
 
 

 

Attribution-NonCommercial-NoDerivs 2.0 KOREA 

You are free to : 

 Share — copy and redistribute the material in any medium or format  

Under the follwing terms : 

 

Attribution — You must give appropriate credit, provide a link to the license, and 

indicate if changes were made. You may do so in any reasonable manner, but 

not in any way that suggests the licensor endorses you or your use. 

 

NonCommercial — You may not use the material for commercial purposes. 

 

NoDerivatives — If you remix, transform, or build upon the material, you may 

not distribute the modified material. 

You do not have to comply with the license for elements of the material in the public domain or where your use 

is permitted by an applicable exception or limitation. 

This is a human-readable summary of (and not a substitute for) the license.   

Disclaimer  

 

  

 

 

 

 

  

http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0
http://creativecommons.org/licenses/by-nc-nd/2.0/kr


Numerical Methods for Hyperbolic Partial

Differential Equations

Nguyen Thien Binh

Department of Mathematical Sciences

Graduate School of UNIST



Numerical Methods for Hyperbolic Partial Differential

Equations

A dissertation

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Nguyen Thien Binh

figures/advisor_sign.eps


Numerical Methods for Hyperbolic Partial Differential

Equations

Nguyen Thien Binh

This certifies that the dissertation of Nguyen Thien Binh is approved.

06.10.2015

figures/committee_sign.eps


I dedicate this dissertation to my parents



Abstract

In this dissertation, new numerical methods are proposed for different types of hy-

perbolic partial differential equations (PDEs). The objectives of these developments

aim for the improvements in accuracy, robustness, efficiency, and reduction of the

computational cost.

The dissertation consists of two parts. The first half discusses shock-capturing

methods for nonlinear hyperbolic conservation laws, and proposes a new adaptive

weighted essentially non-oscillatory WENO-θ scheme in the context of finite differ-

ence. Depending on the smoothness of the large stencils used in the reconstruction

of the numerical flux, a parameter θ is set adaptively to switch the scheme between a

5th-order upwind or 6th-order central discretization. A new indicator τ θ depending

on parameter θ measures the smoothness of the large stencils in order to choose a

smoother one for the reconstruction procedure. τ θ is devised based on the possible

highest-order variations of the reconstructing polynomials in an L2 sense. In addi-

tion, a new set of smoothness indicators β̃k’s of the sub-stencils is introduced. These

are constructed in a central sense with respect to the Taylor expansions around point

xj . Numerical results show that the new scheme combines good properties of both

5th-order upwind and 6th-order central schemes. In particular, the new scheme

captures discontinuities and resolves small-scaled structures much better than other

5th-order schemes; overcomes the loss of resolution near some critical regions; and is

able to maintain symmetry which are drawbacks detected in other 6th-order central

WENO schemes.

The second part extends the scope to hyperbolic PDEs with uncertainty, and semi-

analytical methods using singular perturbation analysis for dispersive PDEs. For

the former, a hybrid operator splitting method is developed for computation of the

two-dimensional transverse magnetic Maxwell equations in media with multiple ran-

dom interfaces. By projecting the solutions into random space using the Polynomial

Chaos (PC) expansions, the deterministic and random parts of the solution are

solved separately. The deterministic parts are then numerically approximated by

the FDTD method with domain decomposition implemented on a staggered grid.

Statistic quantities are obtained by the Monte Carlo sampling in the post-processing

stage. Parallel computing is proposed for which the computational cost grows lin-

early with the number of random interfaces.



The last section deals with spectral methods for dispersive PDEs. The Korteweg-

de Vries (KdV) equation is chosen as a prototype. By Fourier series, the PDE is

transformed into a system of ODEs which is stiff, that is, there are rapid oscillatory

modes for large wavenumbers. A new semi-analytical method is proposed to tackle

the difficulty. The new method is based on the classical integrating factor (IF) and

exponential time differencing (ETD) schemes. The idea is to approximate analyti-

cally the stiff parts by the so-called correctors and numerically the non-stiff parts by

the IF and ETD methods. It turns out that rapid oscillations are well absorbed by

our corrector method, yielding better accuracy in the numerical results. Due to the

nonlinearity, all Fourier modes interact with each other, causing the computation

of the correctors to be very costly. In order to overcome this, the correctors are

recursively constructed to accurately capture the stiffness of the mode interactions.
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1

Introduction

Hyperbolic partial differential equations are the governing equations of a wide range of problems

which involve wave propagation or convective processes. These play important roles in many

disciplines of engineering and science. Some of the most popular hyperbolic equations can

be named, for example, the Euler equations in gas dynamics, conservation laws which have

many applications in fluid dynamics, meteorology, astrophysics, or the magnetohydrodynamic

(MHD) equations which take both electromagnetism and fluid dynamics into consideration.

