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Topological domain walls and quantum valley Hall effects in silicene
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Silicene is a two-dimensional honeycomb lattice made of silicon atoms, which is considered to be a new Dirac
fermion system. Based on first-principles calculations, we examine the possibility of the formation of solitonlike
topological domain walls (DWs) in silicene. We show that the DWs between regions of distinct ground states of
the buckled geometry should bind electrons when a uniform electric field is applied in the perpendicular direction
to the sheet. The topological origin of the electron confinement is demonstrated based on numerical calculations
of the valley-specific Hall conductivities, and possible experimental signatures of the quantum valley Hall effects
are discussed using simulated scanning tunneling microscopy images. Our results strongly suggest that silicene
could be an ideal host for the quantum valley Hall effect, thus providing a pathway to the valleytronics in
silicon-based technology.
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I. INTRODUCTION

Recently, silicene, a silicon version of graphene, was
successfully synthesized on metal and semiconductor sub-
strates [1–5]. Sharing many intriguing electronic properties
with graphene such as Dirac conelike low-energy band struc-
tures, silicene has attracted much attention both theoretically
and experimentally [6–9]. Moreover, due to its intrinsic
buckled geometry [10], diverse phenomena unexpected in
graphene have also been suggested. Examples include band
gap engineering by an external electric field [6], the quantum
spin Hall (QSH) effect [11,12] at experimentally accessible
temperature [13], the phase transition from a QSH insulator
to a quantum valley Hall (QVH) insulator [14–17] via an
external electric field [18–20], and still other exotic topological
effects [21–23].

Motivated by the recent synthesis of silicene, here we sug-
gest another interesting topological phenomenon associated
with a QVH insulator. A QVH insulator is a topological phase
characterized by valley-specific Hall conductivities σ

K (K ′)
H and

valley-polarized chiral modes emerging on specific sample
boundaries [24–26] or domain walls (DWs) [27–33]. In this
intriguing topological phase, DWs between regions of different
valley Hall conductivities are of particular interest because
they may seamlessly glue the momentum space belonging
to the same valley, so the DW modes may survive within
the midgap region regardless of the crystallographic details
of the DWs [34]. Also, it is an exciting idea to host robust
conducting channels inside the bulk rather than on edges
because they can serve as one-dimensional (1D) conducting
wires of circuits integrated in 2D insulators [28,30,31]. The
material realization of the topological DWs has been theoreti-
cally suggested in bilayer graphene under an inhomogeneous
electric field [27,30], in graphene nanoribbon gluing boron
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nitride sheets [31], and in an AB-BA graphene bilayer tilt
boundary under a homogeneous electric field [32,33].

In this paper, we examine a new type of topological DWs
based on silicene. We consider the zigzag line interfaces across
which the buckling height switches between the two sublattices
(Fig. 1), and show that they serve as topological DWs asso-
ciated with a QVH insulator under a uniform perpendicular
electric field. Distinct from the previously suggested topolog-
ical DWs, the formation of the DWs suggested in this study
is assisted by a symmetry-breaking process originated from
an intrinsic instability residing in the honeycomb lattice made
of silicon atoms. In this respect, the underlying mechanism
of the DW formation is more similar to that of solitons in
polyacetylene, of which the formation is assisted by the Peierls
instability in the 1D metallic chain [35]. Our results based on
first-principles calculations confirm that electrons are confined
to the DWs when a uniform perpendicular electric field is
applied, forming one-dimensional conducting states along the
DWs in the otherwise insulating material. The topological
origin of the confinement is numerically demonstrated by
the direct calculation of the topological invariant associated
with the valley-specific Hall conductivities. We also present
simulated scanning tunneling microscopy (STM) images to
help guide experimental efforts to identify the topological DWs
and the QVH effects. Our results suggest that, by introducing
the DW in silicene, its electronic and transport properties
may be electrically controlled, and therefore, the scope of
its applications in the future silicon-based technology can be
extended.

