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We present a novel quantum-classical approach to nonadiabatic dynamics, deduced from the coupled
electronic and nuclear equations in the framework of the exact factorization of the electron-nuclear wave
function. The method is based on the quasiclassical interpretation of the nuclear wave function, whose phase
is related to the classical momentum and whose density is represented in terms of classical trajectories. In
this approximation, electronic decoherence is naturally induced as an effect of the coupling to the nuclei and
correctly reproduces the expected quantum behavior. Moreover, the splitting of the nuclear wave packet is
captured as a consequence of the correct approximation of the time-dependent potential of the theory. This
new approach offers a clear improvement over Ehrenfest-like dynamics. The theoretical derivation presented
in this Letter is supported by numerical results that are compared to quantum mechanical calculations.
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The theoretical description of phenomena such as vision
[1], photosynthesis [2], photovoltaic processes [3], and
proton-transfer and hydrogen storage [4] is among the most
challenging problems in condensed matter physics and
theoretical chemistry. The underlying quantum dynamics
of electrons and nuclei exhibit a nonadiabatic character,
meaning that it cannot be explained by employing the
Born-Oppenheimer (BO) approximation. In this respect,
the major challenge for theory resides in the explicit
treatment of electronic excited-state dynamics coupled to
the nuclear motion. While methods that retain quantum
features of the nuclear dynamics [5] are the most accurate
to address this problem, they cannot be applied to systems
with hundreds, or even thousands, of atoms. Therefore, a
treatment of nuclear dynamics in terms of (semi)classical
trajectories [5–9] represents the most promising and
numerically feasible approach for actual calculations.
Despite the great effort that has been devoted over the
years to the development of such methods, actual appli-
cations are still limited [10]. Well-known issues are con-
nected to the lack of, or incorrect account for, decoherence
and to the inability of reproducing the spatial splitting of a
nuclear wave packet, as in Ehrenfest-like dynamics. In the
study of electronic nonadiabatic processes, these problems
can result in wrong predictions for quantum populations
and in unphysical outcomes for the nuclear dynamics.
We have recently proposed a new formalism that can be

employed to overcome the above issues, the so-called exact
factorization of the electron-nuclear wave function [11].
In this framework, the full wave function is written as
the product of a nuclear wave function and an electronic
factor with a parametric dependence on the nuclear con-
figuration. Coupled equations drive the dynamics of the two

components of the wave function. In particular, a time-
dependent Schrödinger equation (TDSE) describes the
evolution of the nuclear wave function where the effect
of the electrons, beyond BO, is accounted for in a single,
time-dependent, potential. Compared to a formulation in
terms of multiple static adiabatic (or BO) potential energy
surfaces (PESs), the advantage of this formulation is evident:
when the classical approximation is introduced, the force
driving the nuclear evolution can be uniquely determined
from the gradient of this time-dependent potential [12].
In previous work, we have (i) analyzed the features of the

time-dependent potential [13] in the context of nonadiabatic
proton-coupled electron transfer, in order to pinpoint the
properties that need to be accounted for when introducing
approximations, (ii) determined the suitability of the classical
and quasiclassical treatment [14] of nuclear dynamics, in a
situationwhere the electronic effect can be taken into account
exactly, and (iii) derived an independent-trajectory (IT)
mixed quantum-classical (MQC) algorithm [7,8] to solve
the coupled electronic and nuclear equations (from the
factorization) in a fully approximate way. In particular, the
IT-MQC scheme has been obtained as the lowest-order
approximation, in an expansion in powers of ℏ of the nuclear
wave function in the complex-phase representation. Further
investigation [15] has shown, however, that corrections are
required if the nuclei exhibit a quantum behavior related
to a nonadiabatic event, e.g., the splitting of a nuclear wave
packet after the passage through an avoided crossing.
The aim of this Letter is to go beyond the

IT-MQC algorithm of Refs. [7,8]. We have derived a
coupled-trajectory (CT) MQC algorithm able to reproduce
the features of the time-dependent potential, by evolving an
ensemble of classical trajectories to mimic the quantum
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evolution of the nuclei. Electronic populations, decoherence,
and spatial splitting of the nuclear wave packet are correctly
reproduced when the new scheme is employed, as will be
demonstrated below.
The exact factorization approach consists in writing the

solutionΨðr;R; tÞ of the TDSE ĤΨ ¼ iℏ∂tΨ, as the single
product Ψðr;R; tÞ ¼ ΦRðr; tÞχðR; tÞ, where ΦRðr; tÞ is an
electronic factor parametrically depending on the nuclear
positions and χðR; tÞ is a nuclear wave function. Here,