It is also worthy to mention the Maxwell equations, which are the fundamental equations of

electrodynamics, to name but a few.

Despite the importance and various applications of hyperbolic equations, difficulties may

arise as one seeks for their exact solutions, especially for the nonlinear problems. We take con-

servation laws for an instance. It is well-known that for these type of equations discontinuities,

e.g., shocks or contacts, may develop in the solutions in time due to the collision of the charac-

teristics when the solutions evolve in time. Hence the solutions break down in a classical sense

since derivatives cannot be defined at these discontinuities. To remedy this, one can search for

the solutions in a weaker sense, i.e., the integral form. But this approach may lead to other

issues, e.g. uniqueness. In spite of all these difficulties, fundamental understandings on the

behaviors of the solutions of hyperbolic problems have been established. This sheds light on

an alternative approach: to approximate the solutions numerically. With leaping developments

in computer sciences, this computational approach flourishes and is becoming a major tool

in solving hyperbolic problems. More and more numerical methods have been developed and

successfully implemented in real applications.

In terms of computational perspective, there are always questions of how one develops

numerical schemes which are more accurate, stable, yet simpler in implementation. Besides,

computational cost is also under a great deal of consideration. These questions are the main

purpose of my research, which is reflected in this thesis.
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The objectives of this thesis are to propose new numerical methods for some important

partial differential equations which are of hyperbolic type, with the emphasis on the improve-

ments to the accuracy, robustness, and the reduction of computational cost. The scope of the

thesis is limited to the following particular problems: shock-capturing numerical schemes for

nonlinear hyperbolic conservation laws in which a new 6th-order WENO-θ scheme is developed,

numerical investigation of the evolution of waves in time for the 2D transverse Maxwell equa-

tions in random media resulting from the randomness in the parameters of the equations, and

semi-analytical methods for stiff problems with an application to the dispersive Korteweg de

Vries (KdV) equation by spectral methods.

The thesis consists of two parts. The first half discusses shock-capturing methods for con-

servation laws. For these problems, shocks may occur in the solutions when they evolve in

time due to the facilitation of weak solutions. A good numerical scheme in this case must be

able to capture sharply discontinuities or regions with high gradients in the solutions, yet pre-

vents spurious oscillations from happening. Furthermore, since weak solutions are not unique,

the numerical approximations must converge to the solutions which are physically meaningful.

Shock-capturing methods are of this type. The term shock-capturing implies that these meth-

ods do not require the information on the exact locations or structures of the shocks in resolving

the shocks, hence they are feasible for high-dimensional problems or the ones with complicated

domains or structures. This first part is discussed in three chapters. In Chapter 2, we briefly

review important properties of conservation laws which are often served as the analyzing tools

in numerical analysis. We then review the literature on shock-capturing schemes, mainly on the

scheme methodologies. The focus in this part is presented in Chapter 3 where WENO schemes

are discussed. Here, we propose a new WENO-θ scheme which improves the accuracy order

to sixth in smooth regions, using the same reconstruction stencils as those of other 5th-order

upwind WENO schemes, e.g., WENO-JS or WENO-Z for a general case. We also show that

the new scheme gives considerably more accurate and better resolution than other comparing

6th-order WENO methods. In Chapter 4, a variety of numerical tests are simulated to illustrate

for the outperformance of the new scheme.

