
PHYSICAL REVIEW B 89, 205132 (2014)

Topological and magnetic phases with strong spin-orbit coupling on the hyperhoneycomb lattice
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We study the general phase diagram of correlated electrons for iridium-based (Ir) compounds on the
hyperhoneycomb lattice, a crystal structure where the Ir4+ ions form a three-dimensional network with threefold
coordination recently realized in the β-Li2IrO3 compound. Using a combination of microscopic derivations,
symmetry analysis, and density functional calculations, we determine the general model for the electrons
occupying the jeff = 1

2 orbitals at the Ir4+ sites. In the noninteracting limit, we find that this model allows for both
topological and trivial electronic band insulators along with metallic states. The effect of Hubbard-type electron-
electron repulsion on the above electronic structure in stabilizing q = 0 magnetic order reveals a phase diagram
with continuous phase transition between a topological band insulator and a Néel ordered magnetic insulator.
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I. INTRODUCTION

The importance of the interplay between spin-orbit cou-
pling (SOC) and electron-electron correlations in stabilizing
a wide variety of novel electronic phases such as topological
insulators (TI), Weyl semimetals, and quantum spin liquids has
been explored recently [1–7]. Materials such as 5d transition-
metal (iridium = Ir, osmium = Os) oxides with strong atomic
SOC provide fertile grounds to uncover the above physics
and a large number of such compounds are currently being
investigated [8–16].

Recently, the material β-Li2IrO3 has been synthesized by
Takayama et al. [17] which has attracted attention due to the
novel three-dimensional network formed by the Ir4+ ions: the
hyperhoneycomb lattice (see Fig. 1). It has been theoretically
predicted that the spin model in the strong-coupling limit can
be highly anisotropic and may lead to interesting magnetic as
well as a three-dimensional Kitaev quantum spin-liquid ground
state [18–21].

In this paper, motivated by the above developments, we
study the weak- and intermediate-coupling regimes of β-
Li2IrO3 and isostructural compounds with Ir situated on
a hyperhoneycomb lattice. We point out the possibility of
interesting ground states in these systems that generally arise
from the nature of the underlying lattice geometry and strong
SOC effects. In turn, these results can shed light on the physics
of the above material and others on a similar lattice structure.

An important starting point in the study of these compounds
is to ascertain the nature of the electronic structure, particularly
that of the electronic bands near the Fermi level. Due to the
large atomic SOC, as in a large number of Ir-based compounds
[3,6,12,13,22,23], the low-energy bands are expected to be
formed by jeff = 1

2 atomic orbitals. Using the symmetries
of the hyperhoneycomb lattice, we obtain the general tight-
binding Hamiltonian for the jeff = 1

2 orbitals. Apart from
the generic metal and band insulator (BI), we find that this
hopping Hamiltonian allows for a three-dimensional strong TI
(STI) over a large parameter regime. The above tight-binding
model is further justified by more microscopic calculations

based on Slater-Koster parameters for the 5d orbitals in the
large SOC limit for the ideal hyperhoneycomb lattice. This
latter calculation also reveals the connection between the
symmetry-allowed hopping parameters and the Slater-Koster
parameters. In parallel, we perform density functional theory
(DFT) calculations in the presence of SOC to probe the
nature of the states near the Fermi level for β-Li2IrO3 on
an ideal hyperhoneycomb lattice. The DFT results support our
assumption that the low-energy states near the Fermi level
have a predominantly jeff = 1

2 orbital character and are well
separated from the jeff = 3

2 bands that lie below the Fermi
level. The study of the q = 0 magnetic phases induced by
Hubbard-type electronic correlations on the above electronic
structure reveals an interesting phase diagram. We find a direct
continuous transition between the STI at weak correlations
and magnetic insulator with Néel order at intermediate corre-
lations. Although the metallic state in the weak-coupling limit
ultimately transitions into the Néel ordered magnetic insulator
at sufficiently large correlations, an intermediate phase [a
magnetically ordered (Néel) metal] is first reached via a
discontinuous transition. Interestingly, while time-reversal and
inversion symmetries are broken in the magnetically ordered
insulator, the product of the two is found to be preserved,
leading to pseudo-Kramers doublets in the energy spectrum.

The rest of the paper is organized as follows. We begin
with a discussion of the ideal hyperhoneycomb lattice and its
symmetries in Sec. II. Using these symmetries, the general
tight-binding model (up to second-nearest neighbor, 2NN) for
the jeff = 1

2 orbitals is then obtained in Sec. III. The hopping
Hamiltonian contains both spin-conserving (scalar) as well
as spin-flipping (vector) hopping amplitudes. While we show
that the nearest-neighbor (1NN) vector hopping terms are
inconsequential, the 2NN hopping terms can stabilize a
three-dimensional STI over a large parameter regime. We
study the detailed phase diagram of the symmetry-allowed
tight-binding Hamiltonian in Sec. IV and point out a simple
relation in the hopping parameters that separates the trivial and
the topological band insulators in the phase diagram. In Sec. V,
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FIG. 1. (Color online) The ideal hyperhoneycomb lattice. The
Ir4+ atoms (denoted by white spheres, except for the four yellow ones
that indicate the four atoms in our unit cell) sit in octahedral cages
(shaded in blue) of oxygen atoms (small red spheres). The lattice
vectors are denoted by a1,a2, and a3. The three nearest-neighbor
bonds are referred to as x (pink), y (green), and z (blue) bonds.

we establish the connection between the symmetry-allowed
hopping parameters and the more microscopic Slater-Koster
parameters characterizing the hopping Hamiltonian for the
underlying t2g bands. In this section, starting from such a
hopping Hamiltonian on an ideal hyperhoneycomb lattice and
taking the large SOC limit, we derive the pertinent Hamiltonian
for the jeff = 1

2 orbitals to the leading order of perturbation
theory. In Sec. VI, we show the results of fully relativistic DFT
calculations on β-Li2IrO3 assuming an ideal hyperhoneycomb
lattice for the material. These calculations reveal the generic
separation of the jeff = 1

2 bands and the jeff = 3
2 bands with the

former being closer to the Fermi level, justifying our generic
jeff = 1

2 tight-binding calculations in earlier sections. Further,
fitting the DFT band structure with the t2g tight-binding
model, we obtain an estimate of the parameter regime of the
tight-binding model which may be relevant to β-Li2IrO3. After
completing the characterization of the low-energy electronic
structure, in Sec. VII, we study the effect of short-range
electron-electron interactions in the intermediate correlation
regime.

