 

instance, Au nanoparticles (~72 nm in diameter) were deposited in the interconnecting layer of an 

inverted tandem polymer solar cell consisting of a cell based on a P3HT:indene-C60 bis-adduct 

(IC60BA) and another based on poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-

(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT):PC71BM, and resulted in an enhancement of PCE from 

5.22% to 6.24%.45 In addition to light scattering effect, the introduction of the metallic nanoparticles 

can affect the electrical properties of OSC devices. For instance, PEDOT:PSS layer with Ag 

nanoparticles on top of the ITO substrate remarkably reduced series resistance, and improved the 

performance of P3HT:PCBM OSCs.46 Since the nanoparticles were located relatively far from the 

active organic layer, the absorption enhancement resulted mainly from light concentration/scattering 

from the LSPR modes of the nanoparticles rather than any near-field enhanced LSPR modes. In 

summary, when plasmonic materials including metallic nanoparticles, nanowires and nanomeshes 

were placed outside the active light-harvesting layer, strong localized plasmon field enhancement 

and/or increased light scattering enhanced device performances. 
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Metal nanoparticles inside the active layer 

 

Incorporation of metallic nanoparticles into the active layers can take advantage of strongly 

confined field of the LSPR and more efficient light scattering within the active layers, as shown in 

Figure 1.8. It is generally believed that small metallic nanoparticles (usually smaller than 20 nm in 

diameter) can act as sub-wavelength antennas in which the enhanced near-field is coupled to the 

absorbing OSC layer(s), increasing its effective absorption cross-section; while large nanoparticles 

(e.g., larger than 40 nmin diameter) can be used as effective subwavelength scattering elements that 

significantly increase the optical path length of the sunlight within the active layers.47-50 Because of 

solution-processability if OSCs, metallic nanoparticles are easily dispersed into the active layer. 

Tuning geometric parameters, such as the size and shape of the metal nanoparticles, can promote 

interaction between longitudinal and transverse SPP modes supported in the embedded nanoparticle 

array/chain/cluster in the active layer. It can also lead to absorption enhancement in single-junction 

and multi-junction or tandem solar cells through several different optical and electrical mechanisms.51-

54 For instance, 70 nm Au nanoparticles and 40 nm Ag nanoparticles were blended into bulk 

heterojunction solutions, increasing the PCE from 3.54% to 4.36% for P3HT:PC71BM OSC devices, 

from 3.92% to 4.54% for poly[[4,4 ′-bis(2-ethylhexyl)dithieno(3,2-b:2′,3′-d)silole]-2,6-diyl-alt-

[4,7-bis(2-thienyl)-2,1,3-benzothiadiazole]-5,5′-diyl] (Si PCPDTBT) :PC71BM devices, and from 5.77% 

to 6.45%  or from 6.3% to 7.1% for PCDTBT:PC71BM devices at an optimized blend ratio of 5 wt% 

Au nanoparticles and 1 wt% Ag nanoparticles.49, 50 These relatively large metal nanoparticles 

efficiently scatter the incident light, increase the optical path length and therefore enhance the optical 

absorption as shown in Figure 1.8b. In addition, it was proposed that large metallic nanoparticles can 

transport holes more efficiently, providing an additional contribution to the improved current density 

(see Figure 1.8c) and PCE. Recently, larger Ag nanowires were also mixed with P3HT:PCBM blends 

and an enhancement in PCE from 3.31% to 3.91% was achieved.55 Chemically synthesized Ag 

nanoplates with well-controlled shapes and mixing ratios were also embedded into the active layers of 

OSC devices and led to the enhancement of PCE from 3.2% to 4.4% in devices based on 

P3HT:PC71BM and from 5.9% to 6.6% in devices based on PCDTBT:PC71BM, respectively, and it 

was suggested that metallic nanowires and nanoplates can provide greater enhancement than small 

nanoparticles due to potentially improved electron transport and larger scattering cross-sectional 

areas.55, 56 To simultaneously achieve SPR enhancement by small nanoparticles and scattering effect 

by large nanoparticles, combination of surfactant-free Au NPs (1.5-20nm) and 40nm Au nanoparticles 

was successfully introduced into the P3HT:PCBM active layer, leading to the enhancement in PCE 

from 2.64% to 3.71%.47 In addition, simultaneous benefits of placing metallic nanostructures outside 



13 

 

and inside the active layers can be possible by incorporating metallic nanoparticles into multiple 

polymer layers (e.g., buffer layers and active layers).57 Since there is a concern about energy loss 

(such as non-radiative decay, charge-carrier recombination, and quenching of excitons) caused by 

direct contact between metal nanoparticles and active layer, it is critical to fine tune the concentration, 

dispersion, and size of metal nanoparticles when incorporating them into the OSC active layers.58 It 

was reported that Ag nanoparticles tended to phase segregate from P3HT:PCBM polymer blends at 

high concentrations and resulted in decreased carrier extraction.59 Incorporating Au nanoparticles at 

the interface between P3HT:PCBM and PEDOT:PSS resulted in PCE enhancement from 1% to 2.4%. 

However, this very large enhancement in PCE does not seem consistent with the reported 

P3HT:PCBM absorption of only 30%.60 Current investigations have focused on the potential benefits 

of introducing different metallic nanoparticles (e.g., Ag, Al, Au, Cu, etc.) to improve device 

performance.61 For example, 6 nm Ag or 5 nm     in poly(3-

octylthiophene) (P3OT):C60 active layer, resulting in improved electrical conductivity and an PCE 

enhancement from 0.7% to 1.9%.62 Ag nanoparticles in the P3HT:PCBM layer improved the 

structural and morphological properties of the composite blend, leading to better device performance 

and device stability under air atmosphere.63, 64 On the other hand, 20 nm Cu nanoparticles embedded 

inside P3HT layers reportedly enhanced the dissociation of excitons without increasing the P3HT 

optical absorption. Although various metallic nanoparticles dispersed in active layer enhanced light 

absorption, SPR effect of metal nanoparticles on device performance were not fully revealed.65, 66 

Therefore, the mechanism of SPR effect improving the optical and electrical properties of the active 

layer need to be further investigated when metal nanostructures (e.g., nanoparticles, nanowires, 

nanoplates, etc.) were introduced inside active layer.  

 

 
Figure 1.8. Inside type of metal nanoparticles in the active layer for OSCs; a) schemetic of OSC with 

plasmonic nanoparticles inside the active layer. b) Absorption spectra of the plain PCDTBT:PC71BM 

BHJ film without and with 1wt% Ag clusters (40nm). The insets show light trapping from scattering 

and excitation of the LSPR. c) the J-V curves of PSCs using the PCDTBT:PC71BM blend without and 

with Ag clusters (1 wt%) with different size of particles.  
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1.3.2 Morphology Engineering of Bulkheterojunction Film 
 

Development of Materials 

 

The development of polymer solar cells (PSCs) has always been accompanied by innovations in 

materials science. Figure 1.9 shows the chemical structures of some representative materials. One of 

the earliest PSC polymers is poly[2-methoxy-5-(2’-ethylhexyloxy)-p-phenylene vinylene] (MEH-

PPV), which was developed by Wudl et al. Wudl also invented one of the most important fullerene 

derivatives, PCBM8, which represents a milestone in the development of PSC acceptors and is still 

widely used today. In 1995, Yu et al. blended MEH-PPV with C60 and its derivatives to give the first 

PSC with a high PCE.6 This work opened up a new era of polymer materials for use in solar energy 

conversion. After significant optimization, researchers achieved PCEs of more than 3.0% for PPV-

based PSCs.67, 68 However, further improvement was limited by the relatively low hole mobility and 

narrow light absorption range. Soluble polythiophenes, especially poly(3-hexylthiphene) (P3HT)69, 

with their higher hole mobility70 and therefore a broader spectrum coverage than MEH-PPV, have 

become a standard for PSC materials in the 2000s. Morphology optimization71, 72 has provided PCEs 

of 4–5%, thus attracting worldwide interests in PSCs. 

 
Figure 1.9. Chemical structures of prominent electron donors and acceptors used in PSCs. 

 

Many more high-performance polymers have been developed in recent years. One of these is poly 

[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b’]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] 
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(PCPDTBT), a low-bandgap polymer whose absorption extends up to 900 nm. PSCs made from this 

polymer have showed an initial efficiency of around 3%.73 However, by incorporating alkanedithiol 

additives, researchers were able to achieve efficiencies of around 5.5%.74 Leclerc et al. developed 

poly [N-9’’-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)] 

(PCDTBT), which gave a PCE of 3.6%.75 In 2009, researchers increased this to 6.1% by incorporating 

a titanium oxide (TiOx) layer as an optical spacer.76 The most impressive high-performance polymers 

are those designed by Yu et al., which are composed of thieno[3,4-b]-thiophene (TT) and 

benzodithiophene (BDT) alternating units.77-79 This was the first polymer donor system capable of 

reaching PCEs of 7–8%. Following this work, PCEs of more than 7% were frequently reported with 

either new materials or novel device optimization techniques.80-83 Materials innovation is one of the 

major forces currently driving the performance of PSCs. The key issues of polymer design include84, 85 

engineering the bandgap and energy levels to achieve high JSC and VOC, enhancing planarity to attain 

high carrier mobility, and materials processability and stability. All of these issues are correlated with 

each other. In the ideal case, all factors should be optimized in a single polymer, but this remains a 

significant challenge. The efficiency of a PSC is given by η = VOC × JSC × FF, where FF is the fill 

factor. Knowledge of the link between the design of a polymer and these parameters has been 

significantly improved over the past decade.  

The value of VOC for a PSC can be expressed by the empirical equation VOC = e–1 × (|EHOMO 

donor| − | ELUMO acceptor| − 0.3 eV), where e is the elementary charge, E is the energy level and 0.3 

eV is an empirical value for efficient charge separation.86 A donor polymer with a lower HOMO level 

will give a higher VOC. P3HT is by far the most popular donor, with a HOMO level of ~4.9 eV,87 

which corresponds to a VOC value of around 0.6 V and serves as a reference for polymer design15. 

Thiophene is an electron-rich group.88, 89 The HOMO level of the polymer in a PSC can be effectively 

lowered by utilizing groups that are less electron-rich.75, 90-92 For example, fluorene and carbazole are 

commonly used units in wide-bandgap materials because they are less electron-rich than thiophene. 

By incorporating these units into a polymer donor, VOC can be significantly increased. Cao et al. 

demonstrated a polymer containing a fluorene unit that achieved VOC ≈ 1.0 V.90 Inganas et al. also 

reported a polymer composed of fluorene and quinoxaline alternating units91 that reached VOC ≈ 1.0 V. 

Another example is PCDTBT, which incorporates carbazole units in the polymer chain, from which 

researchers achieved VOC ≈ 0.89 V.75 VOC is also affected by non-radiative recombination between the 

donor and the acceptor. Eliminating these non-radiative pathways93 will help to maximize VOC. 

However, linking polymer design with such an elimination process remains a significant challenge.  

JSC is another important parameter that determines the performance of a PSC. The most powerful 

strategy for achieving high JSC is to narrow the bandgap (<1.8 eV) for a broader coverage of the solar 

spectrum.84, 85, 94 Methods for achieving this include designing an alternating donor–acceptor structure, 
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stabilizing the quinoid structure, controlling the polymer chain planarity, and tuning the effective 

conjugation length. Designing an alternating donor–acceptor structure is the most common approach, 

in which the push–pull driving forces between the donor and acceptor units, together with the 

photoinduced intramolecular charge transfer, facilitates electron delocalization and the formation of 

low-bandgap quinoid mesomeric structures over the polymer backbone.95, 96 According to molecular 

orbital perturbation theory, electron delocalization leads to the hybridization of molecular orbitals, 

resulting in electron redistribution throughout the interacting orbitals. This provides two new 

hybridized orbitals— a higher HOMO level and a lower LUMO level — resulting in a narrower 

bandgap. One of the most successful examples of this donor–acceptor structure is PCPDTBT.73, 74 By 

combining a dialkyl-cyclopentabithiophene donor unit and benzothiadiazole acceptor unit, the 

bandgap of PCPDTBT spans 1.4 eV (around 900 nm). This donor–acceptor structure is not limited to 

the polymer main chain. Huang et al. demonstrated that a donor–acceptor structure comprising an 

acceptor-based side chain and a donorbased main chain also results in a lower bandgap.97 Another 

successful way of reducing the bandgap is to stabilize the quinoid structure of conjugated units.77, 94 

The ground state of a conjugated structure has two resonance structures: an aromatic form and a 

quinoidal form.84 The quinoidal form is energetically less stable because of its smaller bandgap; 

achieving a stable quinoidal form therefore reduces the bandgap. Yu et al. have found that a 

thieno[3,4-b]thiophene unit can stabilize the quinoidal structure through a fused thiophene ring.77, 78, 94 

Polymers containing TT and BDT alternating units have bandgaps of around 1.6 eV. 

Narrowing the bandgap alone is not necessarily enough to achieve high JSC. Other parameters, such 

as carrier mobility, intermolecular interaction and molecular chain packing, also affect JSC. For 

example, tuning the chemical structure provides effective ways to improve hole mobility. Yang et al. 

developed poly(4,4-dioctyldithieno(3,2-b:2’,3’-d)silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl) 

(PSBTBT) by replacing the bridging carbon atom in PCPDTBT with a silicon atom.98, 99 PSBTBT has 

a higher crystallinity than PCPDTBT and therefore has improved hole mobility, leading to a higher 

value of JSC. Using a large planar structure can also improve transport by enhancing molecule 

packing.100, 101  

Although VOC and JSC can indeed be improved by employing these strategies, it remains a 

challenge to improve both values simultaneously. Narrowing the bandgap can improve JSC, but VOC 

may correspondingly be decreased because of the higher HOMO level that results. Researchers 

recently demonstrated that structural fine-tuning is a powerful approach for improving both VOC and 

JSC simultaneously. For example, introducing a fluorine atom into the TT unit reduces both HOMO 

and LUMO levels simultaneously, while also improving VOC and retaining the bandgap.102, 103 Fine-

tuning the side-chain structure can also result in a similar effect. One example is to simultaneously 

lower both the HOMO and LUMO levels by replacing the electron-rich alkoxy side chain with the 
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less electron-rich alkyl chain.79 

The third parameter for achieving high efficiency in a PSC is the FF, which is currently the least 

understood one among the three. The FF is the ratio between the maximum obtainable power and the 

product of JSC and VOC. It is affected by many factors, including charge carrier mobility and balance, 

interface recombination, series and shunt resistances, film morphology and miscibility between the 

donor and acceptor.104 However, obtaining a clear understanding and the ability to modulate the FF 

still remains a hurdle in the development of PSCs. From the materials design point of view alone, 

molecular planarity, intermolecular interactions, molecular chain packing and crystallinity, and high-

mobility units should be taken into consideration in structure designs. Side-chain tuning also has 

considerable effects on improving the FF. For example, Frechet et al. optimized the side-chain 

patterns for N‑alkylthieno[3,4-c]pyrrole-4,6-dione (TPD)-based polymers.105 Side-chain tuning 

helped to optimize π-stacking, polymer crystallinity and material miscibility, and caused the FF to 

increase from 55% to 68%. Researchers also recently achieved an efficiency of 7% for a TPD–silole 

copolymer.106 

 

Morphology Control (review napho) 

 

Morphology control is critical in bulk-heterojunction PSCs. Thermal annealing69 and solvent 

annealing71 are currently the most popular methods for controlling morphology. It was not until 2005 

that both thermal and solvent annealing were shown to enhance PSC efficiency by a significant 

amount.71 Many otherapproaches are also effective for improving polymer–fullerene morphology, 

such as solvent selection107 and solvent mixture108 techniques, and the use of additives.109 

 

 

The Effect of Solvent (ref Morphology_2) 

 

Solution processing has many advantages over other filmfabrication technologies, which usually 

require complicated instruments as well as costly and time-consuming procedures. Therefore, solution 

processing has developed into the most favored methodology for fabricating organic optoelectronic 

devices. Solution processing also allows the freedom to control phase separation and molecular self-

organization during solvent evaporation and/or film treatment. The solvent establishes the film 

evolution environment, and thus has foreseeable impact on the final film morphology. Selection and 

combination of solvents have been shown to be critical for the morphology in polymer-blend films, 

and are well-documented in the literature.13, 110 
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Figure 1.10. SEM cross-sectional images of MDMO-PPV:PCBM blend films on top of ITO from a) 

CB and b) toluene solution. The brighter objects in a) are polymer nanospheres, whereas the darker 

embedments are PCBM clusters. Schematic of film morphology of c) CB- and d) toluene-cast 

MDMO-PPV: PCBM blend active layers. In c), carriers form percolated pathways to reach their 

respective electrodes. In d), electrons and holes suffer from recombination due to undesirable phase 

separation.  

 

Spin-coating from single-solvent solutions results in thin films, which possess optoelectronic 

properties determined by the solution parameters and the spin-coating process, for example 

concentration, blending ratio, spin speed and time, etc. Meanwhile, solvent properties, such as boiling 

point, vapor pressure, solubility, and polarity, also have considerable impact on the final film 

morphology. The wettability of the organic solvents on the poly(3,4-ethylenedioxythiophene) 

poly(styrenesulfonate) (PEDOT:PSS) surface is usually sufficiently good and not taken into account 

as a factor on the film morphology. However, it is worth noting that different solution processes have 

dissimilar requirements for achieving optimal morphology.111 This article focuses only on the most 

common spin-coating processes. 

In 2001, Shaheen et al. demonstrated the effect of solvent and morphology on device performance 

for the poly-[2-(3,7-dimethyloctyloxy)-5-methyloxy]-para-phenylene-vinylene(MDMO-PPV):[6,6]-

phenyl-C61-butyric acid methyl ester (PCBM) blend system.107 By replacing toluene with 

chlorobenzene (CB), the PCE of the device dramatically improved to 2.5%. A more intimate mixing 

and stronger interchain interaction accounted for this improvement. The solubility of the polymer 
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blend is much better in chlorobenzene than in toluene; thus, a much more uniform mixing of the 

donor and acceptor is expected. This improved intermixing is evidenced by the roughness of the 

polymer-blend film, where the chlorobenzene-based sample has a much smoother film surface. Liu et 

al. investigated the poly(2-methoxy-5-(20-ethoyl-hexyloxy)-1,4-phenylene vinylene (MEH-PPV):C60 

blend devices and observed the effect of solvation-induced morphology on device performance.112 

Using nonaromatic solvents, such as tetrahydrofuran (THF) and chloroform, resulted in larger VOC and 

smaller JSC, due to the fact that MEH-PPV side groups prevented intimate contact and thus efficient 

charge transfer between the MEH-PPV and C60 molecules. Ma et al. also observed that P3HT:PCBM 

polymer films were smoother and more uniform when chloroform was replaced with CB.72 The high 

efficiency is the result of improved morphology, crystallinity, and cathode contact due to better choice 

of solvent as well as post-annealing treatment. Because of the better solubility of fullerenes in CB, its 

use instead of toluene resulted in a finer phase separation, while thermal annealing in both cases led to 

coarsening of the phases.113 Figure 1.10a and 10b show the scanning electron microscopy (SEM) 

cross-section views of the MDMO-PPV:PCBM system casted from CB and toluene, respectively. One 

interesting observation is the 20–40nm thick ‘‘skin’’ layer observed in the toluene-casted film, in 

which the PCBM nanocrystallites were generally covered by this ‘‘skin’’ layer, identified as polymer 

nanospheres. However, for most chlorobenzene-cast films, the polymer nanospheres were 

homogeneously distributed; therefore, only at very-high PCBM loadings can this phenomenon of 

PCBM clusters surrounded by a ‘‘skin’’ layer be perceived. The CB-cast films have a finer phase 

separation and higher JSC in comparison to the toluene-cast films. However, the JSC of CB-cast films 

decreased with heavier PCBM loadings, indicating that an optimal phase-separated domain size is 

imperative for good device performance. Hoppe et al. also measured the localized work function 

using Kelvin probe force microscopy.114 CB-cast films showed a uniform work function at the surface 

but an approximately 0.3 eV decrease upon illumination, while the work function of the toluene-cast 

films was directly topography-related, increasing in the PCBM clusters under illumination. The work 

function correlates to the Fermi level, that is, electron density. Under illumination, CB-cast films 

showed an enrichment of electrons at the surface due to charge generation, while the surface of the 

toluene-cast films was covered by the polymer skin-layer, causing substantial charge recombination, 

and a lower JSC.  

The proposed film morphology and respective charge transport for CB- and toluene-cast films are 

depicted in Figure 1.10c and 1.10d. The solubility of the fullerene phase can strongly affect the 

solvent selection. Larger fullerene balls tend to be less soluble, and different solvents have been used 

for optimal processing conditions. For example, PC84BM:MDMO-PPV solar cells were spin-coated 

from CB and PC71BM:MDMO-PPV devices were spin-coated from 1,2-dichlorobenzene 

(DCB).[23,41] Yao et al. showed that in a new low-band-gap copolymer poly[(9,9-dioctylfluorene)-
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2,7-diyl-alt-[4,7-bis(3-decyloxythien-2-yl)-2,1,3-benzothiadiazole]-50, 500-diyl] (PFco-DTB)/ 

PC71BM system, DCB resulted in very smooth films (r.m.s. roughness of 0.8 nm) and negligible phase 

contrast, indicating uniform distribution of the mixture.115 However, CB produced much rougher 

films(r.m.s. roughness 4.0 nm) and visible phase separation of 200–300 nm. Based on the exciton 

diffusion length of approximately 10 nm, CB is not the appropriate solvent for achieving high solar-

cell performance in this particular system,anddevice data also reflected this scenario. It is, however, 

not sufficient for one to judge the quality of the film merely by thefilmroughness. In P3HT:PCBM 

systems, using both thermal annealing and solvent annealing leads to higher roughness than as-cast 

films, but the device performance in these two cases is much better. The key point is likely to be the 

formation of proper nanoscale phase separation. 

 

The Effect of Processing Additives  

 

In general, device performance can be improved with post treatments such as various annealing 

processes. However, for some material systems, such as the novel low-band-gap polymer poly[2,6-

(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] 

(PCPDTBT), which has a better overlap with the solar spectrum, typical post-treatments are incapable 

of improving the device characteristics.73, 116 It has been reported that solvent mixtures have a 

significant effect on film morphology and device performance, namely on JSC, VOC, and FF in the 

polyfluorene copolymer/fullerene system.108 In the poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(40,70-di-2- 

thienyl-20,10,3-benzothiadiazole)):PC61BM blend system, mixing a small volume of CB into 

chloroform developed a finer and more uniform distribution of domains, which enhanced the JSC. In 

contrast, adding xylene or toluene into chloroform resulted in larger domain sizes that decreased JSC 

and caused significant light-intensity-dependent recombination of free charge carriers. Time-resolved 

spectroscopy on the picosecond scale revealed that charge mobility was considerably improved by 

adding CB into chloroform, due to an enhanced free-charge-carrier generation from a finer 

morphology. 

Earlier efforts on the solvent-mixture approach concentrated on two miscible solvents, in which 

both the polymers and fullerenes have considerable solubility. Recently, advances in cooperative 

effect of solvent mixtures using solvents with distinct solubilities have been obtained.109, 117 The 

incorporation of additives into a host solvent represents an innovative method and important trend 

capable of controlling the BHJ morphology. It also provides a unique viewing angle to study the film-

formation dynamics of the spin-coating process. However, it is vital to mention that solvent mixtures 

introduce a more sophisticated circumstance in both the solution and film evolutions, since the 

solutions now become multicomponent (phase) systems. Therefore, in order to maintain simplicity, 
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only two solvents are usually involved in the solution system when studying the fundamental 

principles and improving the performance. It should also be noted that the solvent-mixture method 

should not be restricted to only two solvents; ternary- or even quaternary-solvent systems are also 

realistic approaches. Recently, the mixture-solvent systems have been intensively explored by several 

groups, bringing a rather clear understanding of solvent-selection rules for desirable morphology.109, 

117-119 

Previously, the formation of fullerene nanocrystallites by ‘‘bad’’-solvent incorporation was 

reported by Alargova et al.120 It was claimed that fullerene molecules tend to crystallize upon contact 

with a ‘‘bad’’ solvent in order to reduce the overall energy. The narrowly distributed size of these 

aggregates is proportional to the fullerene concentration and solvent choices, regardless of the volume 

of the ‘‘bad’’ solvent added. Introduction of alkyl thiols, which are bad solvents for P3HT, to 

P3HT/PCBM in toluene can increase the photoconductivity and carrier lifetime, due to the enhanced 

structural order.24 More recently, Peet et al. reported that by incorporating a few volume percent of 

alkanedithiols into the PCPDTBT:PC71BM polymer blend solution, the efficiency doubled from 2.8% 

to 5.5%, with JSC as high as 16.2mAcm-2.109 

 

 

Figure 1.11. AFM and TEM images of PCPCTBT/PC71BM films without and with 1,8-octanedithiol 

and exposed PCPDTBT networks after removal of PC71BM. AFM image of BHJ film a) without and b) 

with 1,8-octanedithiol. AFM image of exposed polymer networks c) without and d) with 1,8-

octanedithiol. TEM image of exposed polymer networks e) without and f ) with 1,8-octanedithiol.  
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The vast improvement was attributed to the enhanced interactions between the polymer chains and/or 

between the polymer and fullerene phases upon alkanedithiol addition, which was evidenced by the 

absorption data. 