In the second part of the thesis, we extend the scope to discuss numerical schemes for other

kinds of hyperbolic partial differential equations. In particular, the stochastic 2D Maxwell

equations in electromagnetism and the KdV equation are approximated using our new pro-

posed methods. Although categorized as hyperbolic type, these equations are different from

conservation laws in the first part in terms of properties and applications, thus require different

numerical techniques. The Maxwell equations are of 2nd-order in both space and time with the

occurrence of uncertainties in the parameters; whereas for the KdV equation, there occurs a

dispersive term in terms of a spatial derivative of degree three, which introduces a system of

complex ODEs when spectral method is applied, in which the waves do not decay but oscil-

late rapidly as the wavenumber is large. For these problems, we will introduce new numerical
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schemes which reduce the computational costs as well as considerately increase the accuracy of

the numerical solutions.

In Chapter 5, we study the cumulative distribution functions (CDFs) of the solutions of the

2D transverse Maxwell equations with uncertainties resulting from the presence of fluctuating

multiple random interfaces. The CDFs evolve in time due to the randomness in the interfaces of

the media. To handle the stochastic part, we represent the solutions in terms of polynomial chaos

(PC) expansions and seek for the approximations of the PC modes, which are deterministic.

For this, an FDTD scheme is implemented on a staggered grid with domain decomposition.

The statistical quantities are then obtained in a post-processing stage using the Monte Carlo

method. We suggest a new technique in computing the PC modes, which much reduces the

computational cost from exponentially to linearly with respect to the dimensionality, i.e., the

number of random parameters.

Chapter 6 deals with stiff problems, in particular, the dispersive KdV equation. By spectral

methods, we can transform the PDE into a system of ODEs in which the unknowns are the

Fourier coefficients. Unfortunately, this system is usually stiff due to the wide range of the

wavenumbers. By singular perturbation analysis, we can derive the so-called correctors which

are analytical approximations of the stiff parts in the solutions. Incorporating these correctors

into the numerical methods for the non-stiff parts, we can obtain the approximations which

are much more accurate than those obtained from conventional methods. Since a PDE can be

transformed into a system of ODEs by spectral methods, we first discuss the ODE cases for

the setting up of the numerical schemes and techniques. The KdV equation is then treated by

spectral methods. The main issue for the latter stage is the interaction of all Fourier modes due

to the nonlinear convective term, which needs the incorporation of all modes in computing the

correctors, thus is very expensive. We handle this by proposing a cut-off approximating method

in a recursive manner.

Conclusion and discussions on relevant future works are given in Chapter 7.
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Part I

Shock-capturing Methods for

Hyperbolic Conservation Laws

4



2

Overview of Theory and Numerical

Methods for Nonlinear Conservation

Laws

In this chapter, we briefly discuss theoretical aspects and numerical approaches for hyperbolic

nonlinear conservation laws. We first have a review on important properties in the behavior

of weak solutions. For complete discussions, we refer to good textbooks and lectures notes on

conservation laws, for example, [127], [91], [11], [137], [96], to name but a few. Based on this

analytic ground, we proceed to the numerical approaches. Here, the main concepts including

conservative methods, convergence, stability in the sense of total variation, and the discrete

entropy condition will be discussed. Finally, we present different numerical schemes in relation

with the above mentioned concepts and briefly justify them. We organize the schemes following

the flow of improvement in terms of accuracy and resolution by further relaxing the condition

of the TV stability criterion, which plays roles as a mechanism in suppressing oscillations near

discontinuities in the numerical approximations.

For the purpose of coherence, we mainly state results with a limitation of proofs, except for

important ones. Instead, we will cite where interested readers can find these proofs. In addition,

for simplicity, we mostly deal with the scalar case only when discussing the numerical schemes.

In fact, this is the common approach for developing a numerical scheme for conservation laws.

One first goes with the scalar case, and proceeds to check if the scheme works well in case of

systems.
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2.1 Theory of Nonlinear Hyperbolic Conservation Laws

2.1 Theory of Nonlinear Hyperbolic Conservation Laws

Consider the following conservation law in 1D

{
ut + f(u)x = 0, −∞ < x <∞, t > 0,

u(x, 0) = u0(x),
(2.1.1)

where u(x, t) is some conserved quantity, f(u) is called the flux function. Hereafter, we consider

the case that f is convex, i.e., f ′′(u) ≥ 0. We also assume that the initial condition u0(x) ∈
(L∞ ∩ L1)((−∞,∞) × (0,∞)) and has bounded total variation. The latter concept will be

defined elsewhere below.