II. IDEAL HYPERHONEYCOMB LATTICE OF Ir4+ IONS

We first consider the generic symmetry-allowed jeff = 1
2

tight-binding model for the network of Ir in the hyperhoney-
comb lattice. As described in the following and also supported
by our DFT calculations in Sec. VI, these jeff = 1

2 orbitals are
expected to form the low-energy electronic excitations near
the Fermi level. To this end, we start with a description of the
hyperhoneycomb lattice and its symmetries.

The hyperhoneycomb lattice consists of a network of Ir4+
ions where each Ir4+ ion has three 1NNs and sits in an octa-
hedral oxygen cage (Fig. 1). A detailed structural description
of the lattice can be obtained from the x-ray diffraction exper-
iments on β-Na2PtO3 [24] which belongs to the same space
group (Fddd) as β-Li2IrO3. In the ideal structure, which we
refer in this paper as the ideal hyperhoneycomb lattice (shown
in Fig. 1), the oxygen octahedra are undistorted and the Ir-O-Ir
and the Ir-Ir-Ir bond angles measure 90◦ and 120◦, respectively,
and hence different Ir-Ir bonds have the same length.

The lattice structure can be described as a face-centered
orthorhombic lattice with four Ir sites per unit cell [19]. While a
complete discussion of the symmetries of the lattice is given in
Ref. [19], here we note that since the hyperhoneycomb lattice
possesses inversion symmetry, the eight bands arising from
two jeff = 1

2 orbitals at each of the four sublattices become
four doubly degenerate bands due to Kramers theorem. In
the following, we also exploit the presence of this inversion
symmetry by using parity eigenvalues when computing the
Z2 topological invariants [25]. Out of the three 1NN bonds
(which we call the x, y, and z, following notation used in
the Heisenberg-Kitaev model explored in Refs. [19,20], see
Fig. 1), two of the bonds (namely, x and y) are equivalent
due to the presence of C2 symmetry. More details regarding
the lattice used in our ideal hyperhoneycomb calculations can
be found in Appendix A.

At each Ir4+ site, the octahedral crystal field of the oxygen
splits the 5d Ir orbitals into the upper eg orbitals (fourfold
degenerate including spin degeneracy) and the low-lying t2g

orbitals (sixfold degenerate including spin degeneracy) with
the separation (10Dq) being approximately 3 eV. Neglecting
the t2g − eg mixing due to large energy separation, the
strong SOC (λ ∼ 500 meV) splits the six t2g orbitals into
the low-energy four jeff = 3

2 quadruplet and high energy
jeff = 1

2 doublet. The five 5d electrons completely fill up the
quadruplet leaving the doublet half-filled. These half-filled
jeff = 1

2 atomic orbitals, one at each Ir4+ site, form the
low-energy electronic degrees of freedom in this compound.

A few remarks are in order before we proceed to the
description of the tight-binding and DFT results. While the
symmetry-allowed tight-binding model described in Sec. III
is generally valid for changes in the position of both oxygen
and the Ir4+ ions as long as the space group (Fddd) remains
intact and the jeff = 1

2 bands remain well separated from the
jeff = 3

2 bands, the microscopic calculations starting from
the t2g orbitals presented in Sec. V assume ideal position
of the oxygen atoms which in turn affect the overlap integrals.
The effective hopping Hamiltonian for the jeff = 1

2 derived
from it assumes that the the leading-order corrections due
to SOC coupling effects are captured within a second-order
perturbation theory which is valid in the large SOC limit.
Since the detailed structure of β-Li2IrO3 is not available at
present and also future compounds may differ by small details
in the structure such as the position of oxygen ions, we start
with the most general case in Sec. III and specialize to the
ideal hyperhoneycomb lattice later. Our DFT calculations in
Sec. VI, based on the ideal structure for β-Li2IrO3, validate
our above assumption of the separation of the jeff = 1

2 and
jeff = 3

2 bands in that limit.

III. SYMMETRY-ALLOWED TIGHT-BINDING MODEL

Using various symmetries of the lattice discussed above,
we can write the generic tight-binding model for the jeff = 1

2
electrons on the hyperhoneycomb lattice. The general hopping
Hamiltonian is given by

Htb =
∑
ij

c
†
i hij cj (1)
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with

hij = tijI + ivij · σ, (2)

where c
†
i = (c†i↑,c

†
i↓) are the creation operators in the jeff = 1

2
basis at site i, �σ = (σx,σy,σz) are the Pauli matrices, and I is
the 2 × 2 identity matrix. tij and vij denote the scalar and the
spin-flip hopping, respectively [26].

In the following, we determine the hopping Hamiltonian
up to second-nearest neighbor (2NN). A more microscopic
approach based on Slater-Koster parameters including various
hopping paths and its connection to the symmetry-allowed
hopping parameters is presented in Sec. V.

A. Nearest neighbor

At the nearest-neighbor level (1NN), as noted earlier, there
are two symmetry-inequivalent sets of bonds to consider: the
x/y bonds and the z bonds. The symmetry-allowed 1NN tight-
binding hopping matrix Eq. (2) can be written as

h1NN
x/y = txyI (3)

for the x/y bonds and

h1NN
z = t1NN

z I + iv1NN
z · σ (4)

for the z bonds. The absence of spin-dependent vector hopping
amplitudes on the x and y bonds is due to inversion symmetry
at their bond centers. Each z bond, on the other hand,
has three C2 axes passing through its bond center, which
constrains the spin-dependent vector hopping amplitudes to
point in the ± (x̂ + ŷ) direction. We use the convention
v̂(12)

z = (1,1,0)/
√

2 and, by symmetry, v̂(34)
z = −(1,1,0)/

√
2,

where the superscripts indicate sublattice indices that are
involved in the particular z bond.

We note that in the purely 1NN model, the spin-dependent
vector hopping amplitude on the z bonds can be eliminated by
a sublattice-dependent basis transformation. To see this, we
rewrite the z-bond hopping amplitudes (4) as

h1NN
z =

√(
t1NN
z

)2 + ∣∣v1NN
z

∣∣2
eiθv̂ij ·�σ , (5)

where, tan θ = |v1NN
z |/t1NN

z . Rotating the jeff = 1
2 electrons

on sublattices 2 and 3, for example, by exp (−iθ v̂z · �σ ) would
render hopping amplitudes on the z bonds diagonal in jeff = 1

2
pseudospin space without affecting the form of the hopping on
the x and y bonds which are already diagonal in the pseudospin
indices.