A systematic study of alkanedithiol incorporation was carried out by Lee et al. to elucidate the 

morphology-controlling mechanism, where the alkanedithiols played the role of ‘‘processing 

additive’’, without reacting with either the polymer or fullerene components.121 The alkanedithiol 

selectively dissolved the fullerene phase, while the PCPDTBT was relatively insoluble. Due to the 

higher boiling points of the alkanedithiols solvent addition, and indicated a guideline for alternative 

solvent-additive selection. (b.p. >160. 8°C), the fullerene phase stayed in the solution longer than the 

polymer, providing more freedom to self-align and crystallize. Consequently, the phase-separation 

morphology can be manipulated by various alkanedithiols and by tailoring their relative ratios. In 

addition, the polymer domains are preserved after removal of the fullerene phase, which allowed the 

direct observation of the exposed polymer network. Figure 1.11 shows the atomic force microscopy 

(AFM) and transmission electron microscopy (TEM) images of the PCPDTBT:PC71BM films with 

and without 1,8-octanedithiol (OT), as well as the exposed PCPDTBT network after selective 

dissolution of the PC71BM. These images clearly show larger PCPDTBT and C71-PCBM domains as 

a result of OT addition, indicating that the improved device performance is related to the better 

percolating pathways for both carriers from the larger interconnected domains. Carrier-transport 

analysis also pointed out the enhanced network by the increased electron mobility.122 Accordingly, two 

criteria for incorporating alkanedithiols to control the blend-film morphology were proposed: i) 

selective solubility of the fullerene component and ii) a higher boiling point (lower vapor pressure) 

than the host solvent. This work provided insight into the mechanism of film-morphology evolution 

regarding a ‘‘bad’’ solvent addition, and indicated a guideline for alternative solvent-additive selection. 

Concluding the results of various works, vertical stratification can be attributed to the different 

solubilities and surface energies of the blend components as well as the dynamics of the spin-coating 

process. A volatile solvent is likely to form a more homogeneous film, while a viscous solvent allows 

vertical phase separation. Upon vertical phase separation, the low-surface-energy component 

preferentially segregates at the surface or interface to reduce the overall energy. By controlling the 

film-drying rate via solvent viscosity and spin-coating condition, as well as surface treatment, a closer 

to optimal, both laterally and vertically segregated morphology can be formed. Furthermore, certain 

‘‘bad’’ solvents can function as ‘‘processing additives’’ to preform PCBM aggregates, which assist in 

the self-organization of both components, and thus induce vertical phase separation. If the vertical 

segregation can be manipulated to the desired morphology, with a donor-enriched anode and acceptor-

enriched cathode, efficient charge dissociation via the interpenetrating network and efficient charge 

transport along the interconnected pathways are expected to vastly enhance the device performance. 
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1.3.3 Ternary Blend Solar Cells 

 

Mechanism of Ternery Solar Cells 

 

In general, a ternary solar cell consists of a wide bandgap polymer as the host donor, a near IR 

sensitizer and a fullerene derivative as the host acceptor. The charge transfer and transport in the 

ternary blend is more than a simple superposition of the charge transfer and transport properties of the 

individual phases. It is governed by various mechanisms, depending on the sensitizer content, 

electronic energy levels and bandgap of the three components, sensitizer location in the binary 

photoactive layer as well as fi nal microstructure of the film.  

 

Cascade Charge Transfer 

 

 
Figure 1.12 . Schematic representation of the cascade charge transfer in a ternary solar cell, where the 

P3HT:PCBM is employed as the host system and low bandgap material of C-/Si-PCPDTBT as the 

near IR sensitizer. The electronic energy levels of electrodes and semiconductors are presented in eV 

unit. Curved arrows indicate allowed charge transfer reactions in the ternary blend. 

 

The relative energetic position of the sensitizer’s electronic levels with respect to those of host 

donor and acceptor determines the feasibility of a cascade exciton dissociation and charge transfer at 

the donor/sensitizer and sensitizer/acceptor interfaces. Locating the HOMO and LUMO level of the 

sensitizer between the HOMOs and LUMOs of host components (cascade energy levels), several 

pathways are energetically relevant for the relaxation of photoexcited states. The photoexcited host 

donor may transfer an electron to either acceptor or the sensitizer phase instead. In the latter case, the 

sensitizer subsequently has to transfer an electron to acceptor. Alternatively, a photoexcited sensitizer 

can transfer a hole to host donor and in parallel an electron to the host acceptor. Figure 1.12 illustrates 
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this cascade charge transfer in a ternary blend.  

This mechanism was reported by Koppe et al., where P3HT:PCBM blend was employed as the 

host matrix and the low bandgap polymer of poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-

b;3,4-b´]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT/or C-PCPDTBT) as the near IR 

sensitizer.123 Photoinduced absorption spectroscopy studies (PIA) revealed that photoexciting 

PCPDTBT (pump energy of 1.59 eV) in ternary P3HT:PCPDTBT:PCBM (0.8:0.2:1 wt.%) composites 

created free charges on P3HT. This near-IR (1.59 eV) photogeneration mechanism was absent in a 

binary blend made of P3HT:PCBM (1:1), shown in Figure 1.13. 

 

 
Figure 1.13. Photoinduced absorption spectra of annealed thin films (d ∼ 100–150 nm) of 

P3HT:PCPDTBT:PCBM (0.8:0.2:1) (open squares), PCPDTBT:PCBM (1:1) (open circles), and 

P3HT:PCBM (1:1) (open triangles) which were all excited at 1.59 eV. P3HT:PCBM (1:1), excited at 

2.33 eV (full line), serves as a reference for the spectroscopic positionof the P3HT polaron.  

 

Energy Transfer 

 

Förster (Fluorescence) resonance energy transfer, resonance energy transfer or electronic energy 

transfer, is a mechanism describing energy transfer between two chromophores.124 A donor 

chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore 

in its vicinity through non-radiative dipole–dipole coupling. For an energy transfer to occur, the 

acceptor molecule needs to have an absorption spectrum that overlaps with the emission spectrum of 

the donor molecule (Figure 1.14). This mechanism can become a relevant relaxation pathway for the 

primary photoexcited states in the ternary blends, depending on the domains sizes of the individual 

components. Photoluminescence measurement (PL) is a convenient tool to probe energy transfer. 
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Figure 1.14 . Schematic representation of the resonant energy transfer mechanism, as donor absorbs 

light (arrow 1) and transfers the energy to acceptor (arrow 2), which fl uoresces (arrow 3). The 

abbreviations of Abs. and PL represent the absorption and photoluminescence spectra of the donor 

and acceptor, respectively. 

 

Parallel-Like Charge Trasfer/Transport 

 

Alternative to the cascade charge transfer mechanism, a parallel-like charge transport mechanism 

of two or more materials (mostly polymers) with different band gaps but similar polarity can be 

employed for the design of ternary systems. In this mechanism, excitons generated in each individual 

donor polymer would migrate to the respective polymer/acceptor interface and then dissociate into 

free electrons and holes. Electrons are transported via the acceptor domains towards the cathode as in 

normal binary solar cells. In the case that charge transfer between the two polymers is absent; holes 

will be transported towards the anode via the two parallel percolation pathways formed by the two 

polymers (Figure 1.15). The charge carriers generated in each polymer:acceptor blend (or in each 

“sub-blend”) are collected simultaneously by the same cathode and anode electrodes, suggesting a 

photocurrent equal to the sum of those of the individual sub-blends. It is conceptually very similar to 

the parallel architecture of tandem devices and therefore such a single junction ternary system can be 

called parallel-like composite. The limiting factor of such a parallel-like system is the required 

transport capacity of both polymer absorbers. Yang et al. reported the most efficient parallel-like BHJ 

ternary solar cells to date by employing poly(benzodithiophen − dithienyldifluorobenzothiadiazole) 

(DTffBT) and poly(benzodithiophene – dithienylthiadiaz olopyridine) (DTPyT).103, 125  
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Figure 1.15. Schematic representation of the parallel-like charge transfer in a ternary solar cell, where 

polymer 1 and 2 are employed as the complementary absorbers blended in an acceptor. Curved arrows 

indicate charge transfer and linear arrows indicate charge transport in the ternary solar cell. 

 

Two Acceptors  

 

In a BHJ solar cell, VOC is given by the energy of the interface band gap minus the quasi-Fermi 

energies, where the interface band gap is the energy difference between the donor HOMO and the 

acceptor LUMO.126, 127 Hence, while the obvious origin of the continuous change in VOC in ternary 

blends is the corresponding change in the LUMO or HOMO level, it is possible that the effect reflects 

a change in the quasi-Fermi energies. 

(Tomson paper) In many cases, an increase in the breadth of the spectral response of the ternary 

blends has been observed relative to the corresponding limiting binary blends, often leading to a 

larger JSC.123, 128-132 Conversely, the VOC is proposed to be pinned to the smallest VOC of corresponding 

binary blends.123, 132, 133 To this end, it is thought that a limiting HOMOD-LUMOA interaction controls 

the VOC, since dominant hole transport and collection occurs through the donor component with the 

highest-lying HOMO (and analogously, electron transport and collection through the lowest-lying 

LUMO), independent of the origin of photocurrent generation.123 However, in a limited number of 

cases, the VOC seems to be tunable in the three-component system, although at the expense of a 

marked and steady decrease in the FF as the amount of the third component increases.134-

136Nonetheless, these isolated observations of composition-tunable VOC suggest that both JSC and VOC 

are composition-dependent in ternary blend BHJ solar cells and that neither value is necessarily 

limited to the lesser quantity of the corresponding binary blend solar cells. Khlyabich et al. first 

reported compositional dependence of VOC using two acceptor polymers with a donor polymer as 

shown in Figure 1.16 and Table 1.1.137  
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Figure 1.16. Structures and energy levels of P3HT, ICBA, and PC61BM and VOC for the ternary blend 

BHJ solar cells as a function of the amount of ICBA in the blend. 

 

Table 1.1. Photovoltaic properties of P3HT:PC61BM:ICBA and ternary blend solar cells at different 

fullerene Ratios.a 
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1.4 Research Overview and Objective 
Polymer solar cells (PSCs) have great potential as a promising candidate for clean and renewable 

energy sources. PSCs are attracting increasing attention from both academia and industry, due to the 

demand for flexible, portable and solution processable low-cost photovoltaic devices to comply with 

increasing global energy demand. As results of many efforts for developing PSCs, the power 

conversion efficiency (PCE) of PSCs has been tremendously improved over the past decades. 

However, the low PCE is still a hurdle to overcome for commercial applications of PSCs. To further 

optimize PSCs, several challenges have to be considered including maximizing the light absorption 

capability in the active layer for high-performance PSCs while minimizing the thickness of BHJ films 

due to low carrier mobility of organic semiconductors, and development of highly soluble and 

crystalline photovoltaic polymers to enable thick film production without damage in the fill factor. In 

addition, limitations of binary BHJ solar cells can be solved by developing ternary BHJ solar cells.   

In this thesis, I focused on various engineerings which are surface plasmon resonance (SPR) effect 

using PEDOT:PSS electrode doped with silver nanoparticels, morphology control using diphenly 

ether (DPE) as a novel processing additive with conjugated polymers (PPDT2FBT and P2), and 

ternary blend using a PC61BM and PC71BM mixture with a donor polymer resulting in enhaced 

electromagnetic field to provide light confinement to active layer, well-formed phase separation to 

make good pathway for electron and holes, and overcoming problem of binary BHJ solar cells (lower 

JSC and FF), respectively, for the highly efficient light harvesting of polymer solar cells.  
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Chapter 2. Highly Efficient Plasmonic Organic Optoelectronic Devices 

Based on a Conducting Polymer Electrode Incorporated with Silver 

Nanoparticles 

  

2.1 Research background 
Organic semiconductor-based optoelectronic devices, such as polymer solar cells (PSCs) and 

polymer light-emitting diodes (PLEDs), have attracted considerable attention due to their advantages 

such as solution-based low-cost and large-area fabrication using printing techniques.138-141 On the 

other hand, the performance of these polymer based optoelectronic devices has not reached the level 

needed for commercialization. Although power conversion efficiencies (PCEs) of ~8% have been 

demonstrated for PSCs,76, 142, 143 there are still many limitations for practical applications. Indium tin 

oxide (ITO) is used widely as a transparent electrode for optoelectronic devices because of its good 

electrical conductivity and appropriate transparency.144 However, ITO has many disadvantages, such 

as intrinsic brittleness, poor transparency in the near IR regions, chemical instability under acid or 

basic conditions, increasing cost of indium due to the limited reserves on the earth, and costly 

preparative methods, such as sputtering, evaporation and pulsed laser deposition, etc.145, 146 Therefore, 

devices with an ITO electrode with the conventional structure of PSCs and PLEDs are unsuitable for 

cost-effective and flexible device applications. To overcome these problems, many efforts have been 

made to replace the conducting oxide electrode with a transparent conducting polymer electrode.146-153 

A conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), has 

been widely exploited in PSCs and PLEDs by modulating and improving its intrinsic conformation as 

well as electrical and optical properties.154-157 For example, Na and Yim et al. reported the feasibility 

of replacing the ITO electrode with a PEDOT:PSS electrode doped with dimethyl sulfoxide 

(DMSO).146, 153 

To improve the performance of PSCs, it is important to maximize the light absorption of the 

photoactive layer. Simply increasing the thickness of an active layer can allow more sunlight 

absorption but also increases the series resistance, often resulting in a poor fill factor (FF).158 The 

surface plasmon resonance (SPR) effect may offer a solution to improving the short circuit current 

density (JSC) in PSCs by the incorporation of metal nanoparticles (NPs) in organic electronic devices 

without increasing the active layer thickness.159-165 The SPR effect arises from a localized 

electromagnetic surface wave at the metal and dielectric interface, which enables the active layer to 

absorb more photons from irradiated light via field enhancement near metal NPs.28, 159, 166, 167 Similarly, 

the SPR effect supports the improved device performance in PLEDs by enhancing light emission by 

accelerating the radiative decay process.162-165, 168 



30 

 

Silver (Ag) and gold (Au) NPs are used widely to induce the SPR effect due to strong light 

absorption and excellent air stability, etc.49, 50, 169-172 In particular, Ag-based nanostructures, such as Ag 

nanospheres, nanoholes, gratings, and grids, have been studied extensively as an electrode for 

optoelectronic devices.35, 148, 150, 173, 174 Despite the desirable SPR effect of these Ag nanomaterials, 

complicated processes, such as photolithography and nano-imprinting, are required to prepare nano-

patterned Ag electrodes, resulting in high-cost fabrication. To overcome this problem, methods for the 

simple and low-cost synthesis of metal NPs have been introduced to all solution-based fabrication of 

PSCs and PLEDs.159-161, 163 

In this paper, we successfully demonstrated the highly efficient ITO-free PSCs and PLEDs by 

replacement of the ITO electrode with a PEDOT:PSS/Ag NPs composite film. The Ag NPs in 

PEDOT:PSS contribute simultaneously to enhancing the device performance via the SPR effect and 

increasing the conductivity of the PEDOT:PSS electrode. These enhanced optical and electrical 

properties resulted in PCE increases by 32% for PSCs and 124% increment of light-emitting 

efficiency for PLEDs, compared to the devices without Ag NPs 
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2.2 Experimental 
Materials and instruments: Silver nitrate (AgNO3, 99.9999%) and N-methyl-2-pyrrolidone (NMP, 

99.5%) were purchased from Sigma-Aldrich Co. and used as without further purification. Poly(3,4-

ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS PH500) was acquired from H. C. 

Starck (Germany). Poly(5,6-bis(octyloxy)-4-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole) (PTBT) (Mn = 

30,000 g mol-1) was synthesized in our laboratory.175 Regio-regular P3HT (Mn = 55,000 g mol-1) and 

[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) were purchased from Electronic Materials (EM) 

Index Co., Ltd. Poly(phenylene vinylene)-based light-emitting copolymer, Super Yellow (SY, Mn = 

1,950,000 g mol-1) was supplied by Merck Co. The transmission electron microscope (TEM) images 

were obtained using a JEOL JEM-2100 TEM operated at 200 kV. The samples for TEM analysis were 

prepared by placing a few drops of the Ag NPs in NMP on a carbon-coated copper grid, and dried in a 

vacuum oven at room temperature for 1 h. The optical properties of Ag NPs were analyzed using a 

UV-vis spectrophotometer (Varian Carry 5000) in a range of 300 ~ 800 nm. The PL quantum 

efficiency was measured on a Jasco (FP-6500) spectrofluorometer with a Xenon lamp excitation 

source and an integration sphere. The fluorescence image was obtained by confocal laser scanning 

microscopy using a white light source (Olympus Mercury 100W). The laser beam was focused on a 

sample through a microscope objective (100x [oil]) mounted in an inverted microscope (Olympus IX 

81). The conductivity was evaluated from the resistivity measured using a four-point-probe technique 

(CMT-SR1000N) 

Preparation of Ag NPs: Ag NPs were synthesized by reducing silver nitrate (AgNO3) using NMP as 

a reducing agent, where NMP has been also found to increase the conductivity of PEDOT:PSS.176,177 

Briefly 3 mg of AgNO3 was added into 3 mL of NMP (stock solution, Ag@NMP). The vial was 

shaken for 1 min and then exposed to UV irradiation for 1h. The Ag NPs in NMP (50 μL) were added 

to 1 mL of PEDOT:PSS (PH500) solution and the resulting mixture was stirred at room temperature 

over 2 h. For preparation of a reference electrode (NMP:PH500), pure NMP (50 μL) without Ag NPs 

was mixed with 1 mL PH500. A transparent anode with low series resistance is required for sufficient 

light absorption/emission and better charge extraction/injection in PSCs and PLEDs, respectively. As 

a replacement for ITO, pristine PH500, NMP:PH500 (1:20 v/v%), and Ag@NMP:PH500 (1:20 v/v%) 

were prepared on glass substrates by spin casting the above solutions at 2000 rpm for 60s. 

Device Fabrication characterization of PSCs and PLEDs: The device structures of solar cells are 

glass/NMP:PH500/PTBT:PC61BM/Al for the reference and 

glass/Ag@NMP:PH500/PTBT:PC61BM/Al for the testing device. The devices were fabricated using 

the following procedures. First, the glass substrates were cleaned with a detergent, ultra-sonicated 

sequentially in acetone and isopropyl alcohol, and then dried in an oven overnight at 100 °C. 

NMP:PH500 and Ag@NMP:PH500 layers, which were used as the anode, were spin-coated (after 
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passing through a 0.45 µm filter) onto a glass substrate at 2000 rpm for 60 s, baked at 120 °C for 15 

min in air and moved to a glove box. The top of the NMP:PH500 and Ag@NMP:PH500 layers was 

spin-coated with mixed solution of PTBT:PC61BM (1:2, 0.68 wt.%) a in o-dichlorobenzene at 1000 

rpm for 60s. The devices were pumped down in a vacuum(< 10–6 torr), and a 100 nm thick Al 

electrode was deposited on top of the active layer. The deposited Al electrode area defined the active 

area of the devices as 13.5 mm2. The measurements of photovoltaic characteristics were taken with 

the solar cells inside a glove box using a high quality optical fiber to guide the light from the solar 

simulator equipped with a Keithley 2635A source measurement unit. The J-V curves for the devices 

were measured under AM 1.5G illumination at 100 mW cm-2 with a mask. The IPCE measurements 

were carried out in ambient air using an IPCE system (Model QEX7) by PV measurements Inc. 

(Boulder, Colorado). For the PLEDs, the device structures were glass/NMP:PH500/SY/LiF/Al and 

glass/Ag@NMP:PH500/SY/LiF/Al for the reference and testing device, respectively. A SY solution 

dissolved in chlorobenzene (0.8 wt.%) was spin-cast at 2000 rpm for 45 s on top of the electrodes. 

Finally, a 1 nm-thick LiF layer and a 100 nm-thick Al layer were thermally evaporated on top of the 

SY layer. The current density and luminance versus the applied voltage characteristics were measured 

using a Keithley 2400 source measurement unit and a Konica Minolta spectroradiometer (CS-2000). 

 

2.3 Results and discussion 
Figure 2.1 shows a transmission electron microscopy (TEM) image and UV-vis absorption spectra 

of the Ag NPs in solution (NMP) and in the lm on a glass substrate. As shown in Figure 2.1a, the 

Ag NPs were dispersed randomly with a diameter of 3 to 9 nm.  

The surface plasmon absorption band of Ag NPs was observed around 420 nm (Figure 2.1b), 

which clearly indicates the formation of Ag NPs.178 Figure c shows the optical transmittance of the 

ITO, NMP:PH500 and Ag@NMP:PH500 films measured in air. The transparency of the NMP:PH500 

and Ag@NMP:PH500 films is comparable to that of ITO. As shown in the inset in Figure 2.1c, the 

Ag@NMP:PH500 film exhibited greater absorbance than NMP:PH500 in the vicinity of the Ag 

plasmonic peak around 420 nm. We also simulated the extinction and electromagnetic field 

enhancement near Ag NPs using a three dimensional finite-difference time-domain (3D FDTD) 

method (Figure 2.4). By comparing the near-field enhancement by Ag NPs with a diameter of 3 to 9 

nm, the 9 nm-sized Ag NP was calculated to show the strongest electromagnetic field enhancement. In 

addition, Ag NPs at the bottom and center positions in the PEDOT:PSS film showed almost identical 

electromagnetic field distribution around particles. The pristine PH500, NMP:PH500 and 

Ag@NMP:PH500 films showed conductivities (by a four point-probe method)179 of 0.48 S cm-1, 322 

S cm-1, and 450 S cm-1, respectively. As reported previously, the conductivity could be improved 

significantly over that of the pristine PH500 film by adding a small amount of NMP (5 vol%) to the  
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Figure 2.1. a) TEM image of spin-coated Ag NPs film, b) UV-vis absorption spectra of Ag NPs in 

solution and in the film and c) transmittance of glass, ITO, NMP-PH500 and Ag@NMP-PH500 films. 

(Inset shows a clearly enhanced absorption around 420 nm for Ag@NMP-PH500 compared to NMP-

PH500). 

 

PEDOT:PSS solution.180, 181 Furthermore, the conductivity of the Ag@NMP:PH500 film was 

increased by ~ 40% compared to that of NMP:PH500. This enhancement was attributed to the well 

dispersed electrically conductive Ag NPs.171 

  

(a) (b)

(c)
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Figure 2.2. (a) Chemical structures of PTBT, PC61BM and SY, (b) and (c) schematics of ITO-free 

PSCs and PLEDs based on PTBT:PC61BM and SY with an Ag NPs containing PEDOT:PSS electrode, 

respectively. 

Figure 2.3. Absorption spectra of active layer (PTBT:PC61BM:ODT). 
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Figure 2.4. Simulated extinction spectra of Ag NPs with a size of 3-9 nm and electromagnetic field 

distribution around Ag NPs at the bottom and center position from a glass substrate.  
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Figure 2.5. J-V characteristics of ITO-free PTBT:PC61BM-based PSCs with Ag@NMP:PH500 

electrodes by increasing concentration of Ag NPs. 

 

Table 2.1 Summary of device properties of ITO-free PTBT:PC61BM-based PSCs with 

Ag@NMP:PH500 electrodes by increasing concentration of Ag NPs. 

 

Device configuration Concentration 
of Ag NPs 

JSC
(mA cm-2) 

VOC 
(V) FF PCE 

(%) 

Glass/Ag@NMP
:PH500/PTBT:PC61BM/Al 

1% 5.30 0.76 0.30 1.21 

3% 8.93 0.76 0.45 3.03 

5% 9.26 0.78 0.53 3.85 

10% 9.00 0.78 0.49 3.44 
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Figure 2.6. J-V characteristics of ITO-free P3HT:PC61BM-based PSCs with NMP:PH500 and 

Ag@NMP:PH500 electrodes. 

 
Figure 2.7. (a) J-V characteristics, (b) IPCE curves for PSCs with NMP:PH500 and 

Ag@NMP:PH500 electrodes, (c) comparison of ΔIPCE and absorbance of Ag NPs, and (d) J-V 

characteristics of ITO-coated and ITO-free flexible PSCs on PET substrate. The inset of (d) shows a 

picture of the flexible PSC with  Ag@NMP:PH500 electrode. 
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An ITO-free bulk heterojunction solar cell was prepared by blending a low band gap polymer, 

PTBT as a donor and PC61BM as an acceptor for the active layer (Figure 2.2a). The synthesis of 

PTBT and its photovoltaic properties were reported recently.43 The donor–acceptor (D–A) type 

alternating copolymer, PTBT exhibited broad absorption covering the whole visible region, with the 

absorption maxima at 605 nm and 652 nm in the film. The optical band gap (Eg) of the polymer was 

estimated to be 1.72 eV based on the onset point of the absorption spectrum in the film. However, 

PTBT shows a weak absorption in a wavelength range of 400–500 nm (Figure 2.3). Hence, the 

incident photon to electron conversion efficiency (IPCE) is relatively poor at this wavelength range. 