Eq. (2.1.1) can be written in a non-conservative form

{
ut + f ′(u)ux = 0,

u(x, 0) = u0(x).
(2.1.2)

The differential form (2.1.1) is equivalent to the following integral form. Let [xj− 1
2

, xj+ 1
2

] be

a control volume central at xj with size ∆x = xj+ 1
2

− xj− 1
2

, and tn+1 > tn ≥ 0, we have that

d

dt

(
1

∆x

∫ x
j+1

2

x
j− 1

2

u(x, t)dx

)
= −

f(u(xj+ 1

2

, t))− f(u(xj− 1

2

, t))

∆x
. (2.1.3)

Integrating Eq. (2.1.3) with respect to time from tn to tn+1, and multiplying with
1

∆t
where

∆t = tn+1 − tn, we obtain that

1

∆t

[
1

∆x

∫ x
j+1

2

x
j− 1

2

u(x, tn+1)dx− 1

∆x

∫ x
j+1

2

x
j− 1

2

u(x, tn)dx

]
=

− 1

∆x

[
1

∆t

∫ tn+1

tn

f(u(xj+ 1
2

, t))dt− 1

∆t

∫ tn+1

tn

f(u(xj− 1
2

, t))dt

]
,

(2.1.4)

which states that the change in the total u over the control volume in time is equal to the

difference of the incoming and outcoming of the flux through the interfaces xj± 1

2

over the

time period. These forms are the fundamental equations for finite volume methods, which are

discussed in the below sections.

2.1.1 Characteristics Method

Supposing that there is a time t∗ > 0 such that u is a solution of Eq. (2.1.1) in a classical sense,

i.e., u satisfies (2.1.1) pointwise, for all t ∈ (0, t∗). We want to find a family of curves along
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2.1 Theory of Nonlinear Hyperbolic Conservation Laws

which the solution is conserved, that is,

{
Υ : x = x(s)

∣∣∣∣
du(x(s), s)

ds
= 0

}
. (2.1.5)

For such curves exist, they are called characteristics of u. Since u is classical for t ∈ (0, t∗),

choosing s ≡ t we have that

du(x(t), t)

dt
= ut + x′(t)ux = ut + f ′(u)ux = 0, (2.1.6)

thus the characteristic curves are

{
x′(t) = f ′(u),

x(0) = x0,
(2.1.7)

which gives

x(t) = x0 + f ′(u)t. (2.1.8)

Hence, the solution, if exists, has the following form

u(x, t) = u0(x− f ′(u)t). (2.1.9)

The classical solution implies that its characteristics do not collide, for t ∈ (0, t∗). The

threshold time t∗ at which collision occurs can be determined by applying the Implicit function

theorem (see, e.g., [26]) to Eq. (2.1.9).

Unfortunately, there are cases in which there does not exist any t∗ > 0. In other words,

the characteristics cross out initially, for example, the shock case with Riemann initial data

where uL > uR, uL, uR are constants. For these cases, classical solutions do not make sense.

Hence, we seek for a weaker sense in which the solutions can be defined, which are called weak

solutions.

2.1.2 Integral (Weak) Solutions and Their Properties

Multiplying Eq. (2.1.1) with a smooth and compactly supported test function φ(x, t), and

integrating over the whole space, by integration by parts, we have that

∫ ∞

0

∫ ∞

−∞

[uφt + f(u)φx]dxdt+

∫ ∞

−∞

u0(x)φ(x, 0)dx = 0. (2.1.10)

Definition 2.1.1. (Weak solution) A solution u ∈ L∞((−∞,∞)×(0,∞)) is called a weak solution

of the conservation law (2.1.1) if it satisfies the integral form (2.1.10) for any smooth and
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2.1 Theory of Nonlinear Hyperbolic Conservation Laws

compactly supported test function φ.

We note that unlike the differential form (2.1.1) where u is at least C1 so that the equation

makes sense, there is no such condition required for the weak solution, i.e., the one satisfying

Eq. (2.1.10) since the differentiation has been switched to the smooth test function. Hence, it is

expected that there are discontinuities present in a integral (weak) solution. Moreover, integral

solutions are not unique. We next discuss the condition for which discontinuities must satisfy.