In other words, the generic symmetry-allowed 1NN jeff = 1
2

tight-binding model on the hyperhoneycomb can always be
written in an SU(2)-invariant form (in pseudospin space)
with the appropriate choice of basis. Immediately, we conclude
that the generic band structure is particle-hole symmetric
because the model is bipartite (see end of Sec. III B and
Appendix C for general discussion on particle-hole symmetry).
In addition, all band insulators obtained from this 1NN model
would be topologically trivial and a topologically nontrivial
band insulator can not be realized with 1NN bonds alone. This
is shown in the phase diagram (Fig. 2) of the 1NN tight-binding

0 0.5 ∞

band insulator metal

txy/tz

FIG. 2. (Color online) Phase diagram for the strictly nearest-
neighbor hopping Hamiltonian. The band insulator is topologically
trivial and the metal has a closed one-dimensional line node forming
the Fermi surface.

model at half-filling as a function of txy/tz.1 The phase diagram
contains a trivial band insulator and a metal. In the limit where
txy = 0, the hyperhoneycomb lattice reduces to independent
dimers which is a topologically trivial insulating state with
flat bands. For 0 < 2txy < tz, the flat bands disperse but the
band structure remains gapped. At 2txy = tz, band touching
occurs at the � point. The dispersion along the �-Z direction
is linear near the band touching, while it is quadratic in the
�-X and �-Y directions. As txy increases such that 2txy > tz,
the band touching moves away from the � point and the
Fermi surface becomes a closed line node in the �-X-A1-Y
plane of the Brillouin zone. This is an interesting feature of
the strictly 1NN model that the metal has a one-dimensional
Fermi surface, i.e., a closed Fermi line node, instead of a
regular two-dimensional Fermi surface. Despite having a line
node away from the time-reversal-invariant momenta (TRIM)
points, this semimetallic phase is proximal to a STI in the
following sense: if we blindly computed the Z2 topological
indices using the parity eigenvalues of the occupied bands,
it would result in the indices (1;000). Since the line node is
not protected by symmetries, introducing additional hopping
amplitudes may gap out the entire line node and thus generate
a STI. In Sec. III B, we will show that certain 2NN hopping
amplitudes serve this precise role and hence a STI can be
realized on the hyperhoneycomb lattice.

As described in Sec. V, starting with the t2g hopping
Hamiltonian on the ideal hyperhoneycomb lattice and taking
the strong SOC limit, we find that, to the lowest order, the
resulting effective jeff = 1

2 model is described by txy = tz and
θ = 0. This falls in the metallic regime in the phase diagram
shown in Fig. 2. Here, we point out that when distortions are
accounted for and/or higher-order terms are included in the
perturbative series, txy and tz would be in general different and
θ may be finite.

B. Second-nearest neighbor

For the 2NN hopping, both the scalar and spin-dependent
hopping terms are generally nonzero. There are 20 2NN bonds
in the hyperhoneycomb lattice when using the primitive unit
cell (see Appendix B for details). These 20 2NN bonds can
be divided into two classes if we consider the Ir4+ network:
(1) the 2NN sites which can be connected through only one
common intermediate Ir4+ site, and (2) the 2NN sites that
require traversing through more than one intermediate Ir4+

1The relative sign between txy and tz can be eliminated by transform-
ing c

†
i → −c

†
i for i ∈ (2,3) while the overall sign is inconsequential

since the Hamiltonian is particle-hole symmetric.
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site. In Sec. V, our microscopic derivation shows that, starting
from a t2g hopping model with 1NN hopping terms and taking
the strong SOC limit, only the 12 2NN bonds belonging to the
first class are nonzero in the effective jeff = 1

2 tight-binding
model to lowest order. Hence, we shall only consider nonzero
2NN hopping for these 12 2NN bonds and neglect the rest in
our tight-binding model. Generally, we can write

h2NN
ij = t2NNI + i

(
v(1)

ij + v(2)
ij

) · σ, (6)

where t2NN is the scalar hopping and to bring out the analogy
with the Kane-Mele model [27] on the two-dimensional
honeycomb lattice, we have split the spin-dependent hopping
into two parts. The first part is the three-dimensional version
of the Kane-Mele term

v(1)
ij = vKM

r̂ik × r̂kj

|r̂ik × r̂kj | , (7)

where vKM is the strength of the coupling and rik and
rjk = (−rkj) denote the vectors from the sites i and j ,
respectively, to their common nearest-neighbor site k. The
second part of the vector hopping, not present on the 2D
honeycomb lattice (due to the presence of a mirror symmetry),
is normal to the first and is given by

v(2)
ij = v‖εij r̂ij , (8)

where v‖ is the strength of this coupling and εij = ±1 is ap-
propriately chosen such that v(2)

ij transforms as a pseudovector
under lattice transformations as required by symmetry.

To conclude this section, we make a brief note on particle-
hole symmetry of various limits. While the 1NN-only model
is particle-hole symmetric as mentioned in Sec. III A, finite
t2NN and/or v‖ hopping amplitudes will break such symmetry.
On the other hand, the vKM hopping amplitude preserves
this symmetry, as we show explicitly in Appendix C. In
other words, the 1NN plus finite vKM model is particle-hole
symmetric.

IV. PHASE DIAGRAM OF THE 2NN
TIGHT-BINDING MODEL

In this section, we outline the generic phase diagram for the
single-particle hopping Hamiltonian given by Eq. (1), where
the different parameters are defined by Eqs. (3), (4), and (6).
In Fig. 3, we present 2NN phase diagram with t2NN, v‖, and
vKM as the axes. We have set the 1NN hopping integrals to
txy = tz = 1 and θ = 0. We note that the phase diagram is
symmetric under (t2NN,vKM,v‖) → −(t2NN,vKM,v‖) since this
transformation merely inverts the electronic band structure
(not shown). Hence, only v‖ > 0 is presented.