II. METHOD

Our first-principles calculations were based on the density-
functional theory (DFT). The electronic structure calculation
and the structure optimization were performed using the SIESTA

package [36] and the VASP code [37], respectively. Exchange
and correlation potentials were employed within the local
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FIG. 1. (Color online) (a) The geometry of the low-buckled silicene. (b) A domain wall (DW) geometry between α and β low-buckled
states. (c) Top view of a supercell geometry with zigzag DWs. A pair of solitonlike and antisolitonlike domain walls (S and S̄) are separated
by 10.3 nm in the supercell. The magnified views of the detailed atomic structure of the S and S̄ regions are also illustrated. (d) Schematic
configuration of the junction geometry under applied electric fields. The arrows indicate the direction of the applied electric field.

density approximation (LDA) as described by Ceperley and
Alder [38]. Periodic sawtooth potentials were introduced to
describe the external electric fields. Berry curvatures were
calculated on 300×300 numerical grids of the first Brillouin
zone (BZ). To circumvent the problems associated with
numerical random phases and slow convergence, we adopted
the prescription of computing the Berry curvatures on the
discretized BZ [39]. Throughout this study we safely ignored
the spin degree of freedom because the effect of spin-orbit
coupling was negligibly small in the present situation [19,20].
The calculated bond length and the buckling distance were
2.26 Å and 0.44 Å, respectively, as presented in Fig. 1(a).

We constructed a supercell geometry composed of two
degenerate buckled geometries [Fig. 1 (a)], and their interfaces
were modeled by zigzag lines across which the heights of
sublattices were interchanged as shown in Fig. 1(b). In order
to fulfill the periodic boundary condition imposed on the
supercell, we introduced a pair of DWs denoted by S (soliton)
and S̄ (antisoliton) in Figs. 1(c) and 1(d). The DWs remained
stable upon the full relaxation maintaining the planar geometry
under the force criterion of 0.01 eV/Å. The existence of
the DWs did not make the junction elbowed or bent during
the relaxation. Our total energy calculations of an elbowed
geometry, presented in Fig. 2, further confirmed that it cost
extra energy to elbow the relaxed planar junction, which should
be responsible for the misalignment of perpendicular (pz)

orbitals in forming π or π∗ bonding, as in the case of
graphene [40]. Another interesting feature of the relaxed
geometry was that the structural modifications by the presence
of the DWs were confined to a narrow (atomic scale) region
near the DWs. As shown in Fig. 1(b), the bond lengths and

FIG. 2. (Color online) Atomic geometry of the elbowed junction
and its total energy curve as a function of the elbow angle θ .
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FIG. 3. (Color online) Total energy of the junction geometry as a
function of the width of the transition region.

the bond angles at the junction (x = 0) were found to be
2.24 Å and 120 ◦, while they were recovered immediately to
the bulk values of 2.25 Å and 116 ◦ only ∼3 Å away from the
DW (|x| > x0). We calculated the formation energies of the
junction geometry with a manually widened transition region,
and the results showed that the formation energy increased
with widening the transition region as presented in Fig. 3.
This again confirmed that the system energetically favored the
atomic transition to be confined in the narrow region.

III. A CONTINUUM MODEL

Before we present our numerical results, we briefly explain
how the buckled geometry of silicene can allow the formation
of the topological DWs based on a continuum model. Unlike
graphene, free-standing silicene in its perfect planar geometry
develops structural instability, which is lifted via so-called
low buckling (LB) [10] with one of two sublattices of the
honeycomb lattice being shifted (0.44 Å) in the perpendicular
direction to the silicene plane. From the LB, the following
are expected. (i) The LB spontaneously breaks the reflection
symmetry with respect to the silicene sheet (σh) developing
nonvanishing buckling order parameter (OP), which is defined
by the vertical displacement between the two sublattice planes.
The symmetry breaking leads to doubly degenerate ground
states of the buckled geometry, one of which transforms to the
other by reflection [see Fig. 1(a)]. Hereafter, we call them as α

and β states, respectively. (ii) Due to the degeneracy, we expect
a structural excitation to exist in the form of one-dimensional
interfaces separating two vacua ground states, which can be
represented by a position-dependent OP μ(x) asymptotically
behaving like a topological soliton (or antisoliton):

lim
x→±∞ μ (x) =

{±μ0 (soliton)
∓μ0 (antisoliton) , (1)

where μ0 (defined to be positive) and −μ0 represent the OPs
of the two ground buckled geometries (see Fig. 4). In the
presence of the electric field Ez, the LB (OP) μ(x) couples to
the field, and gives rise to a position-dependent mass potential
gμ(x)Ez/v