Lemma 2.1.1. (Rankine-Hugoniot condition) ([26]) Let Ω ⊂ (−∞,∞)× (0,∞) be some open

region on which u is C
1 on either side ΩL and ΩR of a smooth curve C.

Then, if u is a weak solution of Eq. (2.1.1), it satisfies the following jump condition,

[f ] = s[u], (2.1.11)

where [g] = gL − gR denotes the jump of g over the curve C. s is called the propagation speed

of the discontinuity.

The non-uniqueness of weak solutions is illustrated by the following example.

Example 2.1.1. Consider Burgers’ equation supplemented with Riemann initial condition





ut +

(
u2

2

)

x

= 0,

u0(x) =





0, if x < 0,

1, if x > 0.

(2.1.12)

Here, the flux function f(u) = u2

2 is convex.

Applying the Rankine-Hugoniot condition, we can obtain the following weak solution

u(x, t) =





0, if x/t < 1
2 ,

1, if x/t > 1
2 .

(2.1.13)

However, Eq. (2.1.1) also accepts the following similarity solution

u(x, t) =





0, if x/t < 0,

x/t, if 0 < x/t < 1,

1, if x/t > 1.

(2.1.14)

Both solutions satisfy Eq. (2.1.1) in a weak sense. In fact, it can be shown that the

solution (2.1.13) is a non-physical one since it does not depend continuously on the initial data
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2.1 Theory of Nonlinear Hyperbolic Conservation Laws

(characteristics span out from the shock). Hence, in order to judge a weak solution which is

physically relevant, we need another criterion, i.e., the entropy condition.

Definition 2.1.2. (Entropy pair) A smooth function U(u) is said to be an entropy function if it

satisfies the following conditions,

i. U is a convex function of u, i.e., Uxx > 0,

ii. There is a function F (u), which is called an entropy flux, such that

Uufu = Fu. (2.1.15)

Definition 2.1.3. (Viscosity vanishing solution) A physically relevant weak solution, or entropy

solution, is defined as the solution of the viscosity vanishing equation, i.e., as ε→ 0,

ut + f(u)x = εuxx, ε > 0. (2.1.16)

It can be shown that an entropy solution satisfies the following entropy condition. See, for

examples, [55], [9].

Lemma 2.1.2. (Entropy condition)

i. Any smooth solution u of Eq. (2.1.1) satisfies

U(u)t + F (u)x = 0. (2.1.17)

ii. The viscosity vanishing solution of Eq. (2.1.16) satisfies the following entropy condition,

U(u)t + F (u)x ≤ 0, (2.1.18)

in a weak sense, i.e., for any nonnegative smooth test function φ with compact support,

−
∫ ∞

0

∫ ∞

−∞

[Uφt + Fφx]dxdt−
∫ ∞

−∞

U0φ(x, 0)dx ≤ 0, (2.1.19)

where U0 = U(u0(x)).

Writing condition (2.1.19) for each interval [xj− 1
2

, xj+ 1
2

], for all j’s in the time slab
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2.1 Theory of Nonlinear Hyperbolic Conservation Laws

[tn, tn+1), we obtain that

∫ x
j+1

2

x
j− 1

2

U(u(x, tn+1))dx ≤
∫ x

j+1
2

x
j− 1

2

U(u(x, tn))dx

+

∫ tn+1

tn

F (u(xj− 1
2

, t))dt−
∫ tn+1

tn

F (u(xj+ 1
2

, t))dt.

(2.1.20)

Condition (2.1.20) is often used as a discrete entropy condition for a numerical scheme.

(See the Godonov method below.)

Remark 2.1.1.

i. An example of entropy pair for the scalar case is the Kružkov pair (see [83], [137])

U(u; c) = |u− c|, F (u; c) = sgn(u− c)(f(u)− f(c)), (2.1.21)

for any constant c ∈ R. Here, sgn(x) =
x

|x| for x 6= 0, and sgn(x) = 0 for x = 0. Note

that Kružkov’s entropy pair are symmetric in both arguments.

ii. Hereafter, we only consider the conservation law (2.1.1) which possesses such an entropy

pair defined in definition 2.1.2.

We now list some key properties of entropy weak solutions.