The orange regions indicate a strong topological insulator
(STI) with Z2 indices (1; 000), the blue regions indicate
a metallic state, and the pink regions indicate a trivial
band insulator (BI). The borders between STIs and BIs are
semimetals. This is because time-reversal symmetry remains
intact in both the phases therefore the electronic band gap
in the bulk must close when the topology of the bands, as
encapsulated by the Z2 indices, changes. We note that finite
t2NN and/or v‖ breaks the particle-hole symmetry of the band
structure and hence the metallic states are generically present
as opposed to the 1NN case. In the special case where |t2NN|

-0.5

0.0

0.5
t2NN

0.00
0.25

0.50
0.75

v

-1.0

-0.5

0.0

0.5

1.0

vKM

FIG. 3. (Color online) Phase diagram in the noninteracting limit
with 2NN hopping amplitudes with slices in the vKM direction.
Nearest-neighbor hopping amplitudes have been set to txy = tz = 1,
vz = 0. Orange is a strong topological insulator, blue is a metal, and
pink is a trivial band insulator. The dotted semicircle indicates the
region in which any insulating state must be a STI, and outside
of which any insulating state must be trivial (see main text for
explanation). The blue line along vKM = v‖ = 0 is a metallic state
with a line-node Fermi surface akin to the metallic state in the
1NN-only model.

is small and vKM = v‖ = 0, the ground state is a metallic
phase with a line-node Fermi surface akin to the metallic
phase found in the 1NN-only model. As |t2NN| increases while
vKM = v‖ = 0, bands approach and cross the Fermi level, thus
generating particle and hole pockets. This displaces the line
node away from the Fermi level and yields a metallic state
with particle pockets.

We draw attention to the region within t2
2NN + v2

‖ � 0.52

(in units of txy , indicated by dashed lines in Fig. 3), where
the STI and metallic phases exist but not the BI phase. On
the other hand, the BI and metallic phases can be found
outside this region but not the STI phase. To understand this,
we note that the strong Z2 index is calculated from the product
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of the parity eigenvalues [25] at the time-reversal-invariant
momentum (TRIM) points of the Brillouin zone (BZ) since
inversion symmetry is present. Out of the eight TRIM points
in the three-dimensional BZ, we find that the product of the
parity eigenvalues changes only at the � point as we move from
a STI to a trivial band insulator. Thus, we expect that the mass
inversion affects only the product of the parity eigenvalues at
the � point. We find that the parameter controlling this band
inversion, and hence the parity eigenvalues, depends only on
t2NN and v‖ but not on vKM. In fact, when t2NN = v‖ = 0
and vKM �= 0, the insulating phase is always a STI. The
accidental degeneracy that closes the band gap at the � point
occurs precisely when t2

2NN + v2
‖ = 0.52; a gap opens if we

deviate from this curve. Therefore, any insulating phase within
t2
2NN + v2

‖ � 0.52 must have the same strong Z2 topological
index as the case of t2NN = v‖ = 0 and vKM �= 0, i.e., a STI,
whereas any insulating phase outside of this region can be
topologically distinct, as in this case a BI. The nature of
the metallic states depends on the local features of the band
structure like the presence of particle or hole pockets where
the chemical potential crosses the Fermi level.

V. MICROSCOPIC CONSIDERATIONS: DERIVATION OF A
jeff = 1

2 MODEL FROM A MULTIORBITAL t2g MODEL IN
THE STRONG SPIN-ORBIT COUPLING LIMIT

Having derived the general symmetry-allowed tight-
binding model in Sec. III, here we explore a microscopic
multiorbital t2g tight-binding model with SOC on the ideal
hyperhoneycomb lattice within the Slater-Koster approxima-
tion [28]. As noted earlier, unlike the generic tight-binding
model considered in the previous sections where oxygen and
iridium distortions are encapsulated in quantitative changes
in the jeff = 1

2 hopping amplitudes, here we specialize in the
case where both the iridium and oxygen ions are in their ideal
positions. This implies that each iridium ion is surrounded
by a perfect oxygen octahedron, all 1NN bonds are of equal
length, and the Ir-Ir-Ir and Ir-O-Ir bond angles are 120◦ and
90◦, respectively. With these assumptions and in the limit of
large SOC, we will show the connection between the micro-
scopic tight-binding model and the generic symmetry-allowed
tight-binding model presented in Sec. III, particularly the
relations between the microscopic Slater-Koster parameters
and the hopping parameters introduced earlier. The results
of this section will provide us with valuable insights in the
understanding of the DFT results in the next section.

In the ideal hyperhoneycomb lattice, each Ir ion resides in
a perfect octahedral cage of oxygen ions. The resulting crystal
field causes the Ir d orbitals to split into the lower-energy
t2g orbitals and the higher-energy eg orbitals with energy
difference on the order of a few electron volts. When SOC and
hopping amplitudes are much smaller than the crystal-field
energy splitting, the eg orbitals can be projected since the five
electrons at each Ir4+ site will mostly contain t2g character.
The atomic SOC, when projected on the t2g orbitals, has the
following form:

HSOC = −
∑

i

λ �Li · �Si, (9)

where �Li transforms as an angular momentum one operator
(with the three Lz components being linear combinations of
the three t2g orbitals [29]), �Si is the spin of a single electron
occupying the t2g orbitals, and λ(∼500 meV) is the strength
of the atomic SOC. Due to the negative sign [29], the jeff = 1

2
orbitals are higher in energy than the jeff = 3

2 orbitals.
We consider two types of hopping amplitudes between

1NN iridium ions within the Slater-Koster approximation:
the direct overlap between adjacent Ir t2g orbitals and the
indirect hopping mediated by the two shared oxygen ions in
the edge-shared oxygen octahedra configuration. The resulting
tight-binding model in the t2g basis can be written as

Ht2g
=

∑
〈ij〉

d
†
i

[
hdirect

ij (tσ ,tπ ,tδ) + hindirect
ij (toxy)

]
dj , (10)

where d† = (d†
yz,d

†
xz,d

†
xy) are the creation operators in the t2g

basis. The direct hopping matrix hdirect
ij is parametrized by

Slater-Koster parameters tσ , tπ , and tδ representing σ , π , and δ

hopping amplitudes between adjacent t2g orbitals, respectively.
The indirect hopping matrix hindirect

ij is parametrized by toxy =
|tpdπ |2/
, where tpdπ is the π hopping between iridium d

orbitals and oxygen p orbitals and 
 is the energy difference
between those two sets of orbitals. The detailed form of the
hopping matrices is outlined in Appendix D.