Ĥ ¼ T̂n þ ĤBO is the Hamiltonian describing the system
of interacting electrons and nuclei, with T̂n the nuclear
kinetic energy and ĤBO the BO Hamiltonian containing all
interactions among the particles and the electronic kinetic
energy. The positions of Ne electrons and Nn nuclei are
represented by the symbols r and R, respectively. The
product form of Ψ is unique, up to within an ðR; tÞ-
dependent gaugelike transformation, if the partial normali-
zation condition

R
drjΦRðr; tÞj2 ¼ 1∀R; t is imposed. The

evolution of the two components of the full wave function
is governed by an electronic equation

fĤBO þ Ûen½ΦR; χ� − ϵðR; tÞgΦR ¼ iℏ∂tΦR ð1Þ
and a nuclear equation

�XNn

ν¼1

½−iℏ∇ν þAνðR; tÞ�2
2Mν

þ ϵðR; tÞ
�

χ ¼ iℏ∂tχ; ð2Þ

which are exactly equivalent to the full TDSE. The
electron-nuclear coupling operator

Ûen½ΦR; χ� ¼
XNn

ν¼1

½−iℏ∇ν −AνðR; tÞ�2
2Mν

þ 1

Mν

�
−iℏ∇νχ

χ
þAνðR; tÞ

�

× ½−iℏ∇ν −AνðR; tÞ� ð3Þ
represents the effect of the nuclei on electronic dynamics;
in turn, the time-dependent vector potential

AνðR; tÞ ¼ hΦRðtÞj − iℏ∇νΦRðtÞir ð4Þ

and time-dependent PES (TDPES)

ϵðR; tÞ ¼ hΦRðtÞjĤBO þ Ûen − iℏ∂tjΦRðtÞir ð5Þ
account for the electronic backreaction on the nuclei in a
Schrödinger-like equation. These potentials are uniquely
determined [11] up to within a gauge transformation.
The CT-MQC scheme adopts a description of nuclear

dynamics in terms of classical trajectories, RðIÞðtÞ; thus,
all quantities depending on R; t will become functions of

RðIÞðtÞ; t. Nuclear dynamics will be sampled by using
trajectories, meaning that we track the evolution of a nuclear
wave packet by looking at how the trajectories evolve in

time. Information about the nuclear space R is available
only at the instantaneous positions along the classical paths.
It follows that we will not be able to calculate partial time
derivatives, but only total time derivatives, by using the

chain rule d=dt ¼ ∂t þ
P

νV
ðIÞ
ν ·∇ν, with VðIÞ

ν ¼ _RðIÞ
ν ðtÞ

the nuclear velocity. Henceforth, the superscript ðIÞ will

be used to indicate a spatial dependence, e.g., AðIÞ
ν ðtÞ ¼

Aν½RðIÞðtÞ; t�.
The main steps in the derivation of the new CT-MQC

scheme are the following: (a) We approximate the TDPES,
to avoid expensive calculations of second-order derivatives
of the electronic wave function with respect to the nuclear
coordinates; (b) we fix the gauge freedom; (c) we introduce
a quasiclassical interpretation of the nuclear wave function,
whose phase is connected to the classical momentum and
whose modulus is reconstructed in terms of Gaussian wave
packets; (d) we expand the electronic wave function
on the adiabatic basis (Born-Huang expansion), ΦðIÞðtÞ ¼
P

ljCðIÞ
l ðtÞj exp½ði=ℏÞγðIÞl ðtÞ�φðIÞ

l ; hence, a set of partial
differential equations for the coefficients of the expansion
will be coupled to the nuclear equation. Also the full wave
function can be expanded on the adiabatic basis, with

coefficients FlðR; tÞ, for the exact expression, or FðIÞ
l ðtÞ,

for the quantum-classical case, and will be referred to as
BO-projected wave packets.
(a) In the expression of the TDPES, we neglect the

contribution of hΦRðtÞjÛenjΦRðtÞir. Notice that the expect-
ation value on ΦR of the second and third line of Eq. (3) is

zero by construction; thus, the neglected term in the
expression of the TDPES contains the second-order var-
iations of the electronic state with respect to the nuclear
coordinates, which is small [16–18] compared to the first
order. Therefore, the TDPES is approximated as the
sum of the two remaining terms in Eq. (5), ϵðR; tÞ≃
ϵ0ðR; tÞ þ ϵTDðR; tÞ, and Eqs. (1) and (2) become

iℏ _ΦðIÞ ¼ ĤBOΦðIÞ −
XNn

ν¼1

PðIÞ
ν

Mν
· ðAðIÞ

ν þ iℏ∇νÞΦðIÞ ð6Þ

and

FðIÞ
ν ¼ −hΦðIÞjð∇νĤBOÞjΦðIÞir

þ
XNn

ν0¼1

2iPðIÞ
ν0

ℏMν0
ðAðIÞ

ν0 A
ðIÞ
ν − ℏ2ℜh∇ν0ΦðIÞj∇νΦðIÞirÞ;