Proposition 2.1.1. (see [24], [46], or [137]) Let u1,2(x, t)’s be the entropy weak solutions of

Eq. (2.1.1) corresponding to initial data u10(x) and u20(x), respectively, that satisfy the entropy

conditions defined in lemma 2.1.2. Then, the following properties hold for all t > 0,

1. (L1-contraction)

‖u2(·, t)− u1(·, t)‖L1(R) ≤ ‖u10 − u20‖L1(R). (2.1.22)

2. (Monotonicity preserving)

u0(x2) ≥ u0(x1) ⇒ u(x2, t) ≥ u(x1, t). (2.1.23)

3. (TV-bound) for t2 ≥ t1,

TV (u(·, t2)) ≤ TV (u(·, t1)), (2.1.24)

where TV of a function is defined in Eq. (2.2.24) below.
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2.1 Theory of Nonlinear Hyperbolic Conservation Laws

Remark 2.1.2.

i. L1-contractive property is often mimicked in a discrete sense for monotone schemes. In

addition, it immediately implies the uniqueness of the entropy solution.

ii. Monotonicity preserving property implies that there are no new local maximum or min-

imum created in the solution of the conservation law, and that the maximal (minimal)

values do not increase (decrease) when the solution evolves in time. These play a key role

in designing the limiters to control oscillations in TVD methods discussed below.

2.1.3 Characteristic Decomposition

We now extend the scalar conservation law to a system case. Here, we discuss the linearized

case only. In particular, we present the technique of characteristic decomposition. We note that

this is sufficient in terms of numerical aspects. As mentioned above, a reasonable numerical

approach for conservation laws is starting with the scalar case Eq. (2.1.1), and then proceed

further to the system. For the latter, the nonlinearity is usually linearized around the cell

interface xj+ 1

2

, e.g., the Roe averaging (see [118]). Then, the approximations are accomplished

in a characteristic space through the characteristic decomposition. For complete discussions

on systems of conservation laws, we refer to the monograph of Lax ([91]), the book of Smoller

([127]), or the lecture notes [137], [9].

We consider the system

{
ut + f(u)x = 0,

u(x, t) = u0(x).
(2.1.25)

Here, u(x, t) : R× R+ → Rm, and f : Rm → Rm is the flux function.

Linearizing system (2.1.25) about some constant state ū, and writing in a non-conservative

form, we obtain that

{
ut +A(ū)ux = 0,

u(x, t) = u0(x),
(2.1.26)

where A : Rm → Rm is the Jacobian matrix of the flux function f at the state ū. The system

(2.1.26) is called hyperbolic assuming that the eigenvalues λk’s, k = 1, . . . ,m, are all real and

finite, and strictly hyperbolic if these eigenvalues are all distinct; and the right eigenvectors rk’s

constitute a complete set. We denote R = [rk] and L = [lk] the matrices of right column and

left row eigenvectors of A, respectively. Here, after a standard normalization, we have that

li · rj = δij =

{
1, if i = j,

0, otherwise.
(2.1.27)
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2.2 Numerical Methods for Conservation Laws

Thanks to the hyperbolicity, matrix A has a similarity transformation. That is,

LAR = Λ, (2.1.28)

where Λ = [λk] is the eigenvalue matrix. Note that Λ is diagonal.

Left multiplying Eq. (2.1.26) with L, with a note of Eq. (2.1.28) we obtain that

{
wt + Λwx = 0,

w(x, t) = w0(x),
(2.1.29)

where w = Lu is called the characteristic variable and w0 = Lu0. Notice that system (2.1.29)

is now decoupled, and each characteristic component wk(x, t) can be solved exactly,

wk(x, t) = w0k(x− λkt) =
m∑

j=1

Lkju0j(x− λkt); (2.1.30)

then the solution u can be retrieved by the relation

u(x, t) = Rw. (2.1.31)

We note that with the characteristic decomposition, simple waves are now decoupled. Hence

there do not exist cases where these waves collide with each other, e.g. the collision of two shocks.

See the characteristic projection for ENO and WENO schemes below.

We move on to the discussion of numerical aspects for nonlinear conservation laws.

2.2 Numerical Methods for Conservation Laws

Before proceeding, we set up the notations for later discussions.