In the large SOC limit, the bands arising from the jeff = 1
2

and the jeff = 3
2 orbitals are expected to separate. In the λ →

∞ limit, an effective tight-binding model involving only the
jeff = 1

2 degrees of freedom can be obtained by lowest-order
perturbation theory: projection of the t2g bands into the jeff = 1

2
manifold

H
(1)
eff = PHt2g

P, (11)

where P is the projector for the jeff = 1
2 manifold. This

projection yields a 1NN jeff = 1
2 model with

t1NN
xy = t1NN

z = (3tσ + 4tπ + 5tδ)/6;
∣∣v1NN

z

∣∣ = 0. (12)

As discussed in Sec. III A, this effective Hamiltonian is
particle-hole symmetric and can only host a metallic phase
with a line-node Fermi surface. In addition, the model is
manifestly SU(2) invariant despite the presence of SOC.
Lastly, oxygen-mediated hopping does not contribute at this
order. This is because the amplitudes from the two oxygen-
mediated hopping paths cancel exactly under projection into
the jeff = 1

2 manifold when Ir-O-Ir bond angles are 90◦.
Clearly, the above model does not represent the general
structure and the next order correction arising from finite
values of λ must be considered to better describe the band
structure obtained in the original t2g model.

Including the second-order term in perturbation theory, the
effective Hamiltonian can be written as

Heff = H
(1)
eff + H

(2)
eff + O

(
H 3

t2g

(3λ/2)2

)
, (13)

with

H
(2)
eff = (3λ/2)−1 PHt2g

QHt2g
P, (14)
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where Q is the projector for the jeff = 3
2 manifold. In addition

to 1NN hopping generated from H
(1)
eff , the second-order term

H
(2)
eff now generates 2NN hopping amplitudes via virtual

hopping to jeff = 3
2 orbitals at intermediate Ir sites. The

generated 2NN hopping amplitudes take the form of those
considered in Sec. III B, hence, we can relate the Slater-
Koster parameters used in this section with those used in the
generic symmetry-allowed tight-binding model. The relations,
including the contribution from H

(1)
eff , are given by

|vz| = 0,

txy = tz = (3tσ + 4tπ + 5tδ)/6,

t2NN = −(3tσ − 2tπ − tδ)2/(108λ),
(15)

vKM = (tπ − tδ − 2toxy)(3tσ − 3tπ + 2toxy)/(9
√

3λ),

v‖ = (tπ − tδ − 2toxy)(3tσ − 3tδ − 4toxy)/(9
√

6λ).

We note that by assuming an ideal hyperhoneycomb lattice
structure together with truncating the perturbation series at
second order, the 1NN xy and z bonds have the same
scalar-only hopping amplitude. Furthermore, truncating the
perturbation series at second order implies that 2NN hopping
amplitudes are only generated on 2NN bonds with shared Ir
sites. These 2NN bonds, although not related by symmetry,
have related hopping amplitudes because of the assumed ideal
structure and the truncated perturbative series (see Appendix B
for details). Since the higher-order terms in the series fall off
as an inverse power of the SOC coupling, we expect that these
higher-order terms are small in magnitude and hence may be
negligible to the leading order.

By establishing the t2g tight-binding model in the Slater-
Koster approximation, we can perform a loose fit against ab
initio calculations to obtain an estimate of these hopping ampli-
tudes as we show in the next section. Furthermore, by relating
the Slater-Koster parameters with hopping amplitudes used
in the generic tight-binding model, short-ranged electronic
correlation can be included straightforwardly in the effective
jeff = 1

2 model as we exemplify in Sec. VII.

VI. AB INITIO CALCULATIONS ON β-Li2IrO3 IN THE
IDEAL STRUCTURE AND CONNECTION TO THE

TIGHT-BINDING MODEL

Having discussed the details of the tight-binding models, we
now employ approaches for the ideal β-Li2IrO3 structure and
try to capture its characteristic features via the tight-binding
model introduced in the previous section. At the outset, we
note that in the absence of data determining the accurate
lattice structure of β-Li2IrO3, we have assumed that it has ideal
structure and the oxygen octahedra are not distorted. While this
structure may not be an accurate description of the material, it
gives us an idea of the general validity of the approximations
made in the two earlier sections about the jeff = 1

2 nature of the
bands near the Fermi level. Also, we can obtain a qualitative
estimate of the various parameters used in the previous two
tight-binding models. We look for general features that may aid
the determination of the parameter regime of the tight-binding
Hamiltonian which is of interest in the context of materials.

(a)

Γ YT ZΓ X A1Y

eV

0.0

-0.5

-1.0

-1.5

(b)

Γ YT ZΓ X A1Y

0.0

-0.5

-1.0

-1.5

-2.0

(c)

eV

0.2

0.0

-0.2

-0.4

(d)

0.4

0.2

0.0

-0.2

-0.4

-0.6

FIG. 4. (Color online) Electron band structures of ideal β-
Li2IrO3 and tight-binding fit. (a) t2g bands from the DFT calculation.
(b) t2g tight-binding model with the parameter in Eq. (16). (c) Top
eight t2g (jeff = 1

2 ) bands in (a). (d) jeff = 1
2 tight-binding model with

the parameter in Eq. (17). In the above plots, the Fermi level is at
0 eV, the DFT bands are plotted in blue, the tight-binding t2g bands
in green, and the tight-binding jeff = 1

2 bands in red. Each band is
doubly degenerate due to time-reversal and inversion symmetry.

Figure 4(a) shows 12 t2g bands from the DFT calculation
for the ideal β-Li2IrO3 using OPENMX [30] in which the
linear-combination-of-pseudo-atomic-orbital formalism and a
fully relativistic j -dependent pseudopotential in a noncollinear
methodology are adopted. The Perdew-Burke-Ernzerhof gen-
eralized gradient approximation (GGA) functional was used
for the exchange-correlation energy [31], and 300 Ry of energy
cutoff and the 12 × 12 × 12 Monkhorst-Pack grid are used for
the real- and the momentum-space integrations, respectively.
Each of the 12 bands is doubly degenerate due to time-reversal
and inversion symmetries. A remarkable feature of the bands
near the Fermi level is their pronounced jeff = 1

2 character. As
the density of states (DOS) of the band structure shows (Fig. 5),
the upper four bands (�−0.5 eV) have strong jeff = 1

2 orbital
character, while the bottom eight bands (�−0.5 eV) have

 
 jeff = 1/2
jeff = 3/2

-1.5 -1 -0.5 0
eV

FIG. 5. (Color online) Density of states for the DFT band struc-
ture in Fig. 4(a). The density of states is projected into the jeff = 1

2
(red) and jeff = 3

2 (blue) orbital sectors.
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main contributions coming from jeff = 3
2 orbitals. Hereafter,

we call the former jeff = 1
2 bands and the latter jeff = 3

2 bands.
Another notable result is that the ideal β-Li2IrO3 structure is
in a metallic phase in the noninteracting limit. The Fermi level
crosses the jeff = 1

2 bands generating several Fermi pockets
along the lines �-Y , T -Z, X-A1, etc. [see Fig. 4(c)].