ð7Þ
respectively, where the symbol _ΦðIÞ is used to indicate the

full time derivative of the electronic wave function andPðIÞ
ν

will be specified below. The equations have been cast in
such a way that the first terms on the right-hand side are
exactly the same as in the Ehrenfest scheme [19]. The
additional terms are corrections, whose effect will be now
investigated.
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(b) In deriving these expressions for the evolution of the
electronic wave function, Eq. (6), and for the classical
nuclear force, Eq. (7), the gauge freedom has been fixed by

imposing ϵðIÞ0 ðtÞ þ ϵðIÞTDðtÞ þ
P

νV
ðIÞ
ν ·AðIÞ

ν ðtÞ ¼ 0.
(c) The corrections beyond Ehrenfest in Eqs. (6) and (7)

contain a termPðIÞ
ν ðtÞ ¼ −iℏ∇νjχðIÞðtÞj=jχðIÞðtÞj, which we

will refer to as quantum momentum. The reason for this
choice lies in the following expression:

−iℏ∇νχðR; tÞ
χðR; tÞ þAνðR; tÞ≃ PðIÞ

ν ðtÞ þPðIÞ
ν ðtÞ ð8Þ

for the term in Eq. (3) that explicitly depends on the nuclear
wave function. Such a term has to be approximated when a
trajectory-based treatment is adopted. In fact, Eq. (8) has
been obtained by writing the nuclear wave function in polar
form, χ ¼ jχjeiS=ℏ, and then identifying (quasiclassically)
∇νSþAν ¼ Pν, with Pν the classical nuclear momentum
and _Pν ¼ Fν from Eq. (7).
(d) If compared to the Ehrenfest scheme, the implemen-

tation of the CT-MQC algorithm based on Eqs. (6) and (7)
requires only two additional steps: the calculation of

(i) ∇νΦðIÞ and (ii) PðIÞ
ν . We employ the Born-Huang

expansion of ΦðIÞ, in order to express term (i) by using
the derivatives of the expansion coefficients, indicated

by the symbols CðIÞ
l ðtÞ, and the nonadiabatic coupling

vectors. The approximation ∇νC
ðIÞ
l ≃ ði=ℏÞ∇νγ

ðIÞ
l CðIÞ

l used

here, with γðIÞl ðtÞ the phase of CðIÞ
l ðtÞ, is consistent with

previous analysis reported inRefs. [13,14].Moreover, based
on quasiclassical considerations described in detail in
Supplemental Material [20], we further approximate

∇νγ
ðIÞ
l ðtÞ≃ −

R
t dτ∇νϵ

ðlÞ;ðIÞ
BO . Term (ii) is calculated by

assuming that the nuclear density is a combination of
Gaussian-shaped wave packets, each corresponding to a
given adiabatic state. Notice that this approximation is not
used in general in the algorithm but only to estimate the
quantum momentum. For a two-state model, PðIÞ

ν becomes

[15] a linear function in the region where ρðIÞl ðtÞ ¼
jCðIÞ

l ðtÞj2 ≠ 0; 1, while it is set to zero elsewhere (see
Supplemental Material [20] and the discussion below).
The generalization of this approximation to multiple states
is straightforward and will be presented elsewhere [22]. The
parameters of such a linear function are the slope and the y
intercept, where the former is determined analytically by
usingGaussian-shaped nuclearwave packets and the latter is
obtained by enforcing (the reasonably physical condition)
that no population exchange occurs when the nonadiabatic
coupling vectors are zero. Information about the positions of
all trajectories at a given time is required when evaluating
these two parameters, thus resulting in a procedure beyond
the IT-MQC approach: the classical trajectories cannot be
evolved independently from each other; they are coupled.
The major advantage of the CT-MQC scheme deve-

loped here is that this procedure naturally incorporates

decoherence effects. In the following, we shall discuss
this feature in detail. After the nuclear wave packet has left
a region of strong nonadiabatic coupling, the population

ρðIÞl ðtÞ ¼ jCðIÞ
l ðtÞj2 of the lth BO state changes in time as

_ρðIÞl ¼ −
XNn

ν¼1

2iPðIÞ
ν

ℏMν
· ðAðIÞ

ν −∇νγ
ðIÞ
l ÞρðIÞl : ð9Þ

In this region, the expression of the vector potential reduces

toAðIÞ
ν ðtÞ ¼ P

lρ
ðIÞ
l ðtÞ∇νγ

ðIÞ
l ðtÞ, since the nonadiabatic cou-

pling vectors are negligible. In Eq. (9), we observe that, once

ρðIÞl ðtÞ has approached thevalues 0 or 1, the term on the right-
hand side becomes zero; thus, the electronic population
remains constant (to 0 or 1) ∀l. This is a clear indication of
decoherence, since the (squaredmodulus of the) off-diagonal
elements of the electronic density matrix, often used as a
measure of electronic coherence, become zero. Therefore,
the correction terms beyond Ehrenfest in Eqs. (6) and (7),
proportional to the quantum momentum, will be referred to
as decoherence terms. Obtaining this feature is a clear impro-
vement over the Ehrenfest approach and, likewise, over the
IT-MQC approach [7,8] deduced from the exact factoriza-
tion. Decoherence naturally appears by including dominant
corrections in the expression of the nuclear wave function,
leading to the appearance of the quantum momentum.
Numerical results obtained by implementing the above-