Therefore, light absorption of the PTBT:PC61BM-based photovoltaic device is expected to be 

enhanced by incorporating Ag NPs via the plasmonic effect around 420 nm. To optimize the device 

fabrication condition, more than 100 PSC and PLED devices with the NMP:PH500 and 

Ag@NMP:PH500 electrodes (as anodes) were tested. We first fabricated PTBT:PC61BM-based PSCs 

by changing the concentration of Ag@NMP from 1 to 10 vol% to get the optimum concentration of 

Ag NPs in PEDOT:PSS. Figure 2.5 and Table 2.1 show that 5 vol% of Ag NPs is the optimized 

concentration for device fabrication. Figure 2.7a shows the current density–voltage ( J–V) 

characteristics of the ITO-free PSCs with NMP:PH500 and Ag@NMP:PH500 as anodes. 

 
Figure 2.8. Light-emitting characteristics. (a) current density vs. applied voltage, (b) luminance vs. 

applied voltage, (c) EL efficiency vs. current density  and (d) power efficiency vs. voltage curves. 
 

(a)

(c)

(b)

(d)
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The reference device with the NMP:PH500 electrode exhibited a JSC, open-circuit voltage (VOC), 

FF, and best PCE of 8.52 mA cm-2, 0.79 V, 0.48, and 3.27%, respectively. In contrast, the JSC, VOC, FF 

and best PCE values of the device with Ag@NMP:PH500 were improved remarkably to 9.11 mA cm-2, 

0.84 V, 0.56, and 4.31%, respectively, as summarized in Table 2.2. The PSC device with 

Ag@NMP:PH500 leads to a ~32% increase in PCE compared to the device without Ag NPs. To 

elucidate the effect of the Ag NPs on improving the JSC, the IPCE was measured for the devices with 

NMP:PH500 and Ag@NMP:PH500 electrodes (Figure 2.7b). The IPCE values of the device with 

Ag@NMP:PH500 were higher than those of the NMP:PH500-based reference device in a range of 

380 nm–520 nm. In Figure 2.7c, the ΔIPCE (which represents the difference between IPCE of the 

devices with NMP-PH500 and Ag@NMP:PH500) spectrum almost overlapped with the Ag plasmonic 

band, suggesting enhanced light absorption via the SPR effect of Ag NPs. This clearly supports the 

increased JSC resulting from amplified light absorption by the localized electromagnetic field 

enhancement. The FF of the device with Ag@NMP:PH500 (0.56) was also increased compared to that 

of the reference device (0.48), as shown in Table 2.3. The FF is related to the active layer thickness 

and series resistance (RS), which is the sum of the bulk resistance and contact resistance at the 

interfaces.158 

 

Table 2.2. Summary of device properties of ITO-free P3HT:PC61BM-based PSCs. 

 
 

Table 2.3. Device characteristics of PTBT:PC61BM-based PSCs and SY-based PLEDs with 

NMP:PH500 and Ag:NMP:PH500 electrodes. 

 

Device configuration JSC 
(mAcm-2) VOC (V) FF PCE (%)

Glass/NMP:PH500/ P3HT:PC61BM/Al 8.89 0.54 0.43 2.00

Glass/Ag@NMP:PH500/P3HT:PC61BM/Al 9.34 0.55 0.53 2.74

Electrodes for PSCs JSC
(mA cm-2) VOC (V) FF Best PCE (%)

NMP:PH500 8.52 0.79 0.48 3.27

Ag@NMP:PH500 9.11 0.84 0.56 4.31

Electrodes for PLEDs

Maximum
luminance

(cd m-2)
(at voltage)

Maximum
EL

efficiency
(cd A-1)

(at voltage)

Maximum
power efficiency

(lm W-1)
(at voltage)

Turn on
voltage (V)

NMP:PH500 15582 (21.0V) 14.43 (14.2V) 3.75 (8.2V) 2.0

Ag@NMP:PH500 22402 (20.2V) 16.77 (9.4V) 8.4 (5.0V) 2.0
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Therefore, the sheet resistance of the electrode (Rsheet = 1/ σ×d, where σ is the conductivity and d is 

the layer thickness) is closely related to the FF and RS. Note that all the processes for fabricating the 

active layer and electrodes were performed under identical conditions; a similar thickness for both 

devices is expected. Since the enhanced conductivity by the Ag NPs results in reduced Rsheet ((638 Ω 

sq-1 for NMP-PH500  444 Ω sq-1 for NMP-PH500), the increased FF of the device can be attributed 

to the reduced RS. Therefore, the Ag NPs enhance optical and electrical properties, resulting in the 

increases in JSC and FF.174 Devices based on poly(3-hexylthiophene) (P3HT):PC61BM were also 

fabricated with the NMP:PH500 and Ag@NMP:PH500 electrodes. The results also exhibited a similar 

trend (JSC and FF were improved from 8.89 mA cm-2 and 0.43 to 9.34 mA cm-2 and 0.53, respectively), 

as shown in Figure 2.6 and Table 2.2. It indicates our electrode system with Ag NPs and 

PEDOT:PSS can be extended to other polymeric photovoltaic devices. 

For practical application of Ag@NMP:PH500 as the electrode, we evaluated long-term stability 

under ambient condition and fabricated flexible PSCs on a poly(ethyleneterephthalate) (PET) 

substrate. As shown in Figure 2.9, the devices with PH500 electrodes showed a similar temporal 

stability compared with the the conventional ITO-based one. The PCE value was decreased by ~66% 

for all devices within 200 h in air.  

 
Figure 2.9. Temporal stabilities of devices with ITO, NMP:PH500 and Ag@NMP:PH500 electrodes. 
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Table 2.4. Summary of device properties of ITO-coated and ITO-free PTBT:PC61BM-based PSCs on 

PET substrate. 

 
 

Compared to the NMP:PH500 electrode, a flexible PSC with Ag@NMP:PH500 exhibited a 

substantially enhanced device efficiency (PCE: 1.55 2.06%) (Figure 2.7d and Table 2.4). Although 

we obtained the lower device properties using Ag@NMP:PH500 as an anode (relative to the device 

with ITO), our approach offers possibility of Ag@NMP:PH500 as a flexible plastic anode.  

To assess the applicability to PLEDs, ITO-free PLEDs were also fabricated using the PEDOT:PSS 

electrodes with and without Ag NPs. The poly(phenylene vinylene)-based copolymer, Super Yellow 

(SY), was used as an emitting material and the device configuration was NMP:PH500 (or 

Ag@NMP:PH500)/SY/LiF/Al, as shown in Figure 2.2. Figure 2.8 shows the light-emitting 

characteristics of the PLEDs with NMP:PH500 and Ag@NMP:PH500 electrodes. As shown in Figure 

2.8a, charge injection in the device with Ag@NMP:PH500 was improved compared to the reference 

device with NMP:PH500. The reference device with NMP:PH500 exhibited a maximum luminance, 

electroluminescence (EL) efficiency, and power efficiency of 15,582 cd m-2 (at 21.0 V), 14.43 cd A-1 

(at 14.2 V), and 3.75 lm W-1 (at 8.2 V), respectively. In contrast, the device with Ag@NMP:PH500 

showed substantially improved light-emitting characteristics with a maximum luminance, EL 

efficiency, and power efficiency of 22,402 cd m-2 (at 20.2 V), 16.77 cd A-1 (at 9.4 V), and 8.4 lm W-1 

(at 5.0 V), respectively. Fluorescence emission enhancement of the SY film with Ag NPs supports the 

improved device performance, which was confirmed by solid-dtate photoluminescence (PL) 

measurements and confocal laser scanning microscopy. The SY film with Ag@NMP:PH500 exhibited 

enhanced photoluminescence (PL) quantum efficiency (7.1  18.6%) via the incorporation of Ag 

NPs (Figure 2.10a). Similarly, a confocal laser scanning microscopy image showed the stronger SY 

fluorescence intensity around Ag NPs. (Figure 2.10b). The power efficiency of the device with 

Ag@NMP:PH500 was increased remarkably by 124% (Table 1). This must be related closely to SPR-

assisted acceleration of the radiative recombination because the spontaneous emission rate increases 

through strong resonance coupling between the exciton in the emitting material and the SPR mode of 

Ag NPs. 

 

Device configuration JSC
(mA cm-2)

VOC
(V) FF PCE

(%)

PET/ITO/PEDOT:PSS/PTBT:PC61BM/Al 9.00 0.87 0.44 3.40

PET/NMP:PH500/PTBT:PC61BM/Al 7.50 0.66 0.31 1.55

PET/Ag@NMP:PH500/PTBT:PC61BM/Al 8.22 0.64 0.39 2.06
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Figure 2.10. (a) Photoluminescence spectra of SY films on NMP:PH500 and Ag@NMP:PH500 

electrodes and (b) confocal laser scanning microscopy image of SY film on Ag@NMP:PH500.  
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2.4 Conclusion 
In summary, this study successfully demonstrated ITO-free PSCs and PLEDs with the SPR effect 

and the possibility of solution-processed PEDOT:PSS containing Ag NPs as a flexible plastic 

electrode. The Ag NPs-incorporated Ag@NMP:PH500 electrode exhibited a high conductivity of 450 

S cm-1 with similar transparency to ITO. The PSC device based on PTBT:PC61BM with the 

Ag@NMP:PH500 electrode showed a 1% absolute enhancement in the power conversion efficiency 

(3.27 to 4.31%), whereas the power efficiency of the PLEDs was improved by 124% (3.75 to 8.4 lm 

W-1) compared to the reference devices without Ag NPs. The SPR effect and improved electrical 

conductivity by the Ag NPs clearly contributed to increments in light absorption/emission in the 

active layer as well as the conductivity of the PEDOT:PSS electrode in PSCs and PLEDs. The 

solution-processable conducting polymer-based electrode, Ag@NMP:PH500 with Ag NPs, is a 

promising candidate as a flexible electrode for large area and flexible optoelectronic devices with a 

low-cost fabrication process. 
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Chapter 3. Semi-crystalline photovoltaic polymers with efficiency 

exceeding 9% in a ~300 nm thick conventional single-cell device 
 

3.1 Research background 
Over the past few decades, polymer solar cells (PSCs) have made significant progress, showing 

their potential in low-cost, flexible, lightweight, portable and large-area energy-harvesting devices.182, 

183 Considerable efforts have been dedicated toward the design of new materials, device architectures 

and processing techniques in order to improve the power conversion efficiency (PCE).184-187 Recently, 

bulk heterojunction (BHJ) PSCs, consisting of low band gap (LBG) polymers (as an electron donor) 

mixed with C60 or C70 fullerene derivatives (as an electron acceptor), have shown promising 

performance with PCEs of 8–9% in single junction devices.188 Cao et al. reported highly efficient (9.2% 

PCE) inverted-type PSCs based on the benzodithiophene–thienothiophene copolymer (PTB7) with an 

amine-functionalized polymer interlayer as an indium tin oxide (ITO) surface modifier.189 With regard 

to a single cell having conventional geometry, Yu et al. further optimized PTB7 by replacing 

thiophene with thienothiophene in the benzodithiophene moiety to yield a dithieno[2,3-d:2’,3’-

d’]benzo[1,2-b:4,5-b’]dithiophene-based polymer (PTDBD2) with a PCE of 7.6%.190 Chou et al. 

reported a new fluorinated quinoxaline-based copolymer (PBDT-TFQ) showing 8% PCE.191 

To further improve PCEs, first and foremost, the molecular structure of LBG polymers should be 

carefully designed by considering their close relationship with the photovoltaic parameters, including 

short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). Recently, highly 

efficient photovoltaic materials have been designed by introducing fluorine (F) atoms onto the 

polymeric chain.192, 193 Fluorine has a small van der Waals radius (~1.35 Å) and is the most 

electronegative element with a Pauling electronegativity of 4.0. The introduction of fluorine onto the 

periphery of an electron-deficient unit is a versatile strategy, because it not only minimizes any 

undesired steric hindrance along the polymer chains but also effectively stabilizes the highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels. 

Furthermore, hole mobility improves upon fluorination, though a reverse trend has been observed in 

some cases.194 The fluorine substituent often has a great influence on inter- and intramolecular 

interactions,195-197 which play important roles in the solid-state polymer organization with a cofacial π-

π stacking. An effective approach to planarize a polymer chain (without losing its solution 

processability) is to create a noncovalent attractive interaction between neighboring moieties via 

intramolecular hydrogen bonds, dipole–dipole interactions, etc. Noncovalent intramolecular O···S 

interactions between alkoxy substituents and thiophene rings have been demonstrated to be effective 

for minimizing torsional angles within polymer backbones.175, 198, 199 On increasing the coplanarity of a 

polymer chain with close solid-state π-π stacking, both polaron and exciton delocalization and their 
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transport characteristics can be improved.200-202 

This study reports highly efficient new LBG polymer structures with a planar polymeric backbone 

formed via noncovalent intra- and interchain hydrogen bonds and dipole–dipole interactions, leading 

to highly ordered film morphologies, deep HOMO level, balanced electron and hole mobilities (a 

hole/electron mobility ratio of 1–2) and exceptional device stability. Devices based on these polymers 

exhibit outstanding long-term thermal stability at 130°C for over 200 h and the highest PCE over 9% 

in a conventional PSC having a single-cell device structure with a ~300 nm thick active layer. 

 

3.2 Experimental  
General: A microwave reactor (Biotage Initiator™) was used to synthesize the polymers. 1H and 

13C NMR spectra were recorded on a JEOL (JNM-AL300) FT NMR system operating at 300 MHz 

and 75 MHz, respectively. UV-vis spectra were obtained with a JASCO V-630 spectrophotometer. The 

number- and weight-average molecular weights of the polymers were determined by gel-permeation 

chromatography (GPC) with o-dichlorobenzene as an eluent at 80 °C on an Agilent GPC 1200 series, 

relative to polystyrene standards. Cyclic voltammetry (CV) experiments were performed with a Versa 

STAT 3 analyzer. All CV measurements were carried out in 0.1 M 

tetrabutylammoniumtetrafluoroborate (Bu4NBF4) in acetonitrile with a conventional three-electrode 

configuration employing a platinum wire as a counter electrode, platinum electrode coated with a thin 

polymer film as a working electrode, and Ag/Ag+ electrode as a reference electrode (scan rate: 50 mV 

s-1). Thermogravimetric analysis (2050 TGA V5.4A) and differential scanning calorimetry (DSC 

Q200 V24.4) measurements were performed at a heating and cooling rate of 10 °C min-1 under 

nitrogen (purity, 99.999%). The nanoscale morphology of the polymer films was investigated using 

high-resolution transmission electron microscopy (HR-TEM) (JEM-2100, Cs corrector). Atomic force 

microscopy (AFM) images (1.5 mm x 1.5 mm) were obtained using a Veeco AFM microscope in 

tapping mode. Carrier mobilities were calculated by the space charge limited current method using 

hole-only (ITO/PEDOT:PSS/active layer/Au) and electron-only (FTO/active layer/Al, FTO: fluorine-

doped tin oxide) diodes by fitting their J–V characteristics with the Mott–Gurney equation (eqn 

(1)).37,38 Corrections were made for the built in potential (V0) of the devices due to differences in the 

work functions of the electrodes and for the loss in potential due to the series resistance (VRS) using 

the equation VRS = I x RS. The thickness (L) of each device was measured after collecting J–V data 

using an atomic force microscope and a value of 3 was assumed for εr. 

Synthesis of polymers: In a glove box, M1 (0.230 g, 0.32 mmol), M4 (0.263 g, 0.32 mmol), 

tris(dibenzylideneacetone)dipalladium(0) (4 mol%), tri(o-tolyl)phosphine (8 mol%) and 1 mL 

chlorobenzene were added in a 5 mL microwave vial. The polymerization reaction mixture was heated 

at 80 °C (65 W, 10 min), at 100 °C (70 W, 10 min) and at 140 °C (80 W, 40 min) in a microwave 
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reactor. The polymer was end-capped by addition of 2-tributylstannylthiophene (0.05 g, 0.14 mmol) 

and the mixture was further reacted at 140 °C for 20 min. The solution was cooled down and 2-

bromothiophene (0.09 g, 0.53 mmol) was added by a syringe. The reaction solution was heated at 

140 °C for another 20 min. After the reaction was nished, the cr     

precipitated into the mixture of methanol and HCl (36%) (350 mL : 10 mL) and further purified by 

Soxhlet extraction with acetone, hexane and chloroform. The extracted PPDTBT polymer in 

chloroform was precipitated into MeOH, filtered and dried under vacuum. PPDTFBT and PPDT2FBT 

were synthesized by following the same procedure as PPDTBT. 

Poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole)] 

(PPDTBT). Yield: 70%. Number average molecular weight (Mn) = 17.8 kDa, polydispersity index 

(PDI) = 2.4. δH (300 MHz; CDCl3) 0.86–2.02 (62H, br), 4.10 (4H,br), 7.48 (2H, br), 7.69 (2H, br), 

7.91 (2H, br), 8.19 (2H, br). 

Poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5-fluoro-4,7-di-(thiophen-2-yl)benzo[c][1,2,5]-

thiadiazole)] (PPDTFBT). Yield: 65%. Mn = 29.8 kDa, PDI = 2.4. δH (300 MHz; CDCl3) 0.86–2.02 

(62H, br), 4.06 (4H, br), 7.06–8.20 (7H, br). 

Poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-

thiadiazole)] (PPDT2FBT). Yield: 67%. Mn = 42.6 kDa, PDI = 2.8. δH (300 MHz; CDCl3) 0.86–2.02 

(62H, br), 4.00 (4H, br), 7.06–8.20 (6H, br). 

Fabrication and characterization of polymer solar cells: ITO-coated glass substrates were cleaned 

by ultrasonication in deionized water, acetone and iso-propanol, and then dried in an oven for 12 h. 

After UV-ozone treatments for 10 min, PEDOT:PSS solution (Baytron P VPAI 4083, H. C. Starck) 

was spin-coated onto the ITO substrate at 5000 rpm for 40 s and then baked at 140 °C for 10 min. For 

deposition of the active layer, blend solutions of polymer (1 wt%):PC71BM (1.5 wt%) dissolved in 

DCB or in CB (with/without 2 vol% diphenyl ether) were spin-cast on top of the PEDOT:PSS layer in 

a nitrogen-filled glove box. For methanol (MeOH) treatment, MeOH was spin-cast at 1000 rpm for 40 

s on top of the active layer. Subsequently, an Al (100 nm) electrode was deposited on top of the active 

layer under vacuum (<10-6 Torr) by thermal evaporation. The area of the Al electrode defines the 

active area of the device as 13.0 mm2. For the characterization of PSCs, their current density–voltage 

(J–V) characteristics were measured using a Keithley 2635A Source Measure Unit. Solar cell 

performance was tested with an Air Mass 1.5 Global (AM 1.5 G) solar simulator under an irradiation 

intensity of 100 mW cm-2. EQE measurements were performed using a PV measurement QE system 

using monochromatic light from a xenon lamp under ambient conditions. The monochromatic light 

was chopped at 100 Hz and intensity was calibrated relative to a standard Si photodiode using a lock-

in-amplifier. A mask (13.0 mm2) made of thin metal was used for J–V characteristics and EQE 

measurements. 
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Fabrication and characterization of polymer solar cells: GIWAXS measurements were carried out 

at the PLS-II 9A U-SAXS beam line of Pohang Accelerator Laboratory. X-ray coming from the in-

vacuum undulator (IVU) was monochromated (Ek = 11.24 keV, λ = 1.103 Å) using a Si(111) double 

crystal monochromator and focused horizontally and vertically at the sample position (450 (H) x 60 

(V) μm2 in FWHM) using a K–B-type focusing mirror system. The GIWAXS sample stage was 

equipped with a 7-axis motorized stage for the fine alignment of the thin sample and the incidence 

angle of X-rays was adjusted to 0.12–0.14°. GIWAXS patterns were recorded with a 2D CCD detector 

(Rayonix SX165, USA), and X-ray irradiation time was 0.5–5 s depending on the saturation level 

of the detector. The diffraction angle was calibrated with a sucrose standard (monoclinic, P21, a = 

10.8631 Å, b = 8.7044 Å, c = 7.7624 Å, β = 102.938°) and the sample-to-detector distance was 

approximately 232 mm. Samples for GIWAXS measurements were prepared by spin-coating polymer 

or polymer:PC71BM blend solutions on top of the Si substrates. We also checked GIWAXS data on 

top of the PEDOT:PSS/Si layer. We obtained same morphologies with and without PEDOT:PSS layer 

on the Si substrate. 

 

3.3 Results and discussion 
The dialkoxylphenylene and benzothiadiazole (BT)-based monomers were prepared according to 

the procedures reported in the literature.203-205 1,4-Dibromo-2,5-bis(2-hexyldecyloxy) benzene was 

reacted with three BT-based monomers, 4,7-bis(5-trimethylstannylthiophen-2-yl)-2,1,3-

benzothiadiazole (M1), 4,7-bis(5-trimethylstannyl-thiophen-2-yl)-5-fluoro-2,1,3-benzothiadiazole 

(M2) and 4,7-bis(5-trimethylstannylthiophen-2-yl)-5,6-difluoro-2,1,3-benzothiadiazole (M3), to yield 

poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] 

(PPDTBT), poly[(2,5-bis(2-hexyldecyloxy) phenylene)-alt-(5-fluoro-4,7-di(thiophen-2-yl)benzo-

[c][1,2,5]thiadiazole)] (PPDTFBT) and poly[(2,5-bis(2-hexyldecyloxy) phenylene)-alt-(5,6-difluoro-

4,7-di(thiophen-2-yl)benzo[c]-[1,2,5]thiadiazole)] (PPDT2FBT), respectively, via Stille cross-

coupling with Pd2(dba)3 as a catalyst in chlorobenzene using a microwave reactor (65–70% yield). 

The chemical structures and synthetic scheme for three polymers are shown in Figure 3.1a and 

Figure 3.2, respectively. The number average molecular weight and molecular weight distribution 

were measured to be 17.8 (polydispersity index, PDI = 2.4), 29.8 (2.4) and 42.6 kDa (2.8) for 

PPDTBT, PPDTFBT, PPDT2FBT, respectively (Table 3.1). 

Three different types of dialkoxyphenylene and BT-based LBG copolymers were designed by 

carefully considering the planarity, chain curvature206 and the resulting intermolecular orientations. 

The noncovalent attractive interactions between S (in thiophene) and O (in alkoxy groups), between S 

(in thiophene) and F, and between C–H (in thiophene) and N (in BT) minimize the torsional angle,  
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Figure 3.1. (a) Chemical structures, (b) noncovalent attractive interactions within the polymer chain, 

(c) UV-vis absorption spectra (dashed: in chloroform, solid: in the film), (d) TGA and DSC 

thermograms of PPDTBT, PPDTFBT and PPDT2FBT and (e) energy-band diagram. 

 

Figure 3.2. Synthetic routes to the monomers and polymers. Reagents and reaction conditions: (i) 2-

tributylstannylthiophene, Pd2(dba)3, tris(o-tolyl)phosphine, toluene; (ii) (CH3)3SnCl, LiN(Pr-i)2, 

THF; (iii) C16H33Br, KOH, 50% TBAB, toluene; (iv) Pd2(dba)3, tris(o-tolyl)phosphine 

chlorobenzene. 
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Table 3.1. Summary of photophysical-, electrochemical- and thermal properties of polymers. 

 
a Number-average molecular weight (Mn) determined by GPC in chloroform at room temperature. b 

Optical bandgap and LUMO level was estimated form the onset of UV-vis spectra of the polymer 
films (LUMO = HOMO + Eopt

g). c HOMO level was estimated from the onset of the oxidation peaks 
of cyclic voltammogram. d Decomposition temperature (Td) was determined by TGA. e Crystallization 
(Tc) and melting (Tm) temperature were obtained by DSC. 
 

 

 
Figure 3.3. Torsional profiles for (a) thiophene-difluoro BT and (b) thiophene-dimethoxybenzene 

(yellow:sulfur, green: fluorine, red: oxygen). (c) The most stable conformation for PPDTBT, 

PPDTFBT and PPDT2FBT. (*) Methoxy substituents are replaced by ethyl groups in PPDT2FBT. 
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thus maximizing the planarity of the polymer chain (Figure 3.1b).175, 195-199, 207, 208 Noncovalent 

coulomb interactions have been utilized to increase the planarity and ordering of polymer chains. Guo 

et al. demonstrated the use of noncovalent S···O attractive interactions to fix the chain conformation 

with improved planarity in methoxy-substituted thiophene and bithiazoles (dihedral angle, ~0°) 

compared to unsubstituted (~22°) and methyl-substituted thiophene-containing analogues (~68°).198 

S···F interactions have been emphasized in controlling the stacking orientation in fluorinated 

benzobisbenzothiophenes by single-crystal X-ray analyses.195 Recently, Ratner and coworkers 

reported the role of nonbonding interactions in determining conformations of conjugated polymers 

and small molecules.209 In this paper, the binding energy was calculated to be 2.2, 0.51 and 0.44 kcal 

mol-1 for CH···N, O···S and F···S nonbonding interactions, respectively. The branched 2-

hexyldecyloxy substituents endow great solubility in common organic solvents with little influence on 

the intermolecular packing in the film by keeping the branching point away from the main chain. 