The predominant jeff = 1
2 character of the bands near

the Fermi level strongly supports our assumption that the
low-energy electronic degrees of freedom can be adequately
described by jeff = 1

2 orbitals. In turn, this lends credence to
our use of the jeff = 1

2 tight-binding model in the previous sec-
tions when modeling Ir-based hyperhoneycomb compounds.

Next, we fit the t2g model in Eq. (10) to the DFT results
by adjusting the Slater-Koster parameters. Figure 4(b) shows
the resulting electronic bands of the t2g model, which has the
following hopping parameters:

tσ = −0.4574 eV, tπ = 0.6098 eV,
(16)

tδ = −0.0041 eV, toxy = 0.1155 eV.

In our fitting process, we adopted λ = 0.5797 eV from
Ref. [32] and adjusted the other parameters tσ ,tπ ,tδ, and toxy.
The tight-binding model reproduces two overall features found
in the DFT computation: (1) well separated jeff = 1

2 (top four)
and jeff = 3

2 (bottom eight) bands and (2) a semimetallic phase,
albeit with pockets at different positions from those found
in the DFT. However, quantitative details like correct band
curvatures and energy values are not recovered within our
model, indicating that further neighbor hopping amplitudes
are required for a quantitatively better fit. According to our
Wannier function analysis within DFT [33], it is necessary to
include up to fourth-nearest-neighbor hopping amplitudes in
the tight-binding model to recover the quantitative features of
the DFT band structure, thus we should take our tight-binding
fit as a “loose” fit that aims not to replicate exact details, but
to reproduce qualitative features of the DFT results. Among
the hopping amplitudes up to the fourth-nearest neighbors,
the 1NN hopping amplitudes have the largest magnitudes and
determine the overall behavior of the band structure while
further neighbor hopping amplitudes, which have relatively
small magnitudes, are responsible for detailed structures. This
justifies the calculations in the previous section where we have
only taken the 1NN hopping amplitude in the t2g Hamiltonian
to be nonzero.

By mapping the t2g model obtained from the fitting
procedure to the effective jeff = 1

2 model in Eq. (13), we arrive
at the following values for the hopping amplitudes via the
relations given in Eq. (15):

txy,z = 0.1744 eV,

t2NN = −0.1150 eV,
(17)

vKM = −0.1331 eV,

v‖ = −0.0222 eV,

which corresponds to a point in the metallic region of Fig. 3,
with t2

2NN + v2
‖ > 0.52. The band structure of the resulting

jeff = 1
2 model is plotted in Fig. 4(d) for comparison with

the band structures of the t2g model and DFT results.

This concludes our discussions on the electronic structure.
Following, we shall investigate the effect of correlations in
stabilizing magnetic ordering in the intermediate correlation
regime.

VII. MAGNETIC ORDER AT INTERMEDIATE COUPLING

In several iridate compounds where the 5d5 iridium ions are
octahedrally coordinated with oxygen ions, magnetic ordering
often occurs at the iridium sites due to short-ranged electronic
correlations [6]. As correlations are increased, the system
changes from a paramagnetic metal to a magnetically ordered
metal which at higher correlations becomes an insulator. In cer-
tain instances, the magnetic ordering and the metal-insulator
transitions have been observed to occur simultaneously.

Here, we explore this scenario in the intermediate-coupling
regime on the hyperhoneycomb lattice via self-consistent
mean-field theory of the jeff = 1

2 model. Starting with the
2NN tight-binding model outlined in Eq. (13), we include
correlation effects via onsite Hubbard repulsion

U
∑

i

ni↑ni↓ = −2U

3

∑
i

Ji · Ji + U

2

∑
i

ni, (18)

where U > 0 is the Hubbard repulsion strength, niσ is the
number operator at site i with pseudospin σ , ni = ∑

σ niσ ,
and Ji is the jeff = 1

2 pseudospin operator. The local magnetic
moment, when projected into the jeff = 1

2 manifold, is propor-
tional to the local jeff = 1

2 moment, i.e., Mi = −2Ji . Hence,
a Hartree-Fock decoupling of the Ji · Ji term will yield a
mean-field Hamiltonian that can be self-consistently solved for
the magnetic ordering of the jeff = 1

2 moments. In the absence
of compelling experimental motivation to choose particular
hopping amplitudes, we choose a cut which interpolates
between the purely isotropic 1NN model and the tight-bonding
model whose parameters are given by our DFT calculations in
Eq. (17). This is done in the following way: we choose

txy,z = 0.1744 eV,

t2NN = (−0.1150 eV)x,
(19)

vKM = (−0.1331 eV)x,

v‖ = (−0.0222 eV)x

and then vary x between 0 and 1 to interpolate between the
two above limits. With this particular choice of hopping ampli-
tudes, we are able to explore the effects of correlation on both
the STI phase (x � 0.74) and the metallic phase (x � 0.74).

To perform the self-consistent mean-field calculations, we
consider four 3-component order parameters, 〈Ji〉 with i =
1 . . . 4, and assume q = 0 order.2 The self-consistent solution

2We have explicitly checked that the spin model obtained in the
strong-coupling expansion of our Hubbard model always yielded
the same q = 0 magnetic order as our mean-field results within
the parameter regime we considered. Moreover, this magnetic order
remains the ground state for a broad range of parameters in the spin
model as long as the 2NN spin-spin interactions remain moderately
small. This fact gives us reason to believe that q = 0 ansatz in our
mean-field calculation may be a reasonable simplification.
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FIG. 6. (Color online) Phase diagram at finite Hubbard repulsion
U as a function of 2NN hopping strength x (see text for description
of 2NN hopping used). The local magnetic moments of the Néel state
(AF) and the metallic magnetically ordered phase (mAF) point in
the ±(110) direction. The solid line between the strong topological
insulator (STI) and the AF state indicates a second-order transition,
while the dashed line between the metal and the mAF phases indicates
a first-order transition. The transition from the mAF phase to the AF
state is continuous. The x = 0 line describes a purely 1NN model
where the paramagnetic ground state has a line-node Fermi surface,
as indicated by the blue line. The two points (a) and (b) indicate where
the slab configurations were computed in Fig. 7.

is achieved with no constraints on the magnetic configuration
such that all q = 0 ordering can be sampled in principle.