described method are shown below in comparison to exact
calculations. We discuss the performance of the CT-MQC
algorithm in comparison to Ehrenfest dynamics for a two-
state problem [23] involving the passage of the nuclear
wave packet through a single avoided crossing, case (1),
and in comparison to trajectory surface hopping (TSH) for
a two-state problem involving the reflection of the nuclear
wave packet from a potential barrier and its consequent
spatial splitting, case (2), commonly known as the Tully-3
model [9]. The computational details for these two prob-
lems are given in Supplemental Material [20].
The TDPES for model case (1) is shown in Fig. 1 (upper

panels). It develops steps and the nuclear wave packet
correctly splits at the avoided crossing (Fig. 1, lower panels).
It is worth noting that Ehrenfest dynamics completelymisses
the splitting, as we have shown in Ref. [8]. Furthermore,
despite the fact that Ehrenfest dynamics properly reproduces
the populations of the electronic states, as shown in Fig. 3
(upper left panel), it does not capture decoherence. On the
contrary, the CT-MQC procedure slightly underestimates the
nonadiabatic population exchange but correctly reproduces
decoherence (Fig. 3, lower left panel).
In Fig. 3, we have used the quantity N−1

traj

P
Iρ

ðIÞ
1 ðtÞρðIÞ2 ðtÞ

as a measure of decoherence, whose quantum equivalent isR
dRρ1ðR; tÞρ2ðR; tÞjχðR; tÞj2. Here, the nuclear density

has been replaced by its “classical” approximation,
i.e., jχðR; tÞj2 ≃ N−1

traj

P
Iδ½R −RðIÞðtÞ�.

We show in Fig. 2 (lower panels) that the CT-MQC
algorithm reproduces the splitting of the nuclear wave
packet due to the reflection from the barrier. In fact, the
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TDPES develops the well-studied [13] steps (Fig. 2, upper
panels) that bridge piecewise adiabatic shapes and allow
trajectories in different regions of space to feel different
forces. This feature is the strength of a procedure based on
the exact factorization: a single time-dependent potential
generating very different forces in different regions of space.
It is known [9] that TSH as well is able to capture the
reflection event for a low initial momentum of the nuclear
wave packet but suffers from overcoherence [10,24]. In fact,
as shown in Fig. 3, TSH completely misses decoherence,

whereas the CT-MQC scheme not only reproduces the
populations of the electronic states as functions of time
(Fig. 3, upper right panel) but can also capture electronic
decoherence (Fig. 3, lower right panel). The comparison
between exact and CT-MQC results is overall remarkable
and a clear step forward in comparison to other methods.
In this Letter, we have proposed aCT-MQC scheme based

on the exact factorization formalism and tested it on a typical
example of an electronic nonadiabatic process. The resulting
equations give additional terms compared to Ehrenfest
dynamics, that appear to be responsible for decoherence.
The comparison of the CT-MQC scheme with full quantum
mechanical results shows that we can correctly predict
both electronic and nuclear properties: population dynam-
ics, nuclear wave packet splitting, and decoherence.
Nonadiabatic transitions are induced by the classical nuclear
momentum, the zeroth order term of the ℏ expansion of the
nuclear wave function, and decoherence is the effect of the
dominant corrections to the momentum. In addition, we
have proven that, as discussed in our previous work [13,14],
being able to catch the main features of the time-dependent
potential in an approximate scheme results in the correct
description of the nuclear dynamics. The major advantages
of ourCT-MQCalgorithmover commonly usedmethods are
(i) the working equations are conceptually and computa-
tionally as simple as Ehrenfest equations, and (ii) a small
number of trajectories is required, because only initial
conditions are to be sampled (no stochastic element is
introduced). Working in the framework of the exact fac-
torization allows us to systematically improve previous
approximations, as we have shown in this Letter in com-
parison to the IT-MQC of Refs. [7,8]. Along similar lines,
future work will focus on including quantum nuclear
effects, such as interference, adopting a semiclassical
representation of nuclear dynamics.

Partial support from theDeutscheForschungsgemeinschaft
(SFB 762) and from the European Commission (FP7-
NMP-CRONOS) is gratefully acknowledged.
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