2
F for the Dirac fermions, governed by the effective

FIG. 4. (Color online) Position-dependent buckling order param-
eter μ(x) for soliton (S) and antisoliton (S̄).

model Hamiltonian

H = �vF

(
−i

d

dx
τzσx + qyσy

)
+ gμ(x)Ezσz. (2)

Here vF is the Fermi velocity near the Dirac point, and σ

is the Pauli matrices according to the sublattice index, and
τz = ±1 labels the valley index. q is the lattice momentum
along the parallel direction to the DW and measured from
the valley centers at K and K ′ points. g is introduced to
represent the coupling strength (effective charge) between the
external field and μ(x). As noted in the previous work [28],
the Hamiltonian supports gapless chiral modes confined to the
1D DW (hereafter, we will call them kink states)

ψs,τz
(x,y) ∼ e

iqyy−s
gEz
�vF

∫ x

0 μ(x ′)dx ′
(

1
−τzi

)
, (3)

with linear energy spectrum E = −sτz�vFqy along the DWs.
Here s = ±1 labels a soliton (+1) or an antisoliton (−1). This
continuum model explains how the LB allows the formation
of the topological DWs. Having established the underlying
mechanism, we move to the ab initio results confirming the
above argument.

IV. RESULTS AND DISCUSSION

Figure 5(a) shows the calculated band structure from the
supercell geometry by applying the electric field of 0.5 V/Å.
The bulk continuum is represented by the gray shaded area.
A bulk band gap of ∼0.1 eV is induced and four branches
(ignoring spins) of gapless modes appear in the midgap region.
The real-space representation of these states presented in
Fig. 5(b) shows that they are localized on DWs and propagating
along the parallel direction to the DWs. More specifically, two
branches of different valleys and different group velocities are
localized one DW, as schematically summarized in Fig. 5(c).
Therefore, one branch per spin and per valley emerges on
a single DW. This result shows that backscattering is only
allowed by changing the valley indices, which guarantees the
robustness of valley polarized currents [30] flowing along the
1D metallic DW channels.

Upon varying the strength of the electric field, we find
that the degree of localization of electrons to the DWs can
be controlled; the electrons are more (less) concentrated
on the DWs by increasing (decreasing) the strength of the
perpendicular field, as shown in Fig. 6. For example, the
probability distribution of b (or equally to c) state, presented
in the lower panel of Fig. 6, is more concentrated near the DW
(x = 0) at E = 0.5 V/Å (red curve) than at E = 0.2 V/Å
(blue curve). This is a natural consequence of the gap size,
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FIG. 5. (Color online) (a) Band structure of the supercell geome-
try. The solid gray lines in the inset correspond to bulk states, and the
dotted and dashed lines indicate the kink states at S and S̄, respectively.
The blue and red color schemes are used to represent K and K ′,
respectively. The dots (a–d) correspond to the states at 10 meV above
the Fermi level. (b) Probability distributions of the QVH kink states
at a–d. (c) Schematic illustration of kink states. Electrons at different
valleys propagate in opposite directions on the DWs. S supports an
upward K current and a downward K ′ current and vice versa for S̄.
The senses of the arrows perpendicular to the page represent the sign
of the valley Hall conductivities associated with each valley.

which determines the decay length of the kink states [28],
being proportional to the strength of the applied field [7].
In the case where E = 0 (green curves), the probability
distributions become completely delocalized, exhibiting no
decaying behavior away from the DW. This behavior reflects
the fact that the bulk gap vanishes in the absence of the applied
field. Interestingly, we find small but finite localization of the
wave functions near the DWs even in the absence of the electric
field. As shown in Fig. 7, the probability distribution of b state
(or equally to c) at E = 0 obtained with the DWs (green curve)
is slightly localized at the junctions (at x = 0 and x = 10.3 Å)
compared to the probability distribution obtained without the
DWs (red curve). We attribute this localization behavior to
the modification of the atomic structure near the junctions,
as discussed in the literature [41]. In their study, it has been