In Fig. 6, we present the finite-U phase diagram as
a function of 2NN hopping amplitudes. Upon increasing
U/txy � 1.4–3.4, the time-reversal-symmetric phases undergo
phase transitions to an antiferromagnetic, Néel ordered phase
with magnetic moments pinned along the +x̂ + ŷ direction
(light green). From the STI (orange), the phase transition
is of second order. On the other hand, starting with the
metallic phase (blue), a first-order transition is observed.
This first-order transition initially brings the system into a
magnetically ordered metallic phase (mAF, dark green), then
upon further increase in U , the system acquires a finite
excitation gap and becomes insulating. This metal-insulator
transition is continuous in the magnetic order parameters. We
also note that at x = 0, the model reduces to a purely 1NN
model and the paramagnetic phase is metallic with a line-node
Fermi surface as outlined in Sec. III A. This phase is indicated
as the vertical blue line at x = 0 running along the U/txy axis.

Although this magnetic order breaks inversion symmetry
(P) of the lattice, it preserves inversion followed by time-
reversal symmetry (P�). Since P(k) commutes with �(k) for
all k in the Brillouin zone of the hyperhoneycomb lattice,
a pseudo-Kramers degeneracy is present at all momenta.
Instead of the usual Kramers degeneracy where � protects
the degeneracy and together with P ensure at least doubly
degenerate bands, these pseudo-Kramers bands are protected
by the combined operation P�.

With P� playing the role of a preserved antiunitary sym-
metry, the magnetically ordered state may harbor nontrivial
topology in the spirit of Refs. [34–37]. However, in the present
case, we find that the magnetic phase has a trivial band structure
and there are no gapless surface states arising from nontrivial
band topology. We show this in Fig. 7, where band-structure
calculations in a slab configuration are presented with 2NN

eV

0.2

0.0

-0.2

-0.4

U < Ucrit

Γ̄X̄ Ȳ
(a)

0.2

0.0

-0.2

-0.4

U Ucrit

Γ̄X̄ Ȳ
(b)

FIG. 7. (Color online) Gapping out the gapless surface states.
For illustration, we present surface states from a slab configuration.
Purple bands are surface states while the shaded regions are the
projected bulk bands. We have set 2NN hopping amplitudes to be
x = 0.5 (see main text for definition and Fig. 6 for reference).
The system undergoes a second-order transition from a strong
topological insulator (STI) to a magnetically ordered phase (AF)
at Ucrit � 2.12txy . In (a), U < Ucrit, the ground state is a STI and a
surface Dirac cone is seen at �̄. In (b), U is slightly above Ucrit, the
ground state is the AF phase, and the surface Dirac cone develops a
finite gap.

hopping amplitudes set to x = 0.5. Here, the a1 direction (see
Fig. 1) has finite spatial extent.3 While in the STI phase, the
surface Dirac cone at the �̄ point can be seen. However, upon
increasing U through the second-order transition, the surface
Dirac cone becomes fully gapped (nearby momentum points
were also checked to assure that the gap was fully developed).

VIII. DISCUSSION AND OUTLOOK

In this work, we have investigated the weak- and
intermediate-coupling regimes of iridium-based compounds
on the hyperhoneycomb lattice. Using a combination of
symmetry arguments and a more microscopic calculation
based on the Slater-Koster approximation, we have determined
the low-energy electronic structure for the jeff = 1

2 orbitals by
explicitly constructing a tight-binding model. Such orbitals
are expected to dominate the low-energy physics of Ir due to
strong SOC. Our DFT calculations for β-Li2IrO3 support this
expectation by showing that the bands near the Fermi level
indeed have a jeff = 1

2 character.
It was shown that the 1NN-only tight-binding model admits

a trivial insulating phase as well as a semimetallic phase with a
line-node Fermi surface. This semimetallic phase becomes
a STI upon gapping out the line node when 2NN hopping
amplitudes are introduced. Ultimately, the tight-binding model
up to 2NN contains both trivial as well as topological band
insulators in addition to a metallic phase.

We study the effects of Hubbard-type electronic cor-
relations on the above band structure, particularly in the
stabilization of magnetic order. Restricting ourselves to q = 0
magnetic orders, we perform Hartree-Fock calculations and

3Similar results from slab calculations with finite spatial extent in
the a2 and a3 have also been obtained, but not shown.
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determine the mean-field phase diagram. Our calculations
admit a direct continuous phase transition between the STI and
the Néel ordered magnetic insulator as we turn on correlations.
The magnetic insulator breaks both time-reversal symmetry
and inversion symmetry independently, but it preserves the
product of the two. Although not realized within the current
parameter regime, this raises a possibility of a concrete
microscopic model on the hyperhoneycomb lattice where
such an antiunitary symmetry (product of time reversal and
inversion) may stabilize a nontrivial topological band structure
for the electrons in the presence of interactions. We also note
that while our calculations have been directly motivated by
the recent discovery of β-Li2IrO3, the results presented here
are not necessarily restricted to this particular material.

It is instructive to consider the range of applicability of our
current work and contrast it with previous approaches. Pre-
vious works on Ir-based compounds on the hyperhoneycomb
lattice studied the Heisenberg-Kitaev spin Hamiltonian, which
may be applicable in the strong-coupling regime [19–21,38].
In these works, the correlation effects of Hund’s coupling is
paramount to the presence of the Kitaev interaction from a
microscopic perspective [1,4,7]. Implicit in the derivation is the
assumption of U > (JH ,λ) � t where JH is Hund’s coupling
and t is the typical hopping amplitude. In contrast, in Sec. VII
of this work, we considered the intermediate-coupling limit
where λ ≈ U ≈ t � JH such that the effects of jeff = 3

2 states
can be treated perturbatively and that Hund’s coupling can be
ignored. In addition, other theoretical approaches have been
explored in other iridate compounds [39–41]. Indeed, these
ideas could stimulate interesting future research directions in
the theoretical study of β-Li2IrO3.