Additionally, by changing the number of fluorine substituents, the electronic structures (such as 

frontier orbital energy levels) of the polymers can be fine-tuned, which significantly influences the 

thermal, electrical properties and temporal stabilities of the resulting devices. 

Computational studies using density functional theory (DFT, Jaguar quantum chemistry software, 

M06-2X/6-31G** level) were performed.210-214 As shown in Figure 3.3, torsional profiles obtained by 

the introduction of fluorine atoms (in PPDTFBT and PPDT2FBT) were expected to be similar with 

that of PPDTBT because of the small size of fluorine atoms and intrachain F···S interactions. The 

introduction of alkoxy substituents on the phenylene ring was observed to decrease the torsional angle 

(18.4°–20.9°) via the S···O noncovalent interaction compared to the alkyl-substituted structure (38.6°). 

Figure 3.3 shows the minimum energy conformations of PPDTBT, PPDTFBT and PPDT2FBT. 

According to the torsional profiles for PPDT2FBT, there are two minimum energy conformations for 

the thiophene–dialkoxybenzene linkage. This means that the S···O interaction is comparable with that 

of the O···H–C interaction (Figure 3.3b). The same argument can be applied to the thiophene–

difluoro BT linkage (Figure 3.3a). We guess that these minimum energy conformations are expected 

to repeat randomly in the polymeric backbone for the polymers, as displayed in Figure 3.1b. In order 

to estimate interchain packing interactions, the binding energies were calculated by considering three 

types of cofacial interactions.99 The head-to-tail (HT) configuration was found to be the most stable 

among the various possible configurations for all the polymers (Figure 3.4). The calculated binding 

energies of HT-type cofacial dimers were -18.7, -22.5, and -24.2 kcal mol-1 for PPDTBT, PPDTFBT 

and PPDT2FBT, respectively. In particular, the introduction of fluorine substituents greatly affected 

the interchain packing by way of attractive C–F···H, F···S and C–F/···πF interactions in the adjacent 

polymeric chains.215, 216 As shown in Figure 3.4, the replacement of methoxy substituents on the 

phenylene ring with ethyl groups destabilized the structure by ~3 kcal mol-1 because of the twisting in 
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the main chain caused by the absence of S···O or O···H–C interactions. The HOMO levels were 

measured to be -5.29, -5.35 and -5.45 eV for PPDTBT, PPDTFBT and PPDT2FBT by cyclic 

voltammetry (CV) (Figure 3.5), respectively. The LUMO levels were estimated to be -3.57, -3.63 and 

-3.69 eV for PPDTBT, PPDTFBT and PPDT2FBT, respectively, from the HOMO values and the 

optical band gaps of the films. Though the HOMO and LUMO electronic structures were calculated to 

be similar for the three polymers (Figure 3.6), their energies were clearly stabilized upon fluorine 

substitution. The resulting energy band structures are also summarized in Figure 3.1e. 

 

 
Figure 3.4. Calculated binding energies of HT-type cofacial dimeric structures for PPDTBT, 

PPDTFBT and PPDT2FBT. (*) Methoxy substituents are replaced by ethyl groups in PPDT2FBT. 

(red: oxygen, yellow:sulfur, green: fluorine) 

Figure 3.5. Cyclic voltammogram of three polymers. 
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Figure 3.6. Calculated electronic structure of frontier orbitals. 

 

Figure 3.1c shows the normalized UV-vis absorption spectra of the polymers in chloroform and in 

the film. All the polymers exhibit broad absorption in the range of 350–750 nm with two distinct high 

and low energy bands attributed to the localized π-π* and internal charge transfer transitions, 

respectively. In chloroform, the maximum absorption was measured at λabs = ~575 nm, ~585 nm and 

~650 nm for PPDTBT, PPDTFBT and PPDT2FBT, respectively. More importantly, the shoulder peak 

at 650 nm was gradually enhanced with increasing fluorine substitution. In the film, three polymers 

show similar UV-vis profiles, where the spectra are red-shifted and the shoulder peak is substantially 

intensified, relative to those in solution. The differences in UV-vis spectra in the solution and film 

emphasize the facile interchain organization in the solid state. Optical band gaps were determined to 

be 1.72–1.76 eV for the polymer films. Thermal stability of the polymers was analyzed by 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) (Figure 3.1d). 

PPDTBT, PPDTFBT and PPDT2FBT showed the decomposition onset temperatures with 5% weight 

loss at 396, 397 and 402 °C, respectively. Clear melting temperatures (Tm) at 257, 283 and 317 °C, 

and recrystallization points (Tc) at 239, 276 and 308 °C were measured for PPDTBT, PPDTFBT and 

PPDT2FBT, respectively, indicating clear crystalline nature of the polymers. This clearly indicates 

that the introduction of fluorine atoms has a significant effect on the thermal properties of the 

polymers. Detailed optical, electrochemical and thermal properties of the three polymers are 

summarized in Table 3.1. 

We investigated the photovoltaic properties of the polymers with a simple device architecture of 

ITO/PEDOT:PSS/polymer:PC71BM/Al (PEDOT:PSS, poly(3,4-ethylenedioxythiophene):polystyrene 

sulfonic acid; PC71BM, [6,6]-phenyl-C71 butyric acid methylester). To optimize the donor and 

acceptor (D : A) blend ratio, polymer:PC71BM blend films were processed using o-dichlorobenzene 

(DCB) as a solvent (Figure 3.7 and Table 3.2). 
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Figure 3.7. J-V characteristics of (a) PPDTBT, (b) PPDTFBT and (c) PPDT2FBT based PSCs with 

different polymer:PC70BM blend ratios (solvent: o-dichlorobenzene). 

 

Table 3.2. Device characteristics of polymer:PC71BM PSCs with different D:A blend ratios (solvent: 

odichlorobenzene). 

 
 

For all polymers, devices with a D : A weight ratio of 1 : 1.5 showed the best performance (PCE: 

4.27%, 4.72% and 7.18% for PPDTBT, PPDTFBT and PPDT2FBT, respectively). The device using 

PPDT2FBT exhibited the highest PCE of 7.18% with a JSC of 12.9 mA cm-2, VOC of 0.78 V and FF of 

0.71. This is one of the highest PCE values reported so far for conventional PSCs without any post-

treatments (i.e., thermal, solvent annealing and additives, etc.). Upon thermal annealing (130 _C for 

10 min), VOC and FF were substantially improved for the three polymer systems (Figure 3.8a and 

Table 3.3). The VOC increased from 0.76–0.78 V to 0.81– 0.86 V and the FF improved by ~0.03. This 

must be due to morphological changes in the photoactive layer and improved contact between the 

active layer and the electrode. Similar results have been reported.217, 218 
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1:1 7.94 0.77 0.62 3.77

1:1.5 9.77 0.76 0.58 4.27

1:2 8.50 0.73 0.59 3.63

PPDTFBT

1:1 10.5 0.69 0.60 4.38

1:1.5 10.6 0.76 0.59 4.72

1:2 9.03 0.74 0.57 3.80
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1:1 12.5 0.79 0.71 6.94

1:1.5 12.9 0.78 0.71 7.18

1:2 11.7 0.78 0.69 6.34
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Figure 3.8. (a) Current density versus voltage (J–V) characteristics (w/o TA: without thermal 

annealing, w/TA: with thermal annealing) and (b) temporal stability (at an annealing temperature of 

130 °C) of polymer: PC71BM PSCs. All devices were prepared from o-dichlorobenzene solutions. 

 

Table 3.3. Device characteristics of polymer:PC71BM-based PSCs with thermal annealing (solvent: 

DCB, blend ratio: 1 : 1.5) 

 
a Thermal annealing at 130 °C for 10 min. 
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Temporal stabilities of the devices were also characterized by annealing at 130 °C for 200 h under 

nitrogen (Figure 3.8b). After thermal annealing for 200 h, the PPDTBT device showed a ~55% 

decrease in PCE. Interestingly, the PSCs based on PPDTFBT and PPDT2FBT showed a substantial 

improvement in temporal stability, showing 37% and 13% reductions in PCE, respectively. This 

remarkable device stability must be closely related to the stronger intermolecular interaction and 

higher interchain ordering, which is also consistent with the TGA and DSC measurements. 

Furthermore, relatively small morphological changes were detected for the PPDT2FBT:PC71BM 

blend film after thermal annealing, compared to those of other two polymers and P3HT blends by 

atomic force microscopy (AFM) (Figure 3.9). Until now, there have been few reports on conjugated 

polymers achieving both high efficiency of over 7% and long-term thermal stability for over 200 h in 

PSCs (Table 3.4 and 3.5). 

 

 
Figure 3.9. Tapping-mode AFM topography and phase images of polymer:PC71BM blend films 

(solvent: DCB) before and after thermal treatment at 130°C for 200 h. Before thermal treatment: 

PPDTBT (a1 and a2), PPDTFBT (b1 and b2), PPDT2FBT (c1 and c2), P3HT (d1 and d2). After thermal 

treatment: PPDTBT (e1 and e2), PPDTFBT (f1 and f2), PPDT2FBT (g1 and g2), P3HT (h1 and h2). The 

size of all images is 1.5 mm x 1.5 mm. 
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Table 3.4. Comparison of photovoltaic characteristics and device stability. 

 
a TA: Thermal annealing at 130 °C. bDevice was prepared using a o-dichlorobenzene solvent. 

 

Table 3.5. Thermal cycling test protocol. 

 
 

Active layer JSC
(mA cm-2)

VOC
(V) FF

Initial
PCE 
(%)

TA timea

(hours)

Final PCE 
after TA

(%)

PCE 
decrement 
after TA

(%)

Reference

P3HT:PC60BM 8.93 0.54 0.65 3.11 10 1.00 67 S7

P3HNT:PC60BM 7.55 0.64 0.63 3.03 10 1.74 43 S7

TPD-Br16:PC70BM 11.70 0.73 0.66 5.60 72 4.00 26 S8

P3HT:NC70BA 10.73 0.83 0.66 5.88 20 4.89 17 S9

PPDT2FBT:PC70BM
b 12.9 0.78 0.71 7.18 200 6.25 13 Current 

work
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Processing additives offer an efficient way to control the morphology of the active layer by 

selectively solvating one of the components in BHJ systems.105, 109, 219, 220 Several additives were tested 

to modulate the morphology of the blend films prepared from a 1wt% chlorobenzene (CB) solution, 

where the clearer additive effects were observed compared to the films from DCB solutions. In 

contrast to poor performances of the devices fabricated without processing additives (Figure 3.11 and 

Table 3.7), devices with additives showed substantial improvements in photovoltaic properties. 

Among the tested additives, diphenyl ether (DPE) was found to be an appropriate processing additive 

for our polymers. The addition of DPE to CB (CB : DPE = 98 : 2 by volume) led to remarkable 

enhancements in device performances for the three polymeric structures, showing ca. 5–8% PCE 

values (Figure 3.10). 

 

 
Figure 3.10. Photovoltaic characteristics of polymer:PC71BM-based devices fabricated using a 

CB:DPE solvent mixture. (a) Current density versus voltage (J–V) characteristics and (b) external 

quantum efficiency (EQE) of polymer:PC71BM-based PSCs. (c) J–V characteristics of the optimized 

PPDT2FBT:PC70BM-based PSC obtained from our laboratory and (d) certified by the KIER, 

respectively (c and d: with MeOH treatment). The inset of Figure 3.10c shows the EQE values over 

80% in the range of 460–570 nm with the maximum EQE of 83.6% at 490 nm. 
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Table 3.6. Summary of photovoltaic characteristics (prepared from a solvent mixture of CB and DPE). 

 
a JSC [cal.], calculated JSC from a EQE curve. 

 

 
Figure 3.11. (a) J-V characteristics (w/o TA: without thermal annealing, w/ TA: with thermal 

annealing) and (b) EQE of polymer:PC71BM PSCs prepared from a chlorobenzene solution without 

processing additives. 

 

Table 3.7. Device characteristics of polymer:PC71BM PSCs (solvent: chlorobenzene). 

 
 

Polymer Active layer
Thickness (nm)

MeOH
treatment

JSC
(mA cm-2)

VOC
(V) FF JSC [Cal.]a
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PCE (%)

Best Ave

PPDTBT 170 No 11.73 0.70 0.63 11.77 5.17 5.04

PPDTFBT 175 13.29 0.73 0.69 12.88 6.64 6.45

PPDT2FBT 290 15.73 0.78 0.71 15.59 8.64 8.39

PPDT2FBT 290 Yes 16.30 0.79 0.73 15.94 9.39 9.21
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No 8.14 0.76 0.55 3.36
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Yes 5.08 0.86 0.64 2.78
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PPDTBT:PC71BM and PPDTFBT:PC71BM devices showed the best PCE with a film thickness of 

~170 nm. Interestingly, the PPDT2FBT blend film exhibited the best efficiency using a thick (290 nm) 

film (as shown in Figure 3.12 and Table 3.8). Figure 3.10a and b show the J–V characteristics and 

external quantum efficiency (EQE) of the devices with DPE. Table 3.6 summarizes the detailed 

photovoltaic parameters. The PPDT2FBT device showed the highest PCE of 8.64% with a JSC of 

15.73 mA cm-2, VOC of 0.78 V and FF of 0.71, reaching EQE values of over 80% in the range of 470–

550 nm with a maximum EQE of 82.5% at 490 nm (Figure 3.10b). These enhancements in JSC and 

FF by the addition of DPE are closely related to the strong interchain ordering with the recovery of 

the strong shoulder peak (originating from strong intermolecular packing and/or π–π stacking) of 

polymer:PC71BM blend films in UV-vis spectra (Figure 3.13). In addition, we also measured a 

remarkable temporal stability of PPDTFBT- and PPDT2FBT-blend films (in CB without DPE) at 

130 °C for 200 h, compared to PPDTBT and P3HT based devices (Figure 3.14a). For devices with 

the processing additive (DPE), poor thermal stability was measured, showing a gradual decrease in 

PCE, compared to the devices without DPE (Figure 3.14b). It has been recognized previously that 

thermal treatment induces agglomeration with a concomitant decrease in device performance with 

processing additives. The solvent additive allows the components to remain partially dissolved, thus 

affecting the morphology and diffusion rate of fullerene molecules in the polymer matrix, and 

promoting the growth of fullerene agglomerates. This can accelerate phase separation between the 

polymer and fullerene moieties during heat treatment, adversely affecting device performance.221 

Figure 3.12. J-V characteristics of PPDT2FBT:PC71BM PSCs with variable film thickness. 

 

0.0 0.2 0.4 0.6 0.8
-18

-15

-12

-9

-6

-3

0

3

Thickness (w/o DPE) 
  290 nm   140 nm

Thickness (w/ DPE)
 290 nm   140 nm

Cu
rre

nt
 d

en
si

ty
 (m

A 
cm

-2
)

Voltage (V)



60 

 

Table 3.8. Device characteristics of PPDT2FBT:PC71BM PSCs with variable film thickness. 

 
 

 
Figure 3.13. UV-vis absorption spectra of polymer:PC71BM blend films based on (a) PPDTBT, (b) 

PPDTFBT and (c) PPDT2FBT. The films were prepared with CB (w/o DPE) and mixed CB:DPE (98 : 

2 vol%, w/DPE) as a solvent. 

 

 
Figure 3.14. Temporal stability of polymer:PC71BM PSCs (a) without and (b) with DPE at an 

annealing temperature of 130 °C for 200 h (P3HT-based device for comparison). All devices were 

prepared from chlorobenzene. 
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To further optimize the PPDT2FBT device, the top of the active layer was treated with methanol 

(MeOH). Solvent treatments can be an effective strategy for simultaneously enhancing all device 

parameters.222, 223 Figure 3.10c and 10d show J–V characteristics of optimized, MeOH treated, 

PPDT2FBT:PC71BM devices as measured in our laboratory and certified by the Korea Institute of 

Energy Research (KIER), respectively. More than 50 devices were fabricated for device optimization. 

The best performing device exhibited a PCE of 9.39% (average PCE = 9.21%) with a JSC of 16.30 mA 

cm-2, VOC of 0.79 V and FF of 0.73 (Table 3.6). The EQE values of these devices are above 80% in 

the range of 460–570 nm with a maximum EQE of 83.6% at 490 nm (inset of Figure 3.10c). The 

surface morphologies of PPDT2FBT:PC71BM films with and without MeOH treatments were 

characterized by AFM (Figure 3.15). There were no observable changes in the AFM images, 

indicating that the effects of MeOH treatment do not arise from reconstruction of the film surface. 

Similar data and the detailed studies on the MeOH treatment effects have been reported previously. 

Bazan and Heeger et al. reported that MeOH treatment enhanced the photovoltaic efficiency by 

increasing the internal electric field and surface potential by Kelvin probe force microscopy (KPFM) 

and impedance measurements. Additionally, the series resistance decreased and the shunt resistance 

increased after methanol treatment, in good agreement with the observed improvements in JSC and 

FF.222, 223 A certified PCE of 8.78% was obtained by the KIER (Figure 3.10d and 3.16) from a UV-

epoxy encapsulated sample. This PCE was ~5% lower than the average PCE as measured in our 

laboratory, which could be attributed to non-ideal encapsulation.79, 189 The certified results confirm 

that the measured PCE values of over 9%, as obtained in our laboratory, are reasonable. 

 

 
Figure 3.15. AFM topography images of PPDT2FBT:PC70BM without (left) and with (right) MeOH 

treatments. (solvent: CB:DPE, 98:2 vol%). 
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Figure 3.16. Photovoltaic data of PPDT2FBT:PC71BM-based PSCs certified by KIER (solvent: 

CB:DPE (98:2 vol%), MeOH treatment on top of the active layer). 

 

Furthermore, this work is the first report that showcases efficiency over 9% with a conventional 

type, 290 nm thick, single cell structure without any additional interfacial layer (Table 3.9). The high 

PCE and device thickness also suggest a meaningful approach for real commercial applications of 

PSCs. Although remarkable improvements in PCE have been reported in PSCs, the device thickness is 

on the order of ~100 nm. It is of great importance to develop photovoltaic materials which can 

function effectively at the greater film thickness. It is not currently viable to fabricate uniform and 

defect-free films on the order of 100 nm thickness using industrial solution casting techniques. Most 

previous PSCs showed that the performance degrades with the concomitant decrease in FF, with 

increasing film thickness. This must be closely related to space charge accumulation and charge 

recombination losses which become stronger with thicker films. It is noteworthy to emphasize that a 

~300 nm thick active layer in the PPDT2FBT:PC71BM device attenuates incident light almost 

completely without damage in the fill factor (0.71–0.73), showing a high JSC of 15.7–16.3 mA cm-2. 

These superior properties are closely related to the molecular structures and pronounced crystalline 

morphology in the film. 
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Table 3.9. Comparison of photovoltaic characteristics with previously reported high-efficiency PSCs. 

 
aCB: chlorobenzene; DCB: o-dichlorobenzene; DIO: 1,8-diiodooctane; CN: 1-chloronaphthalene; 
DPE:diphenyl ether. 

 

 
Figure 3.17. HR-TEM images of polymer:PC70BM films without (a–c) and with DPE (d–f). 

PPDTBT (a and d), PPDTFBT (b and e) and PPDT2FBT (c and f). 

 

Solvent
(additive)a Active layer JSC

(mA cm-2)
VOC
(V) FF Best EQE 

(%)
Best PCE

(%) Ref.

CB 
(DIO) PBDTTT-CF:PC71BM 15.20 0.76 0.67 69 7.73 [7]

CB 
(DIO) PTB7:PC71BM 14.5 0.74 0.69 68 7.40 [8]

DCB 
(DIO) PBDTTT-C-T:PC71BM 17.48 0.74 0.59 75 7.59 [9]

CB 
(DIO) PTDBD2:PC71BM 13.0 0.89 0.65 - 7.60 [10]

DCB 
(DIO) PBDTTT-ST:PC71BM 16.35 0.69 0.66 75 7.81 [11]

DCB 
(DIO) PBDT-TFQ:PC71BM 17.90 0.76 0.58 86 8.00 [12]

CB 
(CN) PBDTTPD:PC71BM 12.60 0.97 0.70 N/A 8.50 [13]

CB 
(DPE) PPDT2FBT:PC71BM 15.73 0.78 0.71 82 8.64 Current 

work
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The nanoscale morphology of polymer:PC71BM blend films (in CB) was studied by high-

resolution transmission electron microscopy (HR-TEM) and tapping mode AFM. In Figure 3.17, 

TEM images show large domains with diameters of 100–300 nm for the PPDTFBT and PPDT2FBT 

blend films fabricated without DPE, whereas the PPDTBT films show featureless morphologies. 

Macrophase separation in the PPDTFBT and PPDT2FBT blend films limits the probability for exciton 

dissociation by reducing donor/acceptor interfacial areas, leading to poor JSC and FF values by charge 

recombination loss.142, 191 In contrast, the blend films with DPE show a clear morphological change 

for all polymers, forming well-distributed nano-fibrillar structures where a bicontinuous 

interpenetrating network may be formed in BHJ films with PC71BM. These fibrillar structures are 

expected to enhance the charge-carrier mobility, JSC, FF and the resulting photovoltaic performance of 

PSCs.79, 224 Surface topography and phase images of the three blend films obtained from AFM 

measurements are consistent with morphologies observed in HR-TEM images (Figure 3.18). 

 

 
Figure 3.18. Tapping-mode AFM topography (a1–c1, a3–c3) and phase (a2–c2, a4–c4) images of 

polymer:PC71BM blend films. Without DPE: PPDTBT (a1 and a2), PPDTFBT (b1 and b2) and 

PPDT2FBT (c1 and c2). With DPE: PPDTBT (a3 and a4), PPDTFBT (b3 and b4) and PPDT2FBT (c3 

and c4). The size of all images is 1.5 mm x 1.5 mm. 
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In order to quantify charge carrier mobilities, hole-only (ITO/PEDOT:PSS/polymer:PC70BM/Au) 

and electron-only (FTO/polymer:PC71BM/Al, FTO: fluorine-doped tin oxide) diodes were prepared47 

using optimized BHJ films (CB : DPE = 98 : 2 vol%) with various film thicknesses (200–1000 nm) 

and their J–V characteristics were analyzed by the space charge limited current (SCLC, JSCL) method. 

The potential loss due to the series resistance of the ITO and the built-in potential were carefully 

considered in order to ensure accuracy in the measurements. The J–V characteristics show a quadratic 

dependence on voltage over a range of several volts and an inverse cubic dependence on the film 

thickness, consistent with the Mott–Gurney relationship (eqn (1)),225, 226 where ε0 is the free-space 

permittivity, εr is the dielectric constant of the semiconductor, μ is the mobility, V is the applied 

voltage and L is the thickness of the active layer. 

 
 

 
Figure 3.19. J–V characteristics of (a) hole- and (b) electron-only devices based on polymer:PC71BM 

blend films (solvent: CB : DPE = 98 : 2 vol%). Blue lines represent fits of the curves using the Mott–

Gurney relationship. 

 

The average hole and electron mobilities were determined to be μ (hole) = 3.2 x 10-4, 5.5 x 10-4 and 

3.0 x 10-3 cm2 V-1 s-1, and μ (electron) = 2.8 x 10-4, 4.2 x 10-4 and 1.5 x 10-3 cm2 V-1 s-1 for PPDTBT, 

PPDTFBT and PPDT2FBT devices, respectively. Plots of films with similar thickness are found in 

Figure 3.19, while additional plots with films of various thicknesses are found in Figure 3.20 and 

Table 3.10. All the polymers showed well balanced hole/electron mobility ratios in the range of 1–2 

with various film thicknesses. PPDT2FBT showed ~1 order higher hole and electron mobilities 

relative to other two polymers. Notably, PPDT2FBT showed negligible changes in the carrier mobility 

even at ~1 μm film thickness. These SCLC results are consistent with the PCE data of PPDT2FBT, 
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showing no decrease in VOC and FF with a 290 nm thick active layer, resulting in a high JSC of 15.7–

16.3 mA cm-2 due to the increased light absorption. 

 

 
Figure 3.20. J-V characteristics of (a)~(c) hole-only and (d)~(f) electron-only devices based on 

polymer:PC71BM blend films with various film thickness (solvent: CB:DPE = 98:2 vol%). Blue lines 

represent fits of the curves using the Mott-Gurney relationship. 

 

 

Table 3.10. Electron and hole mobilities of electron- and hole-only devices based on 

polymer:PC71BM films measured using a space-charge-limited current method. 
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345 3.1 × 10-4 370 2.4 × 10-4 1.3
475 3.8 × 10-4 465 2.4 × 10-4 1.6

PPDTFBT
260 5.4 × 10-4 230 4.3 × 10-4 1.3
375 5.1 × 10-4 380 3.7 × 10-4 1.4
450 6.0 × 10-4 440 4.5 × 10-4 1.3

PPDT2FBT
255 2.3 × 10-3 350 1.1 × 10-3 2.1
700 2.6 × 10-3 730 1.6 × 10-3 1.6
1020 4.0 × 10-3 1110 1.8 × 10-3 2.2
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To further understand the detailed film morphology of the three polymers with/without PC71BM 

and before/after additive treatments, the molecular arrangements and packing characteristics of the 

thin films were studied by grazing incidence wide angle X-ray scattering (GIWAXS).223, 227, 228 Figure 

3.21 shows GIWAXS patterns for pristine polymer and polymer:PC71BM blend films prepared from 

CB solutions with and without DPE. From the GIWAXS profiles, packing parameters were extracted 

and are listed in Table 3.11. 