FIG. 6. (Color online) Probability distributions of the wave func-
tions at E = 10 meV from the Fermi energy. The top panel
corresponds to a (or equally to d) state, and the bottom panel
corresponds to b (or equally to c) state in Fig. 5(a). By increasing
the applied electric field, states become more concentrated on the
DW.

shown that the coupling of the junction atoms to the rest of
the system can be written as −t(1 + e±ikya), where t = 1.1 eV
is the hopping parameter. The corresponding ky values for b
and c states are (−2/3 + 0.004)π/a and (2/3 − 0.004)π/a,
respectively. At these values, the effective couplings become
slightly intensified, thereby resulting in the localization of the
electrons to the DWs.

Although we only present the results obtained from a
particular atomic configuration of DWs as a representative
example, we have tested different atomic configurations of
DWs, and always found two midgap branches per spin on
a single DW. Depending on the crystallographic details, the
DWs may produce an interaction mixing two valleys, thus
leading to the opening of a subgap in the kink-states band.
We actually have found several configurations inducing the
armchair DWs that open a subgap, and its size has been
typically ∼1 meV. Since the subgap size is much smaller than
the bulk gap (∼0.1 eV), the kink states remain in the bulk
gap region, determining the low-energy transport properties.
In fact, this result has a topological origin; the number of kink

FIG. 7. (Color online) Changes in the probability distribution
near a domain wall. The green and red (overlapped) curves represent
probability distributions obtained with and without the DW, respec-
tively, in the absence of the applied electric field. The blue (lower)
curve represents the changes in the probability distributions due to
the DW.
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FIG. 8. (Color online) Berry curvatures for the α state (left panel)
and the β state (right panel) under the applied electric field of 0.5 V/Å
using the color code scale in units of e2/h.

states emerging on the DW is determined by the topological
invariant, defined to be the difference between the valley Hall
conductivities in the adjacent bulk (i.e., infinitely extended in
two dimensions) domains [29,34,42]. To further discuss this
point, we numerically calculate Berry curvatures and valley
Hall conductivities [14]. The left panel of Fig. 8 shows the
Berry curvature obtained from the α state of the buckled
geometry under the electric field of 0.5 V/Å. Note that Berry
curvatures are highly concentrated on the K and K ′ points
having opposite signs in different valleys. The valley Hall
conductivities are obtained by integrating the Berry curvatures
on the BZ [17]. We note that two valley indices share the same
BZ, and therefore, in general, there exists intrinsic ambiguity in
assigning the portions of the BZ to calculate a specific valley
Hall conductivities [34]. Therefore, in some largely gapped
system, numerical calculations beyond the k · p description
may result in unquantized valley Hall conductivities. Nonethe-
less, in the present system, the valley Hall conductivities
are accurately defined because the Berry curvatures are well
concentrated in the vicinity of valley centers (K and K ′) points.
Our numerical results show that, upon the integration of the

Berry curvature up to ∼0.5 Å
−1

from the K (K ′) point, the
valley Hall conductivity is fully converged to 1/2 (−1/2) in
units of 2e2/h (the factor 2 accounts for spins), resulting in
σ

K (K ′)
H = +(−)1/2. This result confirms the QVH insulating

state introduced in the low-buckled silicene by an applied
electric field. Also, the integration of the Berry curvature over
the whole BZ gives zero, which reconfirms the fact that the
(charge) Hall conductivity should vanish in a time-reversal
invariant band insulator.

The α state of the buckled geometry is obtained by the
C2 rotation of the β state around the z axis, which exchanges
the valley indices between K and K ′. Therefore, the K (K ′)
point of the α state plays the role of the K ′ (K) point
in the β state. This feature is reflected in our numerical
calculations of the Berry curvatures as shown in Fig. 8, i.e.,
σ