Although the definitive structure of β-Li2IrO3 is presently
not known, the jeff = 1

2 orbitals may still be the lowest-
energy degree of freedom under sufficiently small distortions
and nonoctahedral crystal-field effects [42,43]. If further-
neighbor hopping amplitudes are negligible, the tight-binding
calculations presented in Sec. III will be applicable, although
the parameters in the more microscopic calculations may
be affected. If distortions are small, however, the results of
our microscopic calculations may have captured the essential
qualitative features present in the electronic structure β-
Li2IrO3 and other, yet-to-be-discovered, isostructural iridate
compounds. Furthermore, the magnetic order that may be
present in these compounds may be well described by
our mean-field calculations if the material lies within the
intermediate-coupling regime. In this regard, we believe that
our results serve as a valuable starting point in the description
of these fascinating compounds.
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APPENDIX A: HYPERHONEYCOMB LATTICE

The space group of the hyperhoneycomb lattice is Fddd.
The Ir ions occupy the Wyckoff position 16e, which possesses
a site symmetry of C2. These C2 axes coincide with the z

bonds and can be used to relate x and y bonds. In addition,
the positions of the Ir ions imply that the bond center of the z

bonds is located at the Wyckoff position 8a, which possesses
the site symmetry group D2 with three C2 axes, while the
bond center of the x and y bonds are located at the Wyckoff
position 16c, which are inversion centers of the lattice. By
assigning each Ir site with orbitals that transform like a spinor
(e.g., jeff = 1

2 orbitals), the bond-center symmetry operations
outlined above constrains the 1NN tight-binding model to take
the form outlined in Sec. III A. The 2NN bonds, on the other
hand, are less constrained by symmetry and will be discussed
separately in Appendix B.

APPENDIX B: SECOND-NEAREST NEIGHBORS

In the ideal hyperhoneycomb, there are four symmetry-
inequivalent sets of 2NN bonds of equal bond length. As
mentioned in Sec. III B, these bonds can first be classified
as those that can be connected by traversing through only one
intermediate Ir site (type 1; there are 12 such bonds), and those
that can not (type 2; there are 8 such bonds). Furthermore, type
1 can be split into two sets: bonds of type 1a connect different
sublattices of the same parity (i.e., 1 with 3, 2 with 4; there are
eight of these) while bonds of type 1b connect same sublattices
(i.e., 1 with 1, etc.; there are four of these). Type-2 bonds are
also split into two additional subclasses: bonds of type 2a
connect sublattices of different parity (i.e., 1 with 4, 2 with 3;
there are four of these) while bonds of type 2b connect same
sublattices (i.e., 1 with 1, etc.; there are four of these). These
four types of 2NN bonds are inequivalent in that no symmetry
operation can relate bonds of different types.

The symmetry operations at the bond centers constrain the
terms that can appear in the jeff = 1

2 tight-binding model. For
type 1a, the bond center does not possess any site symmetries,
hence the vector hopping along this bond can have three
independent components. For type 1b, the bond center has
a C2 symmetry, hence we can choose to parametrize the
two independent components of the vector hopping with vKM

and v‖ as outlined in Sec. III B. From symmetry analysis,
type-1a and type-1b bonds are unrelated. However, in the ideal
hyperhoneycomb, the local oxygen and lithium environments
of these two types of bonds are identical (local as defined by
nearest neighbors to the Ir sites of the bond). Treating nonlocal
ions as negligible symmetry-breaking terms, we can use the
mirror operation that relates these two bond environments to
relate the vector hopping of type 1a to that of type 1b. This
simplification was used in parametrizing the 2NN bonds in
Sec. III B and is manifest in Sec. V.

For bonds of type 2a, there exists a C2 symmetry operation
which reduces the vector hopping amplitude to two compo-
nents. For bonds of type 2b, the bond center is an inversion
center and hence only scalar hopping is allowed. Bonds of
type 2 were not included in our model: this is motivated by
our microscopic derivation in Sec. V.
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APPENDIX C: PARTICLE-HOLE SYMMETRY

We consider particle-hole-symmetry transformations of the
following form:

ciσ → c
†
iσ for i ∈ 1,3,

(C1)
ciσ → −c

†
iσ for i ∈ 2,4.

We first consider scalar hopping terms. The 1NN scalar
hopping terms in Eqs. (3) and (4) transform as

tα(c†iσ cjσ + H.c.) → tα(c†iσ cjσ + H.c.), (C2)

where α stands for the x, y, or z bonds. This shows that 1NN
scalar hopping terms are invariant. The 2NN scalar hopping

t2NN(c†iσ cjσ + H.c.) → −t2NN(c†iσ cjσ + H.c.) (C3)

is not invariant. Hence, the t2NN term breaks particle-hole
symmetry.

Vector hopping terms take the form

i(c†i vij · σcj + c
†
j vji · σci) (C4)

with vji = −vij an vij ∈ R. For the above particle-hole
transformation followed by a global U(1) spin rotation,

ci → e−i π
4 σ z

ci, (C5)

we find that the 1NN vector hopping amplitude as well as the
Kane-Mele type of 2NN vector hopping amplitude in Eq. (7)
are invariant under the combined transformation. However, the
second contribution to the 2NN vector hopping given by Eq. (8)
is not. Since the U(1) rotation is global, it does not affect the
invariance of the scalar hopping amplitudes discussed above.

APPENDIX D: HOPPING AMPLITUDES IN
THE t2g MODEL

The hopping amplitudes between 1NN can be broken up
into contributions from the direct overlap of adjacent Ir t2g

orbitals and oxygen-mediated hopping. On the z bond, the
former, as parametrized by Slater-Koster parameters, is given
by

hdirect
z =

⎛
⎜⎝

(tπ + tδ)/2 (tπ − tδ)/2 0

(tπ − tδ)/2 (tπ + tδ)/2 0

0 0 (3tσ + tδ)/4

⎞
⎟⎠,

(D1)

and the latter is given by

hindirect
z =

⎛
⎜⎝

0 −toxy 0

−toxy 0 0

0 0 0

⎞
⎟⎠, (D2)

where the basis used is given by d† = (d†
yz,d

†
xz,d

†
xy). The

Slater-Koster parameters tσ , tπ , and tδ represent σ , π , and δ

hopping amplitudes between adjacent t2g orbitals, respectively.
The oxygen-mediated hopping is given by toxy = |tpdπ |2/
,
where tpdπ is the π hopping between iridium d orbitals and
oxygen p orbitals and 
 is the energy difference between those
two sets of orbitals. In the ideal hyperhoneycomb lattice, the
local environment surrounding the z and x/y bonds are related
by C3 rotations about the (111) direction, hence the hopping
amplitudes on the x/y bonds can be obtained by rotating the
above hopping matrices in the appropriate manner.
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