 

 
Figure 3.21. Grazing incidence wide angle X-ray scattering (GIWAXS) images. GIWAXS images of 

pristine polymer films (upper two rows) (a) without and (b) with DPE, and polymer:PC71BM blend 

films (lower two rows) (c) without and (d) with DPE. Left, middle and right panels show the images 

for PPDTBT, PPDTFBT and PPDT2FBT, respectively. 
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Table 3.11. Packing parameters derived from GIWAXS measurements. 

 
 

 
Figure 3.22. In-plane (a and c) and out-of-plane (b and d) GIWAXS data for pristine polymers (a and 

b) and polymer:PC71BM (c and d) films with and without DPE. 

 

 

Films Polymers Additive
(DPE)

Crystallographic parameters

Lamellar spacing π-π stack 
(qz direction)

q (Å-1) d-spacing (Å) q (Å-1) d-spacing (Å)

Pristine polymer

PPDTBT
X 0.3324 18.9 - -

O 0.3312 19.0 - -

PPDTFBT
X 0.3035 20.7 1.6614 3.78

O 0.3036 20.7 1.6706 3.76

PPDT2FBT
X 0.3036 20.7 1.6873 3.72

O 0.3000 20.9 1.6901 3.72

Polymer:PC71BM 
blend

PPDTBT
X 0.3297 19.1 - -

O 0.3332 18.9 - -

PPDTFBT
X 0.3182 19.7 1.6925 3.71

O 0.3178 19.8 1.7590 3.57

PPDT2FBT
X 0.3164 19.9 1.7089 3.68

O 0.3133 20.1 1.7514 3.59
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Pronounced reflection peaks of (100), (200), and (300) in the out-of-plane direction were observed 

in the pristine PPDTBT film, showing a lamellar spacing of 18.9 Å (Figure 3.21a and 3.22). For the 

pristine PPDTFBT and PPDT2FBT films, the lamellar spacing calculated from the (100) diffraction 

peak was slightly increased to 20.7 Å. On increasing the number of fluorine substituents on the BT 

unit, the in-plane lamellar diffraction peak was also intensified (strongest in PPDT2FBT). Therefore, 

the presence of fluorine atom may induce a face-on lamellar orientation coexisting with the edge-on 

lamellar stacks, which may facilitate an effective three-dimensional charge transport. The PPDTBT 

sample showed no π–π stacking (010) peak in the out-of-plane direction. Interestingly, the (010) peak 

(d = ~3.7 Å) in the out-of-plane direction becomes pronounced by the introduction of fluorine 

substituents. The π–π stacking distance was shorter in PPDT2FBT (3.72 Å) than in PPDTFBT (3.78 

Å), which indicates a stronger cofacial interchain orientation between the neighboring chains. Upon 

addition of DPE to the pristine polymer films, similar trends were observed with increased scattering 

intensity, indicating more pronounced interchain orientation with DPE. The GIWAXS patterns of 

polymer:PC71BM blend films are shown in Figure 3.21c and d. The lamellar spacing for 

polymer:PC71BM blend samples was measured to be 19.1–19.9 Å for the three structures, showing 

similar spacings in the pristine polymer films. Upon addition of DPE, the diffraction patterns are 

clearer without noticeable changes in the lamellar spacing. We also observed a further reduction in the 

π–π stacking distance (3.57–3.59 Å) for the PPDTFBT:PC71BM and PPDT2FBT:PC71BM films with 

DPE, indicating an intensified interchain orientation upon addition of DPE. Interestingly, the blend 

films with DPE show shorter π–π stacking distances than those of the pristine polymers (PPDTFBT: 

3.78 Å and PPDT2FBT: 3.72 Å). The solvent additive allows the components to remain partially 

dissolved and affects the morphology and diffusive rate of PC71BM in the polymer matrix. This may 

allow a longer time for polymer chains to self-organize into highly ordered intermolecular 

structures.229 
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3.4 Conclusion 
In summary, a series of dialkoxyphenylene-BT containing semicrystalline LBG polymers were 

synthesized with noncovalent conformational locking to enhance chain planarity, intermolecular 

ordering and thermal stability without losing solution processability. The polymers formed well-

distributed interpenetrating nano-fibrillar networked morphologies with PC71BM, showing well-

balanced hole and electron mobilities. Notably, PSCs based on these polymers exhibited PCEs of up 

to 9.39% in a 290 nm thick conventional single-cell device structure without any additional interfacial 

layer. The thick active layer (290 nm) in the PPDT2FBT:PC71BM device enabled strong light 

absorption, yielding a high JSC of 15.7–16.3 mA cm-2 without the loss in VOC and FF. It is of great 

importance to develop photovoltaic materials which can function effectively at the thicker film which 

can absorb solar light completely and is viable to be produced using industrial solution processing 

techniques. These remarkable device characteristics with the great thickness are closely related to the 

highly ordered organization of polymer chains via noncovalent attractive interactions, showing nano-

fibrillar structures in TEM with tight interchain packing (a π–π stacking distance of 3.57–3.59 Å) in 

the blend films. In addition, we also measured clear molecular weight dependence on the photovoltaic 

properties. We synthesized more than 20 batches of PPDT2FBT to optimize the photovoltaic 

characteristics. Among them, the high molecular weight batches (with ~40 kDa) showed the PCE over 

8–9% but small molecular weight batches showed the relatively lower PCE values (~7%). The 

detailed study on the molecular weight dependence is now under investigation. Furthermore, this 

work also demonstrates a high PCE of over 7% (without any post-treatments) with long-term thermal 

stability at 130 °C for ~200 h. These new polymers provide a great possibility to overcome the 

efficiency barrier of 10% and accelerate the real application of plastic solar cells. 
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Chapter 4. Photocurrent Extraction Efficiency Near Unity in a Thick 

Polymer Bulk Heterojunction 
 

4.1 Research background 
Polymeric bulk heterojunction (BHJ) solar cells have the potential to revolutionize the solar 

industry due to their low cost and ability to be processed like inks.140, 230 While organic BHJ films are 

able to deliver substantial power conversion efficiencies using films as thin as 100 nm,3-7 it is 

nonetheless of vital importance to develop materials which are able to function effectively at greater 

film thicknesses. The need for thicker active layers is an often overlooked, but important 

consideration,140, 231, 232 for the future commercialization of organic solar technologies. Although 

organic semiconductors exhibit large absorption coefficients, it is impossible to completely absorb 

incident sunlight using 100 nm thick films233; thus a significant amount of energy is lost as light 

passes through films which are too thin. Using films on the order of 250-300 nm, however, allows 

nearly complete attenuation of incident lighti. Additionally, the production of defect-free films with 

~100 nm thickness is not currently possible using industrial solution coating equipment,140, 231 posing 

intractable problems from a manufacturing perspective. Again, this problem can be resolved using 

thick active layers. 

In practice, most reported BHJ systems achieve optimal performance using films close to 100 nm 

thick, corresponding to the first constructive interference maximum in the active layer.231, 233, 234 There 

are a number of reasons why performance degrades for thicker BHJ films including low charge carrier 

mobilities, space charge accumulation and charge carrier recombination losses which all become 

stronger with thicker films233, 235, 236 and preclude thick active layers in most BHJ materials. 

Here, we have investigated the unique properties of the photovoltaic polymer poly[(2,5-bis(2-

hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] 

(PPDT2FBT)237, which exhibits optimal performance using exceptionally thick films. Unlike the 

widely studied polymers poly-3-hexylthiophene (P3HT), PCDTBT75 and PTB7,142 we found that this 

system closely tracked theoretical short circuit current (JSC) generation as the active layer thickness 

approached 1 μm in both conventional and inverted architectures. The structures of PPDT2FBT and 

PC71BM are shown in Figure 4.1a, together with the conventional (Figure 4.1b) and inverted device 

architectures used in this study (Figure 4.1c). Optimal current density – voltage (J-V) curves and 

external quantum efficiency plots of PPDT2FBT:PC71BM devices are shown in Figure 4.1d and 1e, 

respectively, corresponding to devices with active layer thicknesses of 290 nm (conventional) and 260 

nm (inverted). 
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4.2 Experimental 
Materials: Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) (Baytron AI 

4083 and PH500) was purchased from H. C. Starck (Germany). Regio-regular P3HT (Medium MW 

55,000 g/mol) was purchased from Rieke Metals, Inc. [6,6]-phenyl-C61-butyric acid methyl ester 

(PC61BM)  and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) were purchased from 

Electronic Materials (EM) Index Co., Ltd. Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-

b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl]] (PTB7) and 

poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) 

were purchased from 1-material (Canada). Poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-

difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole)] (PPDT2FBT) was synthesized according 

to reference.237 

Instruments: Transmission electron microscopy (TEM) images were obtained using a JEOL JEM-

2100 transmission electron microscope operated at 200 kV. UV-vis spectra were measured using a 

Varian Carry 5000 spectrophotometer in the range 300 to 1200 nm with 1 nm resolution. Atomic force 

microscopy (AFM) images were collected using a Veeco Multimode microscope with 300 kHz silicon 

tips operating in tapping mode. UV-Vis total reflectance was measured using a Varian Cary 5000 

spectrophotometer equipped with a specular reflectance assembly. 

Optical Simulations: Optical constants of ITO, PEDOT and ZnO layers were calculated from 

ellipsometric data in the range of wavelengths from 370 to 1200 nm. Optical constants for Al, Au and 

MoO3 were taken from the literature.238 For bulk heterojunction films, n and k values were calculated 

from absorption coefficients (α) of each film using the Kramers-Kronig relationship.239 Transfer 

matrix simulations were performed using a modified Matlab script introduced by Burkhard, et al..240 

For each material, α values were calculated based on the average absorption spectra taken from films 

with four different thicknesses. The thickness of each film was taken as the average of 9 

measurements using a recently calibrated atomic force microscope. Bulk heterojunction films were 

observed to vary in thickness by approximately 5% between different locations on the same film. To 

account for this, transfer matrix simulations were taken as the average of 3 calculations for optical 

stacks in which the active layer thickness was varied by + 5% and - 5%, resulting in a better match 

between simulated active layer absorption and the observed EQE. To correct for absorption tails in α 

which extend well beyond the absorption onset (caused by scattering effects, etc.), the absorption 

onset of each material was fit with a Gaussian curve resulting in an accurate match between the 

calculated onset of light absorbed in the active layer and the onset observed in the EQE.  

Fabrication and characterization of solar cells: Devices were fabricated according to the following 

procedures. First, the glass/ITO substrates were cleaned with detergent, then ultra-sonicated in 

acetone and isopropyl alcohol and subsequently dried in an oven overnight at 100 °C. PEDOT:PSS 
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hole transport layers were spin-coated (after passing through a 0.45 µm cellulose acetate syringe filter) 

at 5000 rpm for 40s followed by baking at 140 °C for 15 min in air and then moved into a glove box. 

For deposition of the active layer, blend solutions of PPDT2FBT (1 wt%):PC71BM (1.5 wt%) 

dissolved in CB (with 2 vol% diphenylether), P3HT (2.5 wt%): PC61BM (2 wt%) dissolved in DCB, 

PCDTBT (1.2 wt%):PC71BM (4.7 wt%) dissolved in DCB, and PTB7 (1.2 wt%):PC71BM (1.8 wt%) 

(with 3 vol% 1,8-diiodooctane) were spin-cast on top of the PEDOT:PSS layer in a nitrogen-filled 

glove box. The device was pumped down in vacuum (< 10–6 torr; 1 torr ∼ 133 Pa), and a 100 nm 

thick Al electrode for conventional architecture or a 80 nm thick Au electrode for inverted architecture 

was deposited on top of the active layer by thermal evaporation. The deposited Al or Au electrode area 

defined the active area of the devices as 13 mm2. Measurements were carried out with the solar cells 

inside the glove box by using a high quality optical fiber to guide the light from the solar simulator 

equipped with a Keithley 2635A source measurement unit. J-V curves for devices were measured 

under AM 1.5G illumination at 100 mWcm-2 using an aperture to define the illuminated area. EQE 

measurements were conducted in ambient air using an EQE system (Model QEX7) by PV 

measurements Inc. (Boulder, Colorado).  

Two dimensional-grazing incident wide angle X-ray scattering (2D-GIWAXS): GIWAXS 

measurements were carried out at the PLS-II 9A U-SAXS beam line of Pohang Accelerator 

Laboratory, Korea. An X-ray beam from the in-vacuum undulator (IVU) was monochromated (Ek = 

11.24 keV, λ = 1.103 Å) using a Si(111) double crystal monochromator and focused horizontally and 

vertically at the sample position (450 (H) × 60 (V) µm2 in FWHM) using K-B-type focusing mirror 

system. The GIWAXS sample stage was equipped with a 7-axis motorized stage for the fine alignment 

of the thin sample and the incidence angle of X-rays was adjusted to 0.12o–0.14o. GIWAXS patterns 

were recorded with a 2D CCD detector (Rayonix SX165, USA) and X-ray irradiation time was 0.5–5 

s depending on the saturation level of the detector. The diffraction angle was calibrated using a pre-

calibrated sucrose crystal (monoclinic, P21, a = 10.8631 Å, b = 8.7044 Å, c = 7.7624 Å, = 

102.938°) and the sample-to-detector distance was approximately 232 mm. Samples for GIWAXS 

measurements were prepared by spin-coating polymer:PC71BM blend solutions on top of Si substrates. 

Transient photocurrent (TPC) measurements: TPC measurements were carried out with a custom 

built, fully-automated setup. A Stanford Research Systems NL100 nitrogen laser with an attached 

Rhodamine 6G dye cell provided the excitation source with 4 ns wide, λ = 590 nm pulses and a 

repetition rate of 10 Hz. A set of computer controlled variable neutral density filters regulated the 

incident light intensity, and a 50/50 beam splitter simultaneously sent every pulse to a Coherent J-

10Si-le energy sensor as well as the solar cell under test. Active monitoring of the fluence of every 

pulse allowed a typical measurement to consist of 500 current transients averaged together, where no 

pulse deviated by more than 2% from the target fluence of 0.05 µJ/cm2. The external voltage bias was 
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applied to the cell with an Agilent 33519B waveform generator operating in DC mode, connected to 

the cell through a wideband bias tee. The time-resolved photocurrent was recorded with a Tektronix 

DPO3034 oscilloscope by measuring the voltage drop across a 5 ohm RF sensor resistor in series with 

the solar cell. 

. 

4.3 Results and discussion 

 
Figure 4.1. Materials and schematic device architectures. (a) Molecular structures of PPDT2FBT and 

PC71BM. (b and c) Conventional and inverted solar cell architectures, respectively. The top and side 

surface textures are constructed from re-colored AFM and cross-sectional TEM data, respectively. (d 

and e) Current density-voltage characteristics and incident photon conversion efficiency (IPCE), 

respectively, of optimized PPDT2FBT:PC71BM devices in conventional and inverted BHJ solar cells; 

the inset shows the dark currents for each device. 

 

The effects of thickness on the solar cell characteristics of the polymers P3HT, PCDTBT and PTB7 

were investigated compared to PPDT2FBT. For each material a suite of solar cell devices with 

thicknesses in the range of 35 to 450 nm was prepared in both conventional and inverted architectures. 

An estimate of the maximum obtainable JSC was made based on the optical properties of each device 

(Jopt), assuming each photon absorbed in the active layer can be extracted as an electron-hole pair. The 

amount of light absorbed by each active layer was calculated based on the optical constants of each 

material via transfer matrix modeling (Figure 4.2). 
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Table 4.1. Characteristics of solar cells based on PPDT2FBT, P3HT, PCDTBT and PTB7. 

 
 

 
Figure 4.2. Optical constants. n and κ values used for (a) PPDT2FBT:PC71BM, (b) P3HT:PC61BM, (c) 

PCDTBT:PC71BM, (d) PTB7:PC71BM, (e) glass, (f) ITO, (g) PEDOT:PSS, (h) ZnO, (i) MoO3, (j) Al 

and (k) Au. Blue traces represent n values while red traces represent κ values. 

 

Exceptional care was taken in measuring the extinction coefficients and thicknesses of the active 

layer materials in order to make photocurrent estimates as accurate as possible. Plots of Jopt and 

Material Geometry Thickness 
(nm)

JSC
(mA cm-2)

VOC
(V) FF BEST 

PCE (%)
Average 
PCE (%)

PPDT2FBT

Conventional 290 16.72 0.78 0.69 9.07 8.84±0.23

1150 15.40 0.74 0.54 6.15 6.11±0.04

Inverted 260 16.37 0.75 0.73 8.91 8.78±0.13

1050 15.66 0.67 0.53 5.58 5.54±0.04

P3HT
Conventional 170 9.35 0.55 0.64 3.32 3.21±0.11

Inverted 210 10.20 0.54 0.63 3.49 3.34±0.15

PCDTBT
Conventional 85 10.20 0.90 0.54 4.98 4.83±0.15

Inverted 80 8.10 0.89 0.58 4.22 3.93±0.29

PTB7
Conventional 100 16.39 0.74 0.66 8.06 7.88±0.18

Inverted 90 14.14 0.74 0.68 7.05 6.76±0.29
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observed JSC values vs film thickness are reported in Figure 4.3, while optimal device characteristics 

are summarized in Table 4.1 and the effects of thickness on other device parameters are summarized 

in Figure 4.4. 

 

 
Figure 4.3. Observed JSC compared to theoretical maximum photocurrent. (a and e) show data for 

PPDT2FBT; (b and f) show data for P3HT; (c and g) show data for PCDTBT; (d and h) show data for 

PTB7. (a to d) show data for conventional devices while (e to h) show data for inverted devices. 

Optically modeled currents appear as red and blue solid lines in conventional and inverted 

architectures, respectively, while observed JSC values are plotted as blue-green circles.  

 

 
Figure 4.4. Solar cell parameters vs. active layer thickness. (a) Ratio of observed JSC (JOBS) to 

optically modeled JSC (JOPT) (spectrally averaged IQE), (b) Fill factor, (c) power conversion efficiency 

observed for PPDT2FBT:PC71BM (blue), P3HT:PC61BM (red), PCDTBT:PC71BM (purple) and 

PTB7:PC71BM (green). 
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For each device, Jopt increases with thickness and exhibits local maxima where constructive 

interference between incident light and reflected light coincides with absorption bands in the active 

layer. As the active layer becomes thicker, most of the incident light is absorbed before being reflected 

and interference effects become smaller, causing the plots to flatten out and approach a maximum 

value based on the absorption onset of each material. In all cases, the active layers absorb additional 

light as the film thickness exceeds the first and second constructive maxima, however, PCDTBT and 

PTB7 exhibit peak performance with thin active layers near the first maximum (80 – 100 nm). Among 

the four materials, PPDT2FBT followed Jopt most closely in both the conventional and inverted 

architectures and showed the lowest decrease in FF, leading to the highest PCE and greatest optimal 

active layer thickness. In contrast P3HT, PCDTBT and PTB7 showed pronounced decreases in 

performance as film thicknesses reached 300 nm. 

 
Figure 4.5. Internal Quantum Efficiency for Conventional and Inverted Type PPDT2FBT Devices. 

Plots of external quantum efficiency (red lines / spheres), active layer absorption (blue trace) and 

internal quantum efficiency (yellow stars) for devices (a) in the conventional architecture and (b) in 

the inverted architecture calculated based on optical constants alone. (c) and (d) show internal 

quantum efficiencies calculated from active layer absorptions derived from reflectance spectra (green 

traces) with corrections for parasitic absorption. 
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Comparing the number of photons absorbed in the active layer (Jopt) to the observed JSC provides 

an estimate of the efficiency with which charges can be extracted from a solar cell. Thus, the ratio JSC 

/ Jopt estimates the average internal quantum efficiency (IQE) of the device.76 Spectrally resolved JSC / 

Jopt (IQE derived via transfer matrix alone) of optimized PPDT2FBT devices were calculated and 

compared to IQEs calculated from reflectance data (Figure 4.5)240, showing good agreement. 

PPDT2FBT exhibits a JSC / Jopt of 97.6% for optimized devices (290 nm) in the conventional 

architecture and 95.9% for optimized devices (270 nm) in the inverted architecture, while average 

IQEs of 93.5% and 92.2% were obtained for the same devices in conventional and inverted 

architectures, respectively. 

 
Figure 4.6. Solar cell parameters vs. active layer thickness. Power conversion efficiency and JSC 

observed for PPDT2FBT:PC71BM in (a) conventional and (b) inverted architectures with different 

active layer thickness (from 40 nm to over 1000 nm).  
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PPDT2FBT BHJs greater than 1000 nm thick were prepared in order to determine the thickness at 

which performance degrades significantly. These device characteristics are summarized in Table 4.1, 

while plots of JSC and PCE for film thicknesses in the range of 300-1200 nm are shown in Figure 4.6. 

We found that the JSC decreased only slightly as film thickness increased from 300 to 1200 nm, 

remaining in the range of 15 - 16 mA cm-2 in conventional devices or 14.5 - 16 mA cm-2 in the case of 

inverted devices. Conventional devices with active layer thickness of 1150 nm were found to yield a 

PCE of 6.15% while inverted devices of 1050 nm thickness produced a PCE of 5.58%. To our 

knowledge, this material is among few organic BHJ materials known to function effectively with 

active layer thicknesses over 1 μm and currently the most efficient. 

 

 
Figure 4.7. Grazing incidence wide angle X-ray scattering plots. (a) PPDT2FBT:PC71BM, (b) 

P3HT:PC61BM, (c) PCDTBT:PC71BM and (d) PTB7:PC71BM. Cross sectional profiles in the out-of-

plane (e) and in-plane (f) directions. 
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Table 4.2 . Packing parameters derived from GIWAXS measurements. 

 
 

The performance of BHJ solar cells is strongly correlated to the internal structure of the donor and 

acceptor materials.241, 242 The packing and physical structure of the films were studied via grazing 

incidence wide angle X-ray scattering (GIWAXS), atomic force microscopy (AFM) and cross-

sectional transmission electron microscopy (TEM). The ability of PPDT2FBT and P3HT to generate 

increasing photocurrent without suffering a decrease in FF (Figure 4.4b) in thick films appears to be 

correlated to the semi-crystalline nature of these polymers, which is evident in the clear lamellar and 

π-π stacking scattering peaks exhibited by these polymers (Figure 4.7). Notably, PPDT2FBT shows 

strong π-π stacking predominantly in the vertical direction, with the shortest π-π stacking distance of 

3.66 Å (Table 4.2). Atomic force microscopy (AFM) was used to probe the surface structure of the 

PPDT2FBT:PC71BM BHJ, (Figure 4.9-4.16), revealing radiating fibril-like structures on PPDT2FBT 

film surfaces. These features were not observed in P3HT, PCDTBT or PTB7, however, are strikingly 

similar to surface features of another polymer which exhibits peak performance using a thick (220 nm) 

active layer.232 

The internal structure of PPDT2FBT:PC71BM was investigated by TEM using cross-sectional 

specimens of optimized PPDT2FBT devices. These images are reported in Figure 4.8. Similar images 

for P3HT, PCDTBT and PTB7 devices can be found in Figure 4.17-4.19. Figures 4.8a and 8d show 

the entire device stack with layers corresponding to Glass/ITO/PEDOT:PSS/PPDT2FBT:PC71BM/Al 

and Glass/ITO/ZnO/PPDT2FBT:PC71BM/ MoO3/Au for the conventional and inverted architectures, 

respectively. Wispy features are apparent in the active regions of both conventional and inverted 

architectures. High-angle annular dark-field (HAADF) images (Figure 4.8f and8 g) confirmed the 

structural features observed in the bright-field images. The distribution of sulfur in the active layer 

was quantified by energy dispersive X-ray spectroscopy (EDS), revealing a relatively uniform 

distribution of sulfur throughout the active layer, indicating an isotropic distribution of donor and 

Crystallographic parameters PPDT2FBT P3HT PCDTBT PTB7

(100) Lamellar spacing
q (Å-1) 0.3402 0.3960 0.3881 0.3880 

d-spacing (Å) 18.47 15.87 16.19 16.19 

π- π stack from qxy profile
q (Å-1) - 1.6504 - -

d-spacing (Å) - 3.81 - -

π- π stack from qz profile
q (Å-1) 1.7173 1.6570 - 1.5907

d-spacing (Å) 3.66 3.79 - 3.95
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acceptor phases through the film thickness and demonstrating that the high FF observed in this system 

was not due to vertical phase gradation.229 

 

 
Figure 4.8. Cross-sectional TEM images of PPDT2FBT devices. (a, and b) Defocused, bright-field 

images of the conventional architecture. (c and d) Defocused, bright-field images of the inverted 

architecture. (b and c) are magnified active regions from images (a and d), respectively. For clarity, 

active regions in the images have been tinted blue. (e and h) EDS spectra showing the distribution of 

sulfur in the active layer of conventional and inverted architectures, respectively. (f and g) HAADF 

images of conventional and inverted structures, respectively. (i to l) Defocused, bright-field images 

comparing the active layer morphology of optimized conventional devices using PPDT2FBT, P3HT, 

PCDTBT and PTB7, respectively. 