K(K ′)
H,α = −σ

K(K ′)
H,β , where σ

K(K ′)
H,α(β) is the valley Hall conductivity

calculated in the α (β) state for a given valley index K (K ′).
The two buckled ground states host different QVH states
under a uniform electric field characterized by different valley
Hall conductivities. The result is consistent with the chiral
asymmetric index theorem [42], which dictates that the number
of the kink states emerging on a single DW is determined
by a topological invariant defined to be the difference of the

valley Hall conductivities (in unit of 2e2/h) between adjacent
domains, σ

K (K ′)
H, α − σ

K (K ′)
H, β . Note that we have obtained the

valley Hall conductivities of ±1/2 for two buckled states,
thus σ

K (K ′)
H ;α − σ

K (K ′)
H ;β = 1(−1) in good agreement with the

number of kink states emerging on a DW per valley. The
sign indicates the propagating direction of the chiral kink
states. This result explains the topological origin of the kink
states, which can protect the number of DW modes regardless
of the crystallographic configuration of the DW [34]. In
practice, however, we may have to pay more attention to
zigzag-line-like DWs than others, because they are more easily
produced according to our formation energy calculations.
We find that the formation energy of the zigzag DWs is
∼25 meV/Å, which is smaller than that of other tested config-
urations such as armchair DWs with the formation energy of
∼39 meV/Å.

Finally, we propose a way of detecting the formation of
DWs as well as the QVH effects in silicene by using STM.
Figures 9(a) and 9(b) simulate the STM images under the
sample bias Vbias of −20 mV, and Figs. 9(c) and 9(d) simulate
Vbias = −1.4 V. Figures 9(a) and 9(c) correspond to the
states localized at S, while Figs. 9(b) and 9(d) correspond
to those at S̄. Bright protrusions in the STM images show
the upper-buckled silicon atoms forming the triangular lattice
in each domain. The DWs can readily be identified as the
lines shifting the locations of protrusions from one sublattice
to the other as shown in the middle of the images. The
simulated images in Figs. 9(c) and 9(d) represent the filled
states in the energy window from the Fermi energy to −1.4 eV,
where extended bulk states make major contributions and thus
exhibit almost no change as the applied electric field varies.
However, the simulated STM images under a sample bias of
−20 mV and applied external field of 0.5 V/Å [Figs. 9(a)
and 9(b)] show a noticeable change by the applied field. These
figures represent the filled kink states residing in the bulk gap.
Comparing with the simulated STM images at Vbias = −1.4 V
[Figs. 9(c) and 9(d)], the brightness of the protrusion is

FIG. 9. (Color online) (a)–(d) Simulated scanning tunneling mi-
croscopy (STM) images for soliton [(a) and (c)] and antisoliton [(b)
and (d)] DWs at different sample biases. The rhombus in (a) represents
the 1 × 1 unit cell. Sample biases are chosen to be −20 mV in (a) and
(b), and −1.4 V in (c) and (d). An external field of 0.5 V/Å is applied
perpendicular to the sheet in (a) and (b). Bright spots correspond to
the upper buckled silicon atoms, and DWs reside along the center of
the images.
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attenuated away from the DWs in Figs. 9(a) and 9(b), which
reflects the kink states being localized on the topological DWs
and exponentially decaying in the asymptotic region [27].
For the small bias of −20 mV, reducing (turning off) the
applied electric field leads to the reduction (disappearance)
of the attenuation, and the simulated images resemble those of
Vbias = −1.4 V. Therefore, STM images under varying electric
fields are signatures of the QVH effect in silicene, and STM
should be useful for identifying the DWs and the associated
kink states, thus providing direct evidence for the QVH effect.

V. SUMMARY

In summary, we have presented a first-principles study
on the QVH effects in silicene. The buckled geometry of
silicene allows the manifestation of the QVH effects through
DWs. Electrons are confined to the DWs by applying a
perpendicular electric field, forming gapless kink states. The
kink states exhibit common features of the QVH chiral
states such as the valley polarization, valley Hall currents
propagating oppositely for different valley indices, and the

absence of backscattering. In particular, we have provided the
first-principles confirmation of the chiral asymmetric index
theorem [34,42], which guarantees the number of kink states
emerging on the DWs. We have also provided simulated STM
images to show that STM experiments can directly observe
the QVH effects in silicene. Our results suggest that the DWs
may serve as robust conducting wires embedded in silicene and
enable the realization of valleytronics [43] as a next-generation
electronics in the silicon-based industry.
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