 

Images comparing close-ups of the active layers for optimized, conventional structure PPDT2FBT, 

P3HT, PCDTBT and PTB7 devices are shown in Figure 4.8i, 8j, 8k and 8l, respectively. The internal 

structure of PPDT2FBT is unique compared to the other polymers, exhibiting a clear network of wisp-

like structures with length scales on the order of 50 nm. It can be presumed that these structural 

features act to facilitate the extraction of charge carriers and play a critical role in determining the 

semiconducting properties of PPDT2FBT BHJs. 
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Figure 4.9. AFM images of PPDT2FBT:PC71BM films with different thicknesses on ITO/PEDOT 

substrates. The top images are topographic images while the bottom images are phase images. RMS 

roughness values are included for each topographic image. All scan sizes are 2 μm × 2 μm. 

 

 

 
Figure 4.10. AFM images of PPDT2FBT:PC71BM films with different thicknesses on ITO/ZnO 

substrates. The top images are topographic images while the bottom images are phase images. RMS 

roughness values are included for each topographic image. All scan sizes are 2 μm × 2 μm. 

 

 



83 

 

 

 
Figure 4.11. AFM images of P3HT:PC61BM films with different thicknesses on ITO/PEDOT 

substrates. The top images are topographic images while the bottom images are phase images. RMS 

roughness values are included for each topographic image. All scan sizes are 2 μm × 2 μm. 

 

 

 
Figure 4.12. AFM images of P3HT:PC61BM films with different thicknesses on ITO/ZnO substrates. 

The top images are topographic images while the bottom images are phase images. RMS roughness 

values are included for each topographic image. All scan sizes are 2 μm × 2 μm. 
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Figure 4.13. AFM images of PCDTBT:PC71BM films with different thicknesses on ITO/PEDOT 

substrates. The top images are topographic images while the bottom images are phase images. RMS 

roughness values are included for each topographic image. All scan sizes are 2 μm × 2 μm. 

 

 

 
Figure 4.14. AFM images of PCDTBT:PC71BM films with different thicknesses on ITO/ZnO 

substrates. The top images are topographic images while the bottom images are phase images. RMS 

roughness values are included for each topographic image. All scan sizes are 2 μm × 2 μm. 
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Figure 4.15. AFM images of PTB7:PC71BM films with different thicknesses on ITO/PEDOT 

substrates. The top images are topographic images while the bottom images are phase images. RMS 

roughness values are included for each topographic image. All scan sizes are 2 μm × 2 μm. 

 

 

 
Figure 4.16. AFM images of PTB7:PC71BM films with different thicknesses on ITO/ZnO substrates. 

The top images are topographic images while the bottom images are phase images. RMS roughness 

values are included for each topographic image. All scan sizes are 2 μm × 2 μm. 
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Figure 4.17. Cross-sectional TEM images of optimized P3HT:PC61BM devices. The top images (a, b, 

c) show conventional devices with the architecture of ITO/PEDOT/P3HT:PC61BM/Al. The bottom 

images (d, e, f) show inverted devices with the architecture of ITO/ZnO/P3HT:PC61BM/MoO3/Au. 

Images (a and b) are in focus while images (d and e) are defocused. Images (c and f) show high-angle 

annular dark-field images of the conventional and inverted structures, respectively. 
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Figure 4.18. Cross-sectional TEM images of optimized PCDTBT:PC71BM devices. The top images (a, 

b, c) show conventional devices with the architecture of ITO/PEDOT/PCDTBT:PC71BM/Al. The 

bottom images (d, e, f) show inverted devices with the architecture of 

ITO/ZnO/PCDTBT:PC71BM/MoO3/Au. Images (a and b) are in focus while images (d and e) are 

defocused. Images (c and f) show high-angle annular dark-field images of the conventional and 

inverted structures, respectively.  

  



88 

 

 

 
 

Figure 4.19. Cross-sectional TEM images of optimized PTB7:PC71BM devices. The top images (a, b, 

c) show conventional devices with the architecture of ITO/PEDOT/PTB7:PC71BM/Al. The bottom 

images (d, e, f) show inverted devices with the architecture of ITO/ZnO/PTB7:PC71BM/MoO3/Au 

Images (a and b) are in focus while images (d and e) are defocused. Images (c and f) show high-angle 

annular dark-field images of the conventional and inverted structures, respectively. 
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Figure 4.20. Energy dispersive X-ray spectroscopy of cross-sections. Vertical S atom distribution in 

cross sections of P3HT (a, d), PCDTBT (b, e) and PTB7 (c, f) devices in conventional (a, b, c) and 

inverted (d, e, f) architectures. 



90 

 

 
 
Figure 4.21. TPC measurements of solar cells with active layers consisting of (a) 650 nm PPDT2FBT, 

(b) 350 nm PPDT2FBT, (c) 130 nm PPDT2FBT, (d) 70 nm PPDT2FBT, (e) 215 nm PTB7, (f) 185 nm 

PTB7, (g) 100 nm PTB7, and (h) 60 nm PTB7. Insets show the integrated charges collected as a 

function of time. Note that a negative voltage corresponds to an increased internal field in the solar 

cell.  

 

The photocurrent extraction of PPDT2FBT:PC71BM was further probed by transient photocurrent 

(TPC) measurements.  TPC measurements involved exciting charge carriers with an ultra-short pulse 

of laser light and quantifying their extraction as a function of time under variable electric fields. By 

systematic variation of the internal field, one can influence the carrier drift velocities and transit times, 

allowing quantification of carrier recombination and carrier mobility.243-247 

Figure 4.21 shows bias-dependent TPC traces for PPDT2FBT and PTB7 devices of varying 

thickness. Insets show the corresponding time-integrals of the photocurrent curves, which yield the 

number of carriers collected as a function of time.  In efficient solar cells, saturation is reached at 

reverse bias, where further increasing the internal field in the device has little to no effect on the total 

number of carriers extracted. At large internal fields in such devices, recombination is minimal and 
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the vast majority of carriers are quickly swept out. As can be seen in the insets to Figure 4.21a-d, 

PPDT2FBT cells clearly exhibit this trend for all thicknesses. PTB7 based cells, however, do not 

saturate as BHJ thickness increases (Figure 4.21e-h). This implies significantly faster carrier sweep-

out and lower recombination rates in PPDT2FBT. 

In order to explain this observation, the maximum vertical carrier mobility for each of these 

devices was determined by fitting the slope of the linear regime of the TPC traces following the 

method outlined by Heeger and coworkers.243 Calculated values are shown in Table 4.3, showing that 

the carrier mobility of optimized PPDT2FBT cells is roughly an order of magnitude greater than that 

of the PTB7 devices. Due to the thickness-squared dependence of the carrier transit time, 

recombination losses become severe if BHJ thickness is increased without a corresponding increase in 

carrier mobility. Thus, the higher mobility of PPDT2FBT is seen here to allow for efficient operation 

at active layer thicknesses largely inaccessible to PTB7. 

 

Table 4.3. Calculated maximum carrier mobility for PPDT2FBT and PTB7 solar cells. 

 
*Note that the starred PTB7 devices overestimate their respective mobility, since the high reverse bias 

condition does not yield an adequate assessment of initial carrier density.  However, this 

overestimation error is less than a factor of two. 

 

 

 

 

 

Material Thickness
(nm)

Mobility
(cm2 V-1s-1)

PPDT2FBT 650 2.2×10-2

PPDT2FBT 350 2.6×10-2

PPDT2FBT 130 5.3×10-3

PPDT2FBT 70 2.1×10-3

PTB7* 215 6.9×10-3

PTB7* 185 5.6×10-3

PTB7 100 2.2×10-3

PTB7 60 7.1×10-4
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4.4 Conclusion 
The high carrier mobilities and complete carrier extraction from thick active layers evidently result 

from the strong out-of-plane π-π stacking and unique internal structure observed in 

PPDT2FBT:PC71BM films. We conclude that these physical characteristics allow photo-dissociated 

electron-hole pairs to be collected from the active layer with almost 100% efficiency using 

exceptionally thick films. This economy of charge carrier extraction from thick films has thus far only 

been achieved in crystalline inorganic solar cells and has constituted a major hurdle limiting the 

application of organic solar cells. The energy band structure of PPDT2FBT allows near complete 

attenuation of incident photons with wavelengths up to 700 nm coupled with a VOC of almost 0.8 V 

and a PCE of over 9%. We envision that if the same approach to engineering polymer self-assembly 

can be accomplished with a conjugated polymer having a narrower band gap (and thus higher JSC), or 

deeper HOMO band (and thus higher VOC), efficiencies of over 10% can be readily achieved, paving 

the way to commercially profitable organic solar cells. 
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Chapter 5. Improved Small bandgap polymer solar cells with 

unprecedented short-circuit current density and high fill factor  
 

5.1 Research background 
Polymer solar cells (PSCs) with polymer:fullerene bulk-heterojunction (BHJ) structure have been 

regarded as next-generation solar cells because of their low cost of materials and processes and easy 

production of flexible device.187, 248, 249 Considerable efforts developing new polymer donors and 

fullerene acceptors188, 191, 237, 250, device architectures251-253[3], and morphology engineering109, 254, 255 

have enhanced power conversion efficiencies (PCEs) of PSCs up to 10%. However, most polymer 

donors that exhibit high PCEs over 8% can absorb the light in the wavelength region of 300-800 nm, 

thereby limiting further enhancement of photo-current. In addition to insufficient light absorption, 

their optimum thicknesses of the active layer are very thin (90-160 nm) which are challenging to 

produce defect-free large-area device via roll-to-roll process. Although thick BHJ films can absorb 

large amount of the light and are suitable for printing solar cells, increased bimolecular recombination 

induced by low charge-carrier mobility of BHJ components reduces fill factor and device 

performance.232, 256 Therefore, it is required to synthesize novel semiconducting polymers with small 

bandgap (SBG) and high charge-carrier mobility as well as develop morphology engineering for 

bicontinuous interpenetrating donor:acceptor (D:A) network in both lateral and vertical direction of 

thick BHJ film.  

A diversity of SBG polymers have been successfully designed to extend the absorption of solar 

spectrum from UV-visible to near infrared (NIR) region for high short-circuit current density (JSC) 

while maintaining deep highest occupied molecular orbital (HOMO) level for high open-circuit 

voltage (VOC). However, although PCEs of the devices based on these SBG polymers have increased 

up to 7%257-262, their optimum thicknesses are restricted to about 100 nm and their device efficiencies 

are still lower than those of the devices with high-performance polymers with medium bandgap (1.5-

1.8 eV).188, 191, 237, 263 Recently, Janssen group designed diketopyrrolopyrrole (DPP)-based SBG 

polymer, DT-PDPP2T-TT, with high charge-carrier mobility and achieved a PCE of 6.9% in 

conjunction with high fill factor (FF) of 0.70 for the device with thick BHJ film of 220 nm.232 While 

increasing active layer thickness from 200 nm to 400 nm led to slight increase in JSC, significant 

decrease in FF was observed, which is consistent with tendencies observed in common BHJ PSCs. To 

the best of our knowledge, there have been no reports on SBG PSCs possessing thick active layer over 

300 nm and achieving high PCEs over 9% at the same time. 

Here, we report highly efficient SBG PSCs with thick BHJ film of ~340 nm and best PCEs of 9.40% 

by controlling lateral and vertical morphology of active layer through the addition of diphenyl ether 

(DPE) as the optimum processing additive into blend system of DT-PDPP2T-TT (P2) and [6,6]-
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phenyl-C71 butyric acid methyl ester (PC71BM). 

5.2 Experimental  
Materials and preparation for P2 polymer: All reagents and chemicals compounds were purchased 

from Aldrich, Alfa Aesar, or TCI America and used without any further purification. 2,5-

bis(trimethylstannyl)-thieno[3,2-b]thiophene 97% was purchased from Sigma-Aldrich and 

recrystallized twice from MeOH (5 g/20 ml). 3,6-Bis(5-bromo-2-thienyl)-2,5-dihydro-2,5-di(2´-

decyltetradecyl)-pyrrolo[3,4c]pyrrolo-1,4-dione has been synthesized following already published 

literature.232 The P2 was prepared following Janssen’s protocol.232 A 20 ml microwave vial was 

charged with 0.19864 g (0.17557 mmol, 1eq) 3,6-Bis(5-bromo-2-thienyl)-2,5-dihydro-2,5-di(2´-

decyltetradecyl)-pyrrolo[3,4c]pyrrolo-1,4-dione, 0.08179 g (0.17557 mmol, 1 eq) of 2,5-

bis(trimethylstannyl)-thieno[3,2-b]thiophene, 8ml of dry toluene and 0.8 ml of dry DMF. The solution 

was degassed for 30 min after which 4.8 mg of Pd2dba3 (3%) and 5.4mg (12%) was added. The vial 

was sealed and the reaction mixture was vigorously stirred for 18 h in an 115 °C oil bath. The reaction 

was cooled at room temperature and the polymer was precipitated in methanol, filtered through 0.45 

µm nylon filter and washed on Soxhlet apparatus with acetone, hexanes, dichloromethane and then 

chloroform. The chloroform fraction was reduced to 20-30 mL and then precipitated in methanol, 

filtered through 0.45 µm nylon filter and vacuum-dried to give 175 mg of the desired polymer (90% 

yield). Mn: 209 kDa, Mw: 449 kDa, PDI: 2.1. 

Polymer characterizations: Number-average (Mn) and weight-average (Mw) molecular weights 

were determined by size exclusion chromatography (SEC) using a high temperature Varian Polymer 

Laboratories GPC220 equipped with an RI detector and a PL BV400 HT Bridge Viscometer. The 

column set consists of 2 PL gel Mixed C (300 x 7.5 mm) columns and a PL gel Mixed C guard 

column. The flow rate was fixed at 1.0mL/min using 1,2,4-trichlorobenzene (TCB) (with 0.0125% 

BHT w/v) as eluent. The temperature of the system was set to 110 °C. All the samples were prepared 

at concentrations of nominally 1.0 mg/ml in TCB. Dissolution was performed using a Varian Polymer 

Laboratories PL-SP 260VC sample preparation system. The sample vials were held at 110 °C with 

shaking for 1 h for complete dissolution. The solutions were filtered through a 2 mm porous stainless 

steel filter used with the 0.40 µm glass filter into a 2 ml chromatography vial. The calibration method 

used to generate the reported data was the classical polystyrene method using polystyrene narrow 

standards Easi-Vials PS-M from Varian Polymer Laboratories which were dissolved in TCB. 

Film characterizations: TEM images were obtained using a JEOL JEM-2100 transmission electron 

microscope (TEM) operated at 200 kV. Atomic force microscope (AFM) images were collected using 

a Asylum MFP-3D standard system AFM microscope operating in tapping mode. UV-vis-NIR 

absorption was measured using a OLIS 14 spectrophotometer. 

GIWAXS: GIWAXS measurements were carried out at PLS-II 9A U-SAXS beam line of Pohang 
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Accelerator Laboratory. An X-ray beam from the in-vacuum undulator (IVU) was monochromated (Ek 

= 11.24 keV, λ = 1.103 Å) using a Si(111) double crystal monochromator and focused horizontally 

and vertically at the sample position (450 (H) × 60 (V) µm2 in FWHM) using K-B-type focusing 

mirror system. The GIWAXS sample stage is equipped with a 7-axis motorized stage for the fine 

alignment of the thin sample and the incidence angle of X-rays was adjusted to 0.12o–0.14o. GIWAXS 

patterns were recorded with a 2D CCD detector (Rayonix SX165, USA), and X-ray irradiation time 

was 0.5–5 s depending on the saturation level of the detector. The diffraction angle was calibrated 

using a pre-calibrated sucrose crystal (monoclinic, P21, a = 10.8631 Å, b = 8.7044 Å, c = 7.7624 Å,  

ß = 102.938°) and the sample-to-detector distance was approximately 232 mm. Samples for GIWAXS 

measurements were prepared by spin-coating blend solutions on top of PEDOT:PSS-coated Si 

substrates. 

Optical simulation: In order to investigate the optical properties and photocurrent generation 

capacity of P2, optical constants (n and κ) were calculated and transfer matrix modeling (TMM) was 

carried out. κ values were derived from the absorption coefficient, α, via the relationship κ = λα/4π. n 

values were similarly derived from α via the Kramers-Kronig relationship as described in a previous 

report.239 JSC was estimated based on the active layer absorption (ALA), assuming that each photon 

absorbed in the active layer leads to the generation and extraction of one electron-hole pair. Bulk 

heterojunction films were observed to vary in thickness by approximately 5% between different 

locations on the same film. To account for this, transfer matrix simulations were taken as the average 

of 3 calculations for optical stacks in which the active layer thickness was varied by ± 5%, resulting in 

a better match between simulated active layer absorption and the observed EQE. Plots of simulated 

JSC, (based on ALA) vs. film thickness can be found in Figure 5.8. 

Solar cell fabrication and characterization: We fabricated the PSCs with device configuration of 

ITO/PEDOT:PSS/P2:PC71BM/Al by using the following procedure: PEDOT:PSS solution was spin-

cast at 5000 rpm on cleaned ITO substrates after UV-ozone treatment for 10 min and dried at 150 °C 

for 15 min. For depositing the active layer, we prepared solution consisting of P2 (0.5 wt. %), 

PC71BM (1.5 wt. %), and diphenyl ether (3 vol. %) and spin-cast on top of PEDOT:PSS layer in a 

nitrogen-filled glove box. Subsequently, Al (100 nm) electrode was deposited on the active layer 

under vacuum (<10-6 Torr) by thermal evaporation. The area of the Al electrode defines the active area 

of the device as 3.3 mm2. 

The J-V characteristics of the solar cells were measured by a Keithley 2400 Source Measure Unit. 

The solar cell performance was tested with an Air Mass 1.5 Global (AM 1.5 G) solar simulator with 

an irradiation intensity of 100 mW cm-2. EQE measurements were obtained using the PV 

measurement QE system by applying monochromatic light from a xenon lamp under ambient 

conditions. The monochromatic light intensity was calibrated using a Si photodiode and chopped at 
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100 Hz. Masks (1.70 mm2) made of thin black plastic were attached to each cell before measurement 

of the J-V characteristics and the EQE to accurately measure the performance of solar cells. All 

devices were tested in ambient air after UV-epoxy encapsulation. 

 

5.3 Results and discussion 
Unlike common tendencies in BHJ PSCs, where poor device performances are observed for the 

PSCs with thick BHJ film of over 300 nm due to significant decrease in FF in spite of slight increase 

in JSC, we show that the P2:PC71BM devices exhibit extremely high JSC of 20.07 mA cm-2 for thick 

active layer over 300 nm while maintaining high FF of 0.70. This high performance of SBG PSCs 

results from high charge carrier mobility of P2 and successful formation of bicontinuous 

interpenetrating D:A network in both lateral and vertical direction of thick BHJ film through 

morphology engineering with processing additive. 

The devices were fabricated using simple and conventional device structure of indium tin oxide 

(ITO) / poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) / P2:PC71BM / Al 

(Figure 5.1b). The P2 was prepared following synthetic method in previous literature232 and has 

electrical bandgap of 1.42 eV (optical bandgap: 1.35 eV) in conjunction with HOMO level of -5.10 

eV and lowest unoccupied molecular orbital (LUMO) level of -3.68 eV (Figure 5.1c). Although 

Janssen group reported the P2:PC71BM PSCs prepared from mixed solvent of chloroform (CF) and 

1,2-dichlorobenzene (DCB) as a function of thickness232, we systematically investigated the effect of 

D:A ratio, solvent, and processing additives on device performance (Figure 5.2 -5.4 and Table 5.1-

5.3). We found that optimum D:A ratio and solvent are 1:3 and mixed solvent of chlorobenzene (CB) 

and DPE (97:3 vol. %), respectively (Figure 5.2, 5.3 and Table 5.1, 5.2). Among various additives 

such as 1,8-diiodooctane (DIO), 1,8-octanedithiol (ODT), chloronaphthalene (CN), the devices 

processed with DPE exhibited highest PCE of 9.40% compared to those of the devices with other 

additives (DIO: 7.75%, ODT: 6.01%, and CN: 7.34%) (Figure 5.4 and Table 5.3). 

 

 
Figure 5.1. (a) Chemical structures of components of the active layer. (b) Device structure of solar 

cells. (c) Energy band diagram of materials used in solar cells.  
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The DPE was the best additive to form nanofibrillar morphology of P2:PC71BM BHJ film, which 

may lead to bicontinuous interpenetrating D:A network (Figure 5.6). We also fabricated two types of 

reference devices for comparison: (1) the device prepared from solvent mixture of CF and DCB 

(92.5:7.5 vol.%) used in previous report232; (2) the device prepared from pure CB to understand DPE 

effect on device performance. 

 

 

 

 
Figure 5.2. (a) J-V curves and (b) EQE of P2:PC71BM PSCs with different D:A ratio. 

 

Table 5.1. Device characteristics for P2:PC71BM PSCs with different D:A ratio.  

 
 

 

 

D:A ratio JSC
(mA cm-2)

VOC
(V) FF PCE

(%)
JSC [Cal.]
(mA cm-2)

1:1.5 15.40 0.69 0.63 6.67 15.57

1:2 19.19 0.66 0.64 8.03 18.41

1:2.5 19.61 0.66 0.68 8.79 18.58

1:3 20.07 0.67 0.70 9.40 18.70

1:4 18.62 0.67 0.68 8.47 17.65
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Figure 5.3. Current density-voltage (J-V) curves of P2:PC71BM PSCs prepared from (a) CF:DCB, (b) 

CB, and (c) CB:DPE as a function of thicknesses. 
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Table 5.2. Device characteristics for P2:PC71BM PSCs as a function of solvents and thicknesses. 

 
 

 
Figure 5.4. (a) J-V curves and (b) EQE of P2:PC71BM PSCs with different additives. 

 

Table 5.3. Device characteristics for P2:PC71BM PSCs with different additives. 

 

Solvent Thickness
(nm)

JSC
(mA cm-2)

VOC
(V) FF PCE

(%)

CF:DCB

160 10.65 0.70 0.75 5.58

240 12.61 0.69 0.73 6.33

290 13.21 0.69 0.67 6.11

340 13.74 0.69 0.60 5.66

450 12.91 0.67 0.57 4.93

CB

190 5.97 0.70 0.68 2.81

220 6.95 0.69 0.67 3.21

300 7.76 0.70 0.60 3.24

390 8.37 0.69 0.45 2.60

500 7.08 0.67 0.41 1.97

CB:DPE

170 15.19 0.66 0.76 7.60

250 17.71 0.64 0.71 8.07

340 20.07 0.67 0.70 9.40

400 22.30 0.65 0.56 8.19

520 21.34 0.65 0.50 6.93

Additive Thickness
(nm)

JSC
(mA cm-2)

VOC
(V) FF PCE

(%)
JSC [Cal.]
(mA cm-2)

DIO 340 15.67 0.69 0.72 7.75 14.72

ODT 290 14.84 0.69 0.59 6.01 12.50

CN 330 15.44 0.65 0.70 7.34 14.20

DPE 320 20.07 0.67 0.70 9.40 18.70
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Figure 5.5. (a) Current density-voltage (J-V) curves, (b) external quantum efficiency (EQE), (c) UV-

vis absorption spectra, and (d) JSC dependence on light intensity of optimum devices prepared from 

different solvents. 

 

Table 5.4. Device parameters for optimum P2:PC71BM PSCs prepared from different solvents.  

 
 

 

 

 

 

Solvent
Optimum 
thickness

(nm)

JSC
(mA cm-2)

VOC
(V) FF

Average 
PCE
(%)

Best 
PCE
(%)

CF:DCB 240 12.61 0.69 0.73 5.98 6.33 

CB 300 7.76 0.70 0.60 3.01 3.24 

CB:DPE 340 20.07 0.67 0.70 9.03 9.40 
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As shown in Figure 5.5a, device parameters for optimized devices from CF:DCB was JSC = 12.61 

mA cm-2, VOC = 0.69 V, and FF = 0.73, and best PCE of 6.33%, and for the device from pure CB was 

JSC = 7.76 mA cm-2, VOC = 0.70 V, and FF = 0.60, and best PCE of 3.24%. These results of the devices 

from CF:DCB were in good agreement with previous literature.232 It is surprising that the addition of 

DPE into CB solution led to remarkable PCE enhancement. Optimized device from CB:DPE achieved 

best PCE of 9.40% with JSC = 20.07 mA cm-2, VOC = 0.67 V, and FF = 0.70. The detailed device 

characteristics are listed in Table 5.4. Enhanced device efficiency by incorporation of DPE is fully 

ascribed to unprecedented JSC up to 20 mA cm-2 owing to thick BHJ film over 300 nm. Although 

optimum film thickness for the device from CB:DPE was thicker than those of the devices from 

CF:DCB and pure CB (CB:DPE = 340 nm, CB = 300 nm, CF:DCB = 240 nm), the device from 

CB:DPE still maintained high FF of 0.70. 

To investigate the effect of active layer thickness on device performance, we fabricated 

P2:PC71BM PSCs as a function of solvents and thicknesses. Regardless of solvents, thicker devices 

(above 300 nm) exhibited higher JSC and lower FF, whereas thinner devices (below 200 nm) showed 

diametrical tendencies (Figure 5.3 and Table 5.2). It is noticeable that increasing the thickness of 

BHJ film prepared from CB:DPE (from 170 to 340 nm) led to remarkable increase in JSC (from 15.19 

to 20.07 mA cm-2) while maintaining high FF up to 0.70.  

 

 
Figure 5.6. AFM topography (upper row) and phase images (lower row) of P2:PC71BM BHJ films 

with different additives, (a, e) DIO, (b, f) ODT, (c, g) CN, and (d, h) DPE. Scale bar is 1 μm.  
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Furthermore, JSC of the device with BHJ film of 400 nm (22.30 mA cm-2) is the highest value in the 

PSCs reported to date188, 255, 259, as well as comparable to those of highly efficient perovskite solar 

cells.264-266 In contrast, the devices from CF:DCB and CB simultaneously exhibited significant 

increase in JSC and decrease in FF by increasing film thickness, giving rise to resulting reduction in 

device efficiency. We speculated that high performance of the devices from CB:DPE are attributed to 

maximized light absorption by thick BHJ film and improved film morphology by optimum additive. 

To understand the differences in device performance as a function of solvents, we measured 

external quantum efficiency (EQE) and UV-Vis-NIR absorption of optimum devices prepared from 

different solvents. Compared to EQE values of the device from CF:DCB and CB, the devices from 

CB:DPE exhibited higher EQE curve over the whole wavelength region with two peaks of 78.7% at 

490 nm and 50.6% at 850 nm (Figure 5.5b). These differences in EQE values were partly related to 

optical density (OD) of BHJ films. Thicker BHJ film from CB:DPE (thickness: 340 nm) had higher 

OD of 0.84 at 470 nm and 0.95 at 830 nm, whereas BHJ films from CF:DCB and CB showed 

relatively lower OD due to their thinner thicknesses (CF:DCB: 240 nm and CB: 300 nm) (Figure 

5.5c). Increasing BHJ film thickness enhances photogeneration of charge carriers by maximizing light 

absorption within the active layer. However, although thicker devices have higher light absorption, 

this does not assure high EQE value due to high probability of recombination loss by low charge-

carrier mobilities of BHJ components.  

 

 
Figure 5.7. J-V characteristics of the devices prepared from (a) CF:DCB, (b) CB, and (c) CB:DPE as 

a function of light intensity.  
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To find the origin of unprecedented JSC and high FF for thick PSCs, we investigated bimolecular 

recombination dynamics by measuring the dependence of JSC on light intensity for devices prepared 

from different solvents (Figure 5.7). The JSC dependence on light intensity measurements provide the 

information on bimolecular recombination.255, 267, 268 Linear slope in the plot on dependence of JSC on 

light intensity indicates weak bimolecular recombination, while sublinear slope suggests partial 

bimolecular recombination loss during charge transport process.263 As shown in Figure 5.5d, 

logarithmic plots between JSC and light intensity exhibited a slope of 0.958, 0.938, and 0.969 for 

devices prepared from CF:DCB, CB, and CB:DPE, respectively. These results reveal that weakest 

bimolecular recombination occurred in the devices prepared from CB:DPE, which were also 

confirmed by optical simulation results for photocurrent estimation. Among three devices, measured 

JSC values of the devices from CB:DPE most closely follow theoretically maximum JSC (Figure 5.8). 

These imply that thick active layer maximizes light absorption and optimized nanoscale morphology 

by addition of DPE minimizes bimolecular recombination, simultaneously leading to unprecedented 

JSC and high FF. 

 

 

 
Figure 5.8. Comparison of measured JSC from J-V characteristics and estimated JSC from optical 

simulation of P2:PC71BM PSCs with structure of ITO/PEDOT:PSS/active layer/Al as a function of 

active layer thickness.  
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Figure 5.9. AFM topography images of BHJ films with optimum (top row), thin (middle row), and 

thick (bottom row) thickness that were prepared from CF:DCB (a, d, g), CB (b, e, h), and CB:DPE (c, 

f, i). The scale bar is 1 μm. 

 

To investigate lateral and vertical morphology of BHJ films prepared from different solvents, we 

measured atomic force microscopy (AFM) and transmission electron microscopy (TEM). Figure 5.9 

exhibits AFM images of BHJ films as a function of solvents and thicknesses. Optimum films prepared 

from CF:DCB and CB:DPE exhibited uniform surface with smooth root-mean-square (rms) roughness 

of 1.3 nm and 1.1 nm, respectively, whereas the film from CB was uneven with rough rms roughness 

of 3.4 nm (Figure 5.9a-c). It is noticeable that the film from CB:DPE only showed well-distributed 

fibrilar-featured structure. This morphology is beneficial to formation of bicontinuous interpenetrating 

D:A network, enhancing charge-carrier mobility and device performance.79, 224, 237 Although 

decreasing film thickness below optimum thickness (thickness: 160 ± 10 nm) resulted in larger 

domains and slight increase in rms roughness, there were negligible changes in morphology for all 

BHJ films (Figure 5.9d-f). Increasing film thickness over optimum thickness (thickness: 490 ± 30 nm) 

also led to slight increase in surface roughness for films from CF:DCB and CB:DPE (Figure 5.9g and 

5.9i). It is noteworthy that the film from CB:DPE still maintained fibrilar morphology in spite of its 

thick film of 520 nm (Figure 5.9i). In contrast, thick film from CB exhibited uneven surface with 

high rms roughness of 5.1 nm and big islands with size of 100-150 nm (Figure 5.9h).  
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Figure 5.10. Cross-sectional TEM images (a-c) and EDS S mapping (d-f) of optimum devices 

prepared from CF:DCB (a, d), CB (b, e), and CB:DPE (c, f), respectively. Scale bar is 100 nm. 

 

AFM results reveal that optimized lateral morphology of thick active layer by the addition of DPE 

remarkably enhances JSC and maintains high FF by improving exciton dissociation probability and 

reducing non-geminated recombination. 

Figure 5.10 presents cross-sectional TEM images and energy dispersive X-ray spectroscopy (EDS) 

results of optimum devices prepared from different solvents. Component layers of the device were 

clearly seen in these images (Figure 5.10a-c). Thicknesses of optimum devices measured from TEM 

images were in good agreement with those measured by surface profiler (CF:DCB: 240 nm, CB: 300 

nm, and CB:DPE: 340 nm). We performed EDS carbon (C) and sulfur (S) mapping of these cross-

sections to investigate vertical distribution of polymer chains and PC71BM within BHJ film (Figure 

5.10d-f and Figure 5.11). In EDS S mapping images, BHJ film prepared from CB had discontinuous 

network of polymer chains (Figure 5.10e), whereas films from CF:DCB and CB:DPE exhibited 

continuous and evenly distributed polymer network from bottom PEDOT:PSS to top Al electrode 

(Figure 5.10d and 5.10f). This optimized vertical morphology promotes hole and electron transport 

along respective pathways of polymers and fullerenes in vertical direction, leading to high FF. 
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Figure 5.11. EDS C (red dots, left column) and S mapping (green dots, right column) of optimum 

BHJ film prepared from (a, b) CF:DCB, (c, d) CB, and (e, f) CB:DPE, respectively. Scale bar of EDS 

mapping is 100 nm. 

 

To further study molecular orientation and packing characteristics of pristine polymer and blend 

films, we measured grazing incidence wide angle X-ray scattering (GIWAXS). Figure 5.12 presents 

GIWAXS patterns of pristine polymer (Figure 5.12a-c) and BHJ films (Figure 5.12d-f) prepared 

from different solvents. The detailed GIWAXS profiles and parameters are shown in Figure 5.13 and 

Table 5.5, respectively. We observed pronounced reflection peaks of (h00) in out-of-plane direction 

for pristine polymer films from CF:DCB and CB:DPE (Figure 5.12a and 5.12c) and weak peaks for 

film from CB (Figure 5.12b). Corresponding inter-lamellar stacking distances of pristine polymer 

films from CF:DCB, CB, and CB:DPE were 21.16, 21.44, and 21.89 Å, respectively. All pristine 

polymer films showed π-π stacking peaks in both in-plane and out-of-plane directions, indicating 

mixed π-π edge-on and face-on orientation. However, weak π-π stacking peak in in-plane direction 

was only observed for film from CB. Resultant π-π edge-on and face-on stacking distances were 3.75 

Å and 3.71 Å for film from CF:DCB, 3.83 Å and 3.70 Å for film from CB, 3.75 Å and 3.72 Å for 

films from CB:DPE, respectively. These π-π edge-on and face-on orientations of P2 polymer chains 

are favorable to high hole mobility in lateral and vertical directions. 

For P2:PC71BM BHJ films prepared from CF:DCB and CB, lamellar stacking distances were 



107 

 

slightly increased to 21.44 Å and 21.58 Å, respectively, compared to those of pristine polymers. In 

contrast, blend film from CB:DPE exhibited shorter lamellar stacking distance of 21.16 Å, implying 

closer packing distance between side chains of neighboring polymer backbones by addition of DPE. 

In spite of disappearance of π-π stacking peaks in in-plane direction, all blend films still showed π-π 

stacking peaks in out-of-plane direction, corresponding to π-π stacking distances of 3.71, 3.72, and 

3.62 Å for films from CF:DCB, CB, and CB:DPE, respectively. Notably, this π-π stacking distance of 

blend film from CB:DPE is shorter than those observed in BHJ films achieving high device 

performance (3.65-3.90 Å).105, 269, 270 Shorter π-π stacking distance of polymer chains and dominant 

face-on orientation by addition of PC71BM and DPE are beneficial to charge-carrier mobility and 

charge transport in vertical direction229, thereby leading to high JSC and FF. 

 

 

 
Figure 5.12. GIWAXS patterns of pristine polymer films prepared from CF:DCB (a), CB (b), and 

CB:DPE (c). d-f, GIWAXS patterns of P2:PC71BM BHJ films prepared from CF:DCB (d), CB (e), 

and CB:DPE (f). 
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Figure 5.13. (a, c) In-plane and (b, d) out-of-plane linecuts of GIWAXS for pristine polymer (upper 

row) and blend films (lower row) prepared from different solvents. The Insets of Figure 5.13(b) and (d) 

indicate expanded out-of-plane linecuts for visualizing π-π face-on orientation. 

 

 
Table 5.5. Summary of GIWAXS measurements for pristine polymer and BHJ films.  

 

Films Solvents

GIWAXS parameters

Lamellar spacing π-π stack
(qxy direction)

π-π stack
(qz direction)

q
(Å-1)

d-spacing 
(Å)

q
(Å-1)

d-spacing 
(Å)

q
(Å-1)

d-spacing 
(Å)

Pristine
Polymer

CF:DCB 0.2970 21.16 1.6776 3.75 1.6960 3.71

CB 0.2931 21.44 1.6418 3.83 1.6960 3.70

CB:DPE 0.2871 21.89 1.6758 3.75 1.6908 3.72

BHJ

CF:DCB 0.2931 21.44 - - 1.6943 3.71

CB 0.2911 21.58 - - 1.6891 3.72

CB:DPE 0.2970 21.16 - - 1.7335 3.62
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Figure 5.14. Transfer (upper row) and output (lower row) characteristics of OFET based on (a, d) 

pristine polymer prepared from CB and (b, c, e-g) blend films prepared from different solvents. 

Bottom-gate/bottom-contact on a Si/SiO2 substrate with a channel length of 160 μm and a channel 

width of 1000 μm are used for OFET characterization. n-decyltrichlorosilane (DTS) was used as the 

self-assembled monolayer on Si/SiO2 substrate. 

 

Table 5.6. Device parameters of OFETs based on pristine polymer and blend films. Bottom 

gate/bottom-contact device geometry was used and mobility was calculated at the saturation region 

using a standard device formalism. 

 

Films Solvents Mobility
(cm2 V-1s-1) Vth (V) Ion/Ioff

Pristine CB 0.37 -8.6 5.3 x 102

Blend

CF:DCB 0.09 1.7 17

CB 0.16 -19.1 31

CB:DPE 0.11 -5.3 18
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We performed organic field-effect transistor (OFET) fabrication and space charge-limited current 

(SCLC) measurement to investigate lateral and vertical charge-carrier mobilities, respectively. 

Transfer and output characteristics of OFET with pristine polymer and blend films were shown in 

Figure 5.14 and detailed OFET parameters were listed in Table 5.6. Hole mobility obtained from 

OFET results was 0.37 cm2 V-1 s-1 for pristine polymer film at room temperature. This high hole 

mobility is consistent with pronounced π-π edge-on orientation of pristine polymer film observed in 

GIWAXS results. After blending with PC71BM, there were no significant decreases in hole mobility 

for BHJ films prepared from different solvents (CF:DCB: 0.09 cm2 V-1 s-1 CB: 0.16 cm2 V-1 s-1, and 

CB:DPE: 0.11 cm2 V-1 s-1). These imply that addition of PC71BM into polymer chains has minor effect 

on formation of polymer pathways for hole transport in lateral direction. However, lateral mobility 

from OFET is insufficient to prove high performance of PSCs. 

Since vertical charge-carrier mobility is one of critical factors for determining device efficiency, we 

fabricated hole- and electron-only devices for vertical mobility from SCLC measurements. J-V 

characteristics and detailed parameters of hole- and electron-only devices prepared from different 

solvents were shown in Figure 5.15 and Table 5.7, respectively. Hole (μh) and electron mobilities (μe) 

obtained from SCLC measurements were 8.0 × 10-3 cm2 V-1 s-1 and 7.6 × 10-3 cm2 V-1 s-1 for the 

devices from CF:DCB, 6.0 × 10-3 cm2 V-1 s-1 and 8.8 × 10-4 cm2 V-1 s-1 for the devices from CB, 2.1 × 

10-2 cm2 V-1 s-1 and 1.8 × 10-2 cm2 V-1 s-1 for the devices from CB:DPE, respectively. The devices from 

CB:DPE exhibited considerably higher μh and μe than those of the devices from CF:DCB and CB. 

Furthermore, well-balanced μh/μe ratios were observed in the devices from CF:DCB and CB:DPE 

(CF:DCB: 1.05, CB: 6.81, and CB:DPE: 1.17). To the best of our knowledge, vertical μh and μe of the 

devices from CB:DPE measured by SCLC method are the highest values among high performance 

BHJ PSCs reported to date.229, 237, 269 These high vertical charge-carrier mobility is in good agreement 

with bicontinuous interpenetrating D:A network in vertical direction (Figure 5.10) and close π-π face-

on orientation of polymer backbones (Figure 5.12), thereby confirming unprecedented JSC and high 

FF of the devices from CB:DPE. Moreover, this polymer shows all features to fabricate highly 

efficient tandem solar cells. 
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Figure 5.15. J-V characteristics of (a) hole- and (b) electron-only devices using P2:PC71BM BHJ 

films prepared from different solvents. Blue lines indicate SCLC fits of curves based on Mott-Gurney 

relationship. 

 

 

 

Table 5.7. Hole and electron mobilities obtained from hole- and electron-only devices using 

P2:PC71BM BHJ films prepared from different solvents. 

 
 

 

 

  

Solvent 
Hole-only device Electron-only device

μh/μe
ratioThickness

(nm)
μh

(cm2 V-1s-1)
Thickness

(nm)
μe

(cm2 V-1s-1)

CF:DCB 465 8.0 × 10-3 395 7.6 × 10-3 1.05

CB 345 6.0 × 10-3 455 8.8 × 10-4 6.81

CB:DPE 385 2.1 × 10-2 360 1.8 × 10-2 1.17
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Table 5.8. Comparison of our work with previous reports on small bandgap polymer solar cells.  

 
a Small bandgap polymers are defined as conjugated polymers that have optical bandgap lower than 
1.45 eV.  
b "-" indicates that there is no mention about the thickness of the active layer. 

 

 

  

Polymer a
Optical 

bandgap
(eV)

Active layer 
thickness

(nm)

JSC
(mA cm-2)

VOC
(V) FF PCE

(%)

Ref.
(journal
/year)

PDPP 1.35 -b 14.84 0.63 0.60 5.62 Adv. Mater.
2012

DT-PDPP2T-TT 1.41 220 14.80 0.66 0.70 6.90 Adv. Mater.
2013

DT-PDPP4T 1.43 115 16.00 0.64 0.69 7.10 J. Am. Chem. Soc.
2013

DPPTT-T 1.40 - 19.00 0.56 0.59 5.60 Adv. Funct. Mater. 
2013

PR2 1.40 - 13.52 0.77 0.58 6.04 Energy Environ. Sci.
2013

PBTT-TBDTT 1.45 - 12.63 0.75 0.53 5.10 Chem. Mater.
2014

PDPPFTF 1.38 100 11.35 0.71 0.58 4.70 Adv. Energy Mater.
2014

DT-PDPP2T-TT
(P2) 1.41 340 20.07 0.67 0.70 9.40 Our work
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5.4 Conclusion 
In conclusion, based on a simple and conventional device structure of ITO/PEDOT:PSS/ 

P2:PC71BM/Al, we have demonstrated high-performance small bandgap PSCs simultaneously 

yielding unprecedented JSC and high FF for thicknesses over 300 nm. In comparison with the devices 

processed from other solvents, the device prepared from CB:DPE exhibits the highest PCEs of 9.40% 

with high JSC of 20.07 mA cm-2 and FF of 0.70. This high device efficiency results from maximized 

light absorption by thick active layer, minimized recombination loss by bicontinuous interpenetrating 

D:A network, and high vertical charge-carrier mobility by close π-π face-on orientation. This work is 

a first report on bulk heterojunction PSCs based small bandgap (< 1.45 eV) polymers approaching 

device efficiency of 10% (Table 5.8), as well as provides new morphology engineering technique for 

further improvements of high-performance single-junction and conventional tandem PSCs consisting 

of small and large bandgap polymers. 
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Chapter 6. Improved Performance in Polymer Solar Cells Using Mixed 

PC61BM / PC71BM Acceptors 
 

6.1 Research background 
Considerable efforts have been made to improve the power conversion efficiencies (PCEs) of 

polymer/fullerene composite PSCs by various strategies including the synthesis of new materials,175, 

271-274 surface modification via interfacial engineering,223, 251, 275-277 advanced device architectures,278-281 

and morphology control via processing solvents.74, 117 These efforts have led to a better understanding 

of PSCs and recently have allowed record PCEs of 8-9% to be achieved.256, 280, 282, 283 

Despite remarkable advances in recent years, there is still a room for further improvements in the 

PCE of PSCs. To increase the short-circuit current density (JSC), broad light absorption into the near 

infrared region is desirable; this has been accomplished using small band gap conjugated donor 

materials.232 However, the use of low band gap donor materials often results in low open-circuit 

voltages (VOC) when donor:acceptor bulk heterojunction (BHJ) systems are formed with fullerene 

derivatives as acceptors. To overcome the limitations of binary blend PSCs, several studies have 

focused on ternary blend PSCs including two donors:one acceptor or one donor:two acceptors for the 

active layer.125, 284 For instance, Thompson and coworkers reported both ternary blend systems. First, a 

BHJ consisting of two donor polymers with different ranges of light absorption and one acceptor 

resulted in an improvement in JSC via increased light absorption.285 Second, a blend system of one 

donor polymer and two acceptors allowed tuning of the VOC by changing the blend ratio of 

acceptors.137, 286 In the case of two acceptor blends, [6,6]-phenyl-C61-butyric acid methyl ester 

(PC61BM) and indene-C60 bisadduct (ICBA) were chosen as acceptors with different lowest 

unoccupied molecular orbital (LUMO) energy levels. This study revealed that the VOC could be 

controlled by adjusting the relative amounts of PC61BM and ICBA. Although these studies 

demonstrated the potential of ternary blends to increase the light absorption and control VOC with two-

donor and two-acceptor systems, respectively, the overall PCEs in these ternary systems showed little 

or slight improvement relative to each binary blend.  

[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) is an acceptor which is almost identical to 

PC61BM in terms of its molecular structure, frontier orbital  energy levels, electron mobility and 

electronic properties. However, the distorted geometry of PC71BM relative to PC61BM endows it with 

a much greater absorption coefficient in the visible region, allowing it to produce larger photocurrents 

compared to PC61BM. In the past several years, PC71BM has emerged as a highly effective acceptor 

and found widespread use in a variety of BHJ solar cells. Despite the ubiquitous use of PC61BM and 

PC71BM in BHJ solar cells, the investigation of ternary blend systems containing PC61BM / PC71BM 

mixtures with a donor material has yet to be reported, presumably because of the similar chemical 
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structures and electronic properties of PC61BM and PC71BM, in which the VOC does not change 

significantly, and the larger size and extinction coefficient of PC71BM (relative to PC61BM) are the 

only apparent differences. 

This paper reports a new approach to realize efficient ternary PSCs via the incorporation of both 

PC61BM and PC71BM as mixed acceptors and the conjugated polymer, poly(5,6-bis(octyloxy)-4-

(thiophen-2yl)benzo[c][1,2,5]thiadiazole) (PTBT) as a donor. This report shows that the ternary blend 

of PTBT:PC61BM:PC71BM results in remarkable improvement in the PCEs compared to binary 

mixtures of the components, via enhanced light absorption by PC71BM and balanced charge transport 

by PC61BM. 

 

6.2 Experimental  
General: Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) (Baytron AI 

4083 and PH500) were purchased from H. C. Starck (Germany). [6,6]-phenyl-C61-butyric acid 

methyl ester (PC61BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) were purchased 

from Electronic Materials (EM) Index Co., Ltd. The optical properties of composite films were 

analyzed using a UV-vis spectrophotometer (Varian Carry 5000). The atomic force microscopy (AFM) 

images (2 μm × 2 μm) were obtained using a Veeco AFM microscope in a tapping mode. 

2D-GIXRD measurement: GIXRD measurements were carried out at PLS-II 9A U-SAXS beam 

line of Pohang Accelerator Laboratory, Korea. The X-ray coming from the in-vacuum undulator (IVU) 

was monochromated (Ek = 11.24 keV, λ = 1.103 Å) using a Si(111) double crystal monochromator and 

focused horizontally and vertically at the sample position (450 (H) x 60 (V) µm2 in FWHM) using K-

B type focusing mirror system. The GIXRD sample stage was equipped with a 7-axis motorized stage 

for the fine alignment of the thin sample and the incidence angle of X-ray was adjusted to 0.12 º ~ 

0.14 º. GIXRD patterns were recorded with a 2D CCD detector (Rayonix SX165, USA) and X-ray 

irradiation time was 0.5 ~ 5 s dependent on the saturation level of the detector. The diffraction angle 

was calibrated by a pre-calibrated sucrose (Monoclinic, P21, a = 10.8631 Å, b = 8.7044 Å, c = 7.7624 

Å, ß = 102.938o) and the sample-to-detector distance was about 232 mm.  

Coherence length: Coherence length is given by the Scherrer equation; 

τ =
Kλ

𝛽𝛽cosθ
 

Where: 

• τ is the mean size of the ordered (crystalline) domains, which may be smaller or 

equal to the grain size; 

• K is a dimensionless shape factor, with a value close to unity. The shape factor has a 

typical value of about 0.9, but varies with the actual shape of the crystallite; 
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• λ is the X-ray wavelength; 

• β is the line broadening at the full width at half maximum (FWHM), after 

subtracting the instrumental line broadening, in radians. This quantity is also sometimes 

denoted as Δ(2θ); 

• θ is the Bragg angle. 

Fabrication and characterization of PSCs: The PSC device was fabricated with a configuration of 

ITO/PEDOT:PSS/PTBT:PC61BM:PC71BM/Al. The devices were fabricated according to the following 

procedures: First, ITO-coated glass substrates were cleaned with detergent, then sequentially ultra-

sonicated in acetone and isopropyl alcohol and dried in an oven overnight at 100 °C. The PEDOT:PSS 

layer was spin-coated (after filtration through a 0.45 µm filter) at 5000 rpm for 40 s, baked at 140 °C 

for 10 min in air and then moved into a nitrogen filled glove box. A mixed solution (0.68 wt%) of 

PTBT:PC61BM (or PTBT:PC71BM or PTBT:(PC61BM+PC71BM)) (blend ratio = 1:2 by weight) in 

chlorobenzene: 1,8-octanedithiol (98:2 vol%) was spin-coated at 1000 rpm for 60 s on top of the 

PEDOT:PSS layers. Devices were then brought under vacuum (< 10–6 torr), and a 100 nm thick Al 

electrode was deposited on top of the active layer by thermal evaporation. The deposited Al electrode 

area defined the active area of the devices as 13 mm2. Measurements were carried out inside a glove 

box using a high quality optical fiber to guide the light from the solar simulator. J-V characteristics 

were measured under AM 1.5G illumination (100 mWcm-2) with a Keithley 2635A source 

measurement unit. EQE measurements were conducted in air using an EQE system (Model QEX7) by 

PV measurements Inc. (Boulder, Colorado). 

PFET device fabrication: Highly doped n+-Si wafers were used as the substrates, and a layer of 

200 nm of SiO2 (grown by wet chemical process) was used as the gate dielectric. The substrates were 

cleaned by ultrasonic cleaning in high purity (Mili-Q) deionised water, acetone and isopropanol 

followed by drying overnight at 100 °C. The organic semiconductor layer was deposited by spin 

coating at 1000-1400 rpm. All the fabrication processes were carried out in a glove box filled with 

nitrogen. An 80 nm thick Ag layer was evaporated through a shadow mask to obtain the source and 

drain electrodes. An inter-digitated structure of source-drain contacts was used having a channel 

length of 50 µm and a channel width of 2,950 µm. Electrical characterization of the polymers was 

performed using a Keithley semiconductor parameter analyzer (Keithley 4200-SCS) under nitrogen. 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Full_width_at_half_maximum
http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Bragg_diffraction
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6.3 Results and discussion 
Figure 6.1 presents a schematic diagram of the ternary blend PSCs (ITO/PEDOT:PSS/active 

layer/Al, ITO: indium tin oxide, PEDOT:PSS: poly(3,4-ethylenedioxythiophene):poly(4-

styrenesulfonate)) and the chemical structures of the donor and two acceptors, respectively. The 

conjugated polymer, PTBT, was synthesized and its photovoltaic properties were reported previously 

(number-average molecular weight, Mn = 30,000 g/mol).175 The PTBT:PC61BM blend device 

exhibited a relatively low JSC resulting from limited light absorption in the 400~600 nm range. 

Therefore, PC71BM was considered as a strategy to improve the JSC by absorbing more photons in this 

range. Unfortunately, the binary blend of PTBT:PC71BM showed only slight improvement in PCE 

compared to the PTBT:PC61BM system. Although the JSC improved substantially (from 9.82 to 12.39 

mA⋅cm-2) using PC71BM as an acceptor instead of PC61BM, the fill factor (FF) was reduced (from 

0.65 to 0.53), while the VOC remained almost the same (0.89 vs. 0.90 V), resulting in similar PCEs of 

5.68 and 5.91% for PTBT:PC61BM and PTBT:PC71BM, respectively (Table 6.1). To overcome the 

decrease in FF, ternary blends containing both PC61BM and PC71BM were explored as a strategy to 

exploit the advantages of both acceptors. 

 

 
Figure 6.1. a) Schematics of a ternary blend BHJ solar cell with chemical structures of PTBT, 

PC61BM, and PC71BM and b) energy band diagram of the ternary blend device. 
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Figure 6.2. a) J-V characteristics, b) IPCE curves, and c) absorption spectra of ternary blend BHJ 

solar cells with changing a blend ratio of PTBT:PC61BM:PC71BM.  
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Table 6.1. Photovoltaic parameters of ternary blend BHJ solar cells with changing a blend ratio 

(PTBT:PC61BM:PC71BM).  

 
 

Figure 6.2a and b show the current density-voltage (J-V) characteristics and incident photon-to-

current efficiency (IPCE) of binary and ternary blend PSCs upon changing the ratio of the two 

acceptors. The PTBT:PC61BM binary device showed a JSC of 9.82 mA⋅cm-2, VOC of 0.89 V, FF of 0.65, 

and a resulting PCE of 5.68%. As the amount of PC71BM in the ternary blends increased, the FF 

decreased gradually and the JSC reached a peak at a ratio of 1.0:0.8:1.2 (Figure 6.3 and Table 6.1). A 

peak PCE of 7% was obtained with the composition PTBT:PC61BM:PC71BM = 1.0:0.8:1.2, showing a 

JSC of 13.2 mA⋅cm-2, VOC of 0.9 V, and FF of 0.59, whereas the binary PTBT:PC71BM device showed 

a PCE of only 5.91% (JSC: 12.39 mA⋅cm-2, VOC: 0.9 V, FF: 0.53). These results show that the addition 

of PC71BM improves light absorption, resulting in an enhanced JSC, but possibly appears to promote 

geminate- and/or non-geminate recombination, which reduces the FF and JSC as the PC71BM 

concentration becomes too high (see Figure 6.3a). Fine-tuning of the ternary blend ratio allowed 

realization of the advantages of both PC61BM (high FF) and PC71BM (high JSC). 

Figure 6.2c shows the UV-vis absorption spectra of the binary and ternary blend films with 

different PTBT:PC61BM:PC71BM blend ratios in the photoactive layer. The shoulder peak at 

approximately 670 nm, which originates from the π-π inter-chain interactions in a solid thin film, 

decreases gradually, whereas the absorption around 400-600 nm increases with increasing PC71BM 

content. The increase of PC71BM in the mixture clearly enhances the light absorption but might 

disrupt the intermolecular ordering and π-π interactions. 

 

 

 

 

PTBT : PC61BM : PC71BM JSC
[mA cm-2] VOC [V] FF PCE [%]

Calculated 
JSC

[mA cm-2]

1:2 (1:2:0) 9.82 0.89 0.65 5.68 9.56

1:2 (1:1.4:0.6) 11.44 0.89 0.62 6.31 10.87

1:2 (1:1.2:0.8) 12.18 0.89 0.60 6.50 11.53

1:2 (1:1:1) 13.03 0.90 0.59 6.91 12.28

1:2 (1:0.8:1.2) 13.20 0.90 0.59 7.00 12.57

1:2 (1:0.6:1.4) 12.58 0.90 0.57 6.45 12.05

1:2 (1:0:2) 12.39 0.90 0.53 5.91 11.50
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Figure 6.3. a) JSC, FF, and b) PCE for the ternary blend BHJ solar cells with changing the 

composition in the photoactive layer. 

 

 

 
Figure 6.4. AFM images of PTBT:PC61BM:PC71BM blend films. a), h) 1.0:2.0:0, b), i) 1.0:1.4:0.6, c), 

j) 1.0:1.2:0.8, d), k) 1.0:1.0:1.0, e), l) 1.0:0.8:1.2, f), m) 1.0:0.6:1.4, and g), n) 1.0:0:2.0 (top: 

topograph images, bottom: phase images). 
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To examine the effects of PC71BM addition on the FF, the film morphology was examined by 

atomic force microscopy (AFM) and two-dimensional grazing incidence X-ray diffraction (2D-

GIXRD) for the binary and ternary blend systems. AFM and 2D-GIXRD samples were prepared using 

silicon substrates under the same processing conditions used for device fabrication. The film 

morphology of the ternary blends showed significant differences compared to each binary blend, as 

shown in AFM images (Figure 6.4). The ternary blended films showed much smoother surfaces (root 

mean square (RMS) roughness, 0.76~2.83 nm) than those of the two binary blends (2.76 and 3.40 nm). 

For the ternary BHJ systems with increasing the PC71BM content, the crystalline intermolecular 

ordering may be hindered, inducing a featureless film morphology. Although the reason why the 

PC61BM and PC71BM mixture induces the smoother surface is not very clear at a present stage, the 

smooth surface may improve the contact between the active layer and cathode (Al), yielding better 

charge transport to the cathode in the ternary blend system. 

 

 
Figure 6.5. 2D-GIXRD images with changing the (PTBT:PC61BM:PC71BM) blend ratio. a) 1.0:2.0:0, 

b) 1.0:1.4:0.6, c) 1.0:1.0:1.0, d) 1.0:0.8:1.2, e) 1.0:0.6:1.4, and f) 1.0:0:2.0. g) out-of-plane and h) in-

plane scattering profiles along the qz and qxy axis, respectively 
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Table 6.2. 2D-GIXRD packing parameters along the in-plane and out-of-plane directions. 

 
 

Figure 6.5 and Table 6.2 show the 2D-GIXRD scattering patterns and detailed interference 

profiles along the in-plane and out-of-plane directions for the binary and ternary blend films. The 

PTBT:PC61BM binary blend exhibited well resolved first (100) and second order (200) inter-lamellar 

reflections peaks along the out-of-plane direction (qz = ~0.38 Å-1, d-spacing = ~16.45 Å) and a weak 

π-π stacking peak (010) along the in-plane direction (qxy = ~1.64 Å-1, d-spacing = ~3.83 Å), indicating 

a preferential edge-on orientation. A weak inter-lamellar scattering (100) along the in-plane direction 

was also observed, indicating that an isotropic structure also exists. The broad scattering peak at qxy = 

~1.35 Å-1 originates from fullerene moieties. However, the scattering intensity of inter-lamellar (100 

and 200) and π-π stacking (010) peaks clearly decreased with increasing PC71BM content and almost 

vanished with the PTBT:PC71BM binary system (Figure 6.5g and 6.5h). We also calculated coherence 

length (L100) deduced from the full width at half maximum (FWHM) of inter-lamellar peaks (100), 

which indicates the mean size of the polymer crystallites. The values substantially decreased with 

increasing the PC71BM content from 130.6 Å (1.0:2.0:0) to 74.7 Å (1.0:1.0:1.0), and further decreased 

to 70.3 Å (1.0:0.6:1.4) before the disappearance of the inter-lamellar peak (100) in the PTBT:PC71BM 

binary blend (Table 6.2). Interestingly, inter-lamellar distance gradually increased with increasing 

PC71BM content, and decreased again in the PTBT:PC71BM binary blend. This might be correlated to 

the decreased crystalline ordering in the ternary blends with the smoother film surface relative to the 

binary systems (see AFM images in Figure 6.4). According to the 2D-GIXRD data, PC71BM 

decreases crystalline ordering of the donor polymer and induces morphological changes on a 

molecular scale, which is related closely to the decrease in FF. The fullerene derivatives lead to 

disruption in the intermolecular packing structure, which is more prominent for PC71BM than 

PC61BM. The trend in the 2D-GIXRD measurements shows a good agreement with that in UV-vis 

spectra in Figure 6.2c. 

1.0:2.0:0 1:1.4:0.6 1.0:1.0:1.0 1.0:0.8:1.2 1.0:0.6:1.4 1.0:0:2.0

qz(100) (Å-1) 0.3820 0.3770 0.3655 0.3619 0.3671

n/a
d(100)-spacing (Å) 16.45 16.67 17.19 17.36 17.12

FWHM(100) (Å-1) 0.0433 0.0616 0.0757 0.0743 0.0805

Coherence length (Å)
(L100)

130.6 91.8 74.7 76.1 70.3

qxy(010) (Å-1) 1.6390 1.6463 n/a

d(010)-spacing (Å) 3.83 3.82 n/a
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Table 6.3. Charge carrier mobility for ternary BHJ films with different blend ratios 

(PTBT:PC61BM:PC71BM) via SCLC measurements 

 
 

Electron and hole mobilities were also examined to understand the compositional dependence of 

the photovoltaic characteristics using the space-charge-limited current (SCLC) technique and the 

fabrication of polymer field effect transistors (PFETs). We fabricated the hole 

(ITO/PEDOT:PSS/active layer/Au) and electron (FTO/active layer/Al, FTO: fluorine doped tin oxide) 

only devices, from which the charge carrier mobilities were extracted based on the SCLC model. The 

device based on the PTBT:PC61BM blend exhibited an electron mobility of 9.8×10-4 cm2⋅V-1⋅s-1 and a 

hole mobility of 1.8×10-4 cm2⋅V-1⋅s-1 with an electron/hole mobility ratio of 5.44, as shown in Table 

6.3. With increasing PC71BM content, the electron mobility showed little change (9.3~9.5 ×10-4 

cm2⋅V-1⋅s-1) but the hole mobility decreased gradually, suggesting decreased inter-chain ordering in the 

ternary blend system. In the PTBT:PC71BM device, the electron/hole mobility ratio was 12.67, 

showing an enhanced imbalance in the carrier mobility (µe = 9.5×10-4 and µh = 7.5×10-5 cm2⋅V-1⋅s-1, 

respectively). These SCLC results are also consistent with the UV-vis and 2D-GIXRD data. Therefore, 

the imbalance between the electron and hole mobilities must be related to the decrease in FF. 

To confirm the in-plane ordering and resulting charge carrier mobility, PFET devices were also 

fabricated and characterized under the same conditions used for PSCs fabrication. Figure 6.6 and 

Table 6.4 summarize the transfer and output characteristics for the neat polymer film as well as the 

binary and ternary blend films. The hole mobility of PTBT itself was measured to be 1.15 × 10-2 

cm2⋅V-1⋅s-1 from a 1 wt.% solution in chlorobenzene:1,8-octanedithiol (98:2 vol%). Upon blending 

with the fullerene derivatives, the composites exhibited ambipolar characteristics (both p-channel and 

n-channel operation), showing a substantial decrease in the hole mobility (~10-4 cm2⋅V-1⋅s-1) compared 

to that of PTBT itself. Interestingly the electron mobility of all blends remained fairly constant in the 

range of 2.1 to 2.5 × 10-3 cm2⋅V-1⋅s-1, the hole mobility was significantly lower for the binary 

PTBT:PC71BM blend film with a larger imbalance in the electron and hole mobilities (µe/µh = 48.9). 

PTBT : PC61BM : PC71BM Electron mobility 
(cm2 V-1 s-1)

Hole mobility
(cm2 V-1 s-1)

Electron/Hole 
fraction 

1:2 (1:2:0) 9.8 x 10-4 1.8 x 10-4 5.44 

1:2 (1:1:1) 9.6 x 10-4 1.4 x 10-4 6.64 

1:2 (1:0.8:1.2) 9.7 x 10-4 1.2 x 10-4 7.92 

1:2 (1:0:2) 9.5 x 10-4 7.5 x 10-5 12.67 
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With compared to PTBT:PC71BM, the binary PTBT:PC61BM and ternary blend systems showed the 

relatively small values of µe/µh = 9.3~12.0. 

 

 
Figure 6.6. FET characteristics of PTBT itself (a, b) and composite films with changing a blend ratio, 

1.0:2.0:0 (c~f), 1.0:1.0:1.0 (g~j), 1.0:0.8:1.2 (k~n) and 1.0:0:2.0 (o~r). Transfer characteristics for p-

channel operation are displayed in a), c), g), k) and o). Output characteristics for p-channel operation 

are displayed in b), d), h), l) and p). Transfer characteristics for n-channel operation are displayed in e), 

i), m) and q). Output characteristics for n-channel operation are displayed in f), j), n) and r). 
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Table 6.4. Ambipolar device parameters of ternary blend BHJ FETs via different blend ratio 

(PTBT:PC61BM:PC71BM).  

 
 

Taking all of the experimental observations (UV-vis, 2D-GIXRD, SCLC and FET measurements) 

into account, it becomes apparent that the bigger size, lower symmetry and oblong shape of PC71BM 

lead to substantial decrease in the crystalline organization of PTBT. The decreased inter-chain 

ordering gives rise to the reduced hole mobility and imbalance in the electron / hole mobility ratio, 

deteriorating the FF values in PC71BM-rich devices. PC71BM improves JSC by virtue of its larger 

extinction coefficient in the visible region, compared to PC61BM. However, PC71BM also disrupts the 

crystalline morphology of PTBT with decreased FF. It is important to fine-tune the composition of 

ternary BHJ films to fully utilize the enhanced light absorption of PC71BM with the minimized FF 

deterioration. The optimal ternary device was achieved with the compositon of 

PTBT:PC61BM:PC71BM = 1:0.8:1.2. Consequently, by mixing the two acceptors, the weak points of 

each binary system PSC containing only PC61BM (low JSC) and PC71BM (low FF) were successfully 

compensated using the ternary blend system (Figure 6.3), demonstrating the device optimization by 

fine-controlling the PC61BM:PC71BM composition of ternary blends.  

 

  

PTBT : PC61BM : PC71BM Electron mobilities
(cm2 V-1 s-1)

Hole mobilities
(cm2 V-1 s-1)

Electron/Hole 
fraction 

Only PTBT( w/o ODT) / 9.59 x 10-3 /

PTBT (w/ ODT) / 1.15 x 10-2 /

1:2 (1:2:0) 2.46 x 10-3 2.13 x 10-4 11.5

1:2 (1:1:1) 2.14 x 10-3 2.31 x 10-4 9.3

1:2 (1:0.8:1.2) 2.10 x 10-3 1.75 x 10-4 12.0

1:2 (1:0:2) 2.35x 10-3 4.81 x 10-5 48.9
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6.4 Conclusion 
In summary, an efficient ternary blend PSC was reported using a single donor (PTBT) and two 

acceptors (PC61BM and PC71BM). By combination of PC61BM and PC71BM as an acceptor, we fully 

utilized advantages of both PC61BM (high FF) and PC71BM (high JSC) by fine-controlling the ternary 

composition and the resulting photovoltaic characteristics. With increasing the PC71BM fraction in the 

ternary blend systems, the light absorption (in a range of 400 ~ 600 nm) substantially increases and 

the resulting JSC was maximized at the PTBT:PC61BM:PC71BM = 1:0.8:1.2. The VOC showed a 

negligible change with different compositions due to the same electronic structures of two fullerene 

derivatives. However, the FF gradually decreased due to the disruption of inter-chain ordering of 

PTBT (with decreased hole mobility and increased e-h recombination), via the bigger, lower 

symmetry and oblong shaped PC71BM. Here, we emphasize that it is possible to optimize the ternary 

blend PSC by fine-control the composition to take advantage of strong light absorption by PC71BM 

with minimizing the damages in the polymer chian ordering. The optimized ternary blend (1:0.8:1.2) 

PSC exhibited 7% PCE with clearly improved JSC (13.20 mA⋅cm-2 relative to 9.82 mA⋅cm-2 of 

PTBT:PC61BM) and FF (0.59 relative to 0.53 of PTBT:PC71BM).  This shows a successful example 

of a ternary BHJ PSC showing a substantial PCE improvement (from 5.68 and 5.91 to 7.0%) with 

compared to the corresponding binary systems. Although ternary systems do not always guarantee the 

higher device efficiency than the binary systems, ternary systems suggest a great potential to further 

improve the device properties. By judicious consideration of weak points of binary systems, it may be 

possible to improve poor device parameters via synergistic interactions between multiple donors or 

multiple acceptors in ternary systems. 
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Chapter 7. Summary 
In this thesis, I focused on various engineerings which are surface plasmon resonance (SPR) effect 

using PEDOT:PSS electrode doped with silver nanoparticels, morphology control using diphenly 

ether (DPE) as a novel processing additive with conjugated polymers (PPDT2FBT and P2), and 

ternary blend using a PC61BM and PC71BM mixture with a donor polymer resulting in enhaced 

electromagnetic field to provide light confinement to active layer, well-formed phase separation to 

make good pathway for electron and holes, and overcoming problem of binary BHJ solar cells (lower 

JSC and FF), respectively, for the highly efficient light harvesting of polymer solar cells. 

First, I successfully demonstrated ITO-free PSCs and PLEDs with the SPR effect and the 

possibility of solution-processed PEDOT:PSS containing Ag NPs as a flexible plastic electrode. The 

Ag NPs-incorporated Ag@NMP:PH500 electrode exhibited a high conductivity of 450 S cm-1 with 

similar transparency to ITO. The PSC device based on PTBT:PC61BM with the Ag@NMP:PH500 

electrode showed a 1% absolute enhancement in the power conversion efficiency (3.27 to 4.31%), 

whereas the power efficiency of the PLEDs was improved by 124% (3.75 to 8.4 lm W-1) compared to 

the reference devices without Ag NPs. The SPR effect and improved electrical conductivity by the Ag 

NPs clearly contributed to increments in light absorption/emission in the active layer as well as the 

conductivity of the PEDOT:PSS electrode in PSCs and PLEDs. The solution-processable conducting 

polymer-based electrode, Ag@NMP:PH500 with Ag NPs, is a promising candidate as a flexible 

electrode for large area and flexible optoelectronic devices with a low-cost fabrication process. 

Second, I successfully demonstrate efficient morphology control of active layer using efficient 

processing additive, DPE. ; 1) A series of dialkoxyphenylene-BT containing semicrystalline LBG 

polymers were synthesized with noncovalent conformational locking to enhance chain planarity, 

intermolecular ordering and thermal stability without losing solution processability. The polymers 

formed well-distributed interpenetrating nano-fibrillar networked morphologies with PC71BM, 

showing well-balanced hole and electron mobilities. Notably, PSCs based on these polymers exhibited 

PCEs of up to 9.39% in a 290 nm thick conventional single-cell device structure without any 

additional interfacial layer. The thick active layer (290 nm) in the PPDT2FBT:PC71BM device enabled 

strong light absorption, yielding a high JSC of 15.7–16.3 mA cm-2 without the loss in VOC and FF. It is 

of great importance to develop photovoltaic materials which can function effectively at the thicker 

film which can absorb solar light completely and is viable to be produced using industrial solution 

processing techniques. These remarkable device characteristics with the great thickness are closely 

related to the highly ordered organization of polymer chains via noncovalent attractive interactions, 

showing nano-fibrillar structures in TEM with tight interchain packing (a π–π stacking distance of 

3.57–3.59 Å) in the blend films. In addition, we also measured clear molecular weight dependence on 

the photovoltaic properties. We synthesized more than 20 batches of PPDT2FBT to optimize the 
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photovoltaic characteristics. Among them, the high molecular weight batches (with ~40 kDa) showed 

the PCE over 8–9% but small molecular weight batches showed the relatively lower PCE values 

(~7%). The detailed study on the molecular weight dependence is now under investigation. 

Furthermore, this work also demonstrates a high PCE of over 7% (without any post-treatments) with 

long-term thermal stability at 130 °C for ~200 h. These new polymers provide a great possibility to 

overcome the efficiency barrier of 10% and accelerate the real application of plastic solar cells; 2) the 

high carrier mobilities and complete carrier extraction from thick active layers evidently result from 

the strong out-of-plane π-π stacking and unique internal structure observed in PPDT2FBT:PC71BM 

films. We conclude that these physical characteristics allow photo-dissociated electron-hole pairs to be 

collected from the active layer with almost 100% efficiency using exceptionally thick films. This 

economy of charge carrier extraction from thick films has thus far only been achieved in crystalline 

inorganic solar cells and has constituted a major hurdle limiting the application of organic solar cells. 

The energy band structure of PPDT2FBT allows near complete attenuation of incident photons with 

wavelengths up to 700 nm coupled with a VOC of almost 0.8 V and a PCE of over 9%. We envision 

that if the same approach to engineering polymer self-assembly can be accomplished with a 

conjugated polymer having a narrower band gap (and thus higher JSC), or deeper HOMO band (and 

thus higher VOC), efficiencies of over 10% can be readily achieved, paving the way to commercially 

profitable organic solar cells; 3) I have demonstrated high-performance small bandgap PSCs 

simultaneously yielding unprecedented JSC and high FF for thicknesses over 300 nm. In comparison 

with the devices processed from other solvents, the device prepared from CB:DPE exhibits the highest 

PCEs of 9.40% with high JSC of 20.07 mA cm-2 and FF of 0.70. This high device efficiency results 

from maximized light absorption by thick active layer, minimized recombination loss by bicontinuous 

interpenetrating D:A network, and high vertical charge-carrier mobility by close π-π face-on 

orientation. This work is a first report on bulk heterojunction PSCs based small bandgap (< 1.45 eV) 

polymers approaching device efficiency of 10% (Table 5.8), as well as provides new morphology 

engineering technique for further improvements of high-performance single-junction and 

conventional tandem PSCs consisting of small and large bandgap polymers. 

Finally, I demonstrated an efficient ternary blend PSC was reported using a single donor (PTBT) 

and two acceptors (PC61BM and PC71BM). By combination of PC61BM and PC71BM as an acceptor, 

we fully utilized advantages of both PC61BM (high FF) and PC71BM (high JSC) by fine-controlling the 

ternary composition and the resulting photovoltaic characteristics. With increasing the PC71BM 

fraction in the ternary blend systems, the light absorption (in a range of 400 ~ 600 nm) substantially 

increases and the resulting JSC was maximized at the PTBT:PC61BM:PC71BM = 1:0.8:1.2. The VOC 

showed a negligible change with different compositions due to the same electronic structures of two 

fullerene derivatives. However, the FF gradually decreased due to the disruption of inter-chain 
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ordering of PTBT (with decreased hole mobility and increased e-h recombination), via the bigger, 

lower symmetry and oblong shaped PC71BM. Here, we emphasize that it is possible to optimize the 

ternary blend PSC by fine-control the composition to take advantage of strong light absorption by 

PC71BM with minimizing the damages in the polymer chian ordering. The optimized ternary blend 

(1:0.8:1.2) PSC exhibited 7% PCE with clearly improved JSC (13.20 mA⋅cm-2 relative to 9.82 mA⋅cm-2 

of PTBT:PC61BM) and FF (0.59 relative to 0.53 of PTBT:PC71BM). This shows a successful example 

of a ternary BHJ PSC showing a substantial PCE improvement (from 5.68 and 5.91 to 7.0%) with 

compared to the corresponding binary systems. Although ternary systems do not always guarantee the 

higher device efficiency than the binary systems, ternary systems suggest a great potential to further 

improve the device properties. By judicious consideration of weak points of binary systems, it may be 

possible to improve poor device parameters via synergistic interactions between multiple donors or 

multiple acceptors in ternary systems. 
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