2.2.1 Notations

Definition 2.2.1. (Grid discretizations)

i. Spatial grid: . . . < xj−1 < xj < xj+1 < . . . with xj = j∆x, j = . . . ,−1, 0, 1, . . ., where the

grid size ∆x is uniform for simplicity.

ii. Grid interval: Ij = [xj− 1
2

, xj+ 1
2

] central at xj with interfaces xj± 1
2

= xj ±
∆x

2
.

iii. Temporal grid: 0 = t0 < t1 < . . . < tn < . . . with tn = n∆t.

iv. We denote the ratio σ =
∆t

∆x
= O(1) as ∆x→ 0.
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2.2 Numerical Methods for Conservation Laws

v. Approximating stencils: let p and q be some natural numbers. We denote Sj = {Ij−p, . . . , Ij+q}
or Sj+ 1

2
= {xj−p+ 1

2
, . . . , xj+q+ 1

2
} the (p+ q+1)-point stencils over which a polynomial of

degree (p + q) is reconstructed or interpolated, respectively.

Definition 2.2.2. (Numerical approximations)

i. Pointwise approximation: vnj ≈ u(xj , tn).

ii. Average approximation: v̄nj ≈ ū(xj , tn) =
1
∆x

∫ x
j+1

2
x
j− 1

2

u(x, tn)dx.

iii. Collection of {v̄nj } = v̄n.

iv. Time-dependent pointwise approximation: vj(t) ≈ u(xj , t).

v. Time-dependent average approximation: v̄j(t) ≈ ū(xj , t).

vi. Approximating function over a stencil Sj: v
n
Sj
(x) ≈ u(x, tn)χSj

(x). Here, χΩ(y) is the

standard indicator function,

χΩ(y) =





1, if y ∈ Ω,

0, otherwise.

(2.2.1)

vii. Approximating functions:

- At time tn: v
n
∆x(x) =

∑
j v

n
Sj
(x)χSj

(x). If Sj ≡ Ij then vnSj
(x) ≡ v̄nj , v

n
∆x(x) = v̄n∆x.

- Over the whole domain: v∆x(x, t) =
∑

n

∑
j v

n
Sj
(x)χSj×[tn,tn+1)(x, t). Similarly as

above, we have v̄∆x(x, t) if Sj ≡ Ij .

Definition 2.2.3. (Numerical flux) Let p, q be natural numbers. We denote the numerical flux

function f̂j+ 1
2

as

f̂j+ 1
2

= f̂(v̄nj−p+1, . . . , v̄
n
j+q;xj+ 1

2

) ≈ 1

∆t

∫ tn+1

tn

f(u(xj+ 1
2

, t))dt. (2.2.2)

Notice that f̂j+ 1
2

consists of (p + q) arguments.

2.2.2 Conservative Methods

We recall that a conservation law can be expressed either in conservative form Eq. (2.1.1) or

non-conservative Eq. (2.1.2). It is advisable that one should not use the latter form for the

discretization purpose due to the convergence to some wrong weak solution. The below example

illustrates for this fact.
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2.2 Numerical Methods for Conservation Laws

Example 2.2.1. Consider Burgers’ equation written in a non-conservative form and supple-

mented with Riemann initial data,





ut + uux = 0,

u0(x) =





1, if x < 0,

0, if x > 0,

(2.2.3)

whose exact solution is the propagation of the shock to the right at speed s = 1
2 , by the

Rankine-Hugoniot condition (2.1.11), i.e.,

u(x, t) =





1, if x/t <
1

2
,

0, if x/t >
1

2
.

(2.2.4)

Approximating Eq. (2.2.3) by a first-order upwind method gives us,

vn+1
j = vnj − σvnj (v

n
j − vnj−1). (2.2.5)

For j < 0, vnj = vnj−1 = 1; for j > 0, vnj = vnj−1 = 0; for j = 0, vn0 = 0, vn−1 = 1; thus overall

we have that

vn+1
j = vnj = . . . = v0j = u0(xj), ∀n, j, (2.2.6)

which is stationary and totally wrong comparing with the exact one (2.2.4).

Definition 2.2.4. (Conservative method) A numerical method is said to be conservative if it

discretizes the integral form, i.e., Eq. (2.1.4), of the conservation law (2.1.1). A conservative

method has the following form

v̄n+1
j = v̄nj − σ(f̂j+ 1

2

− f̂j− 1
2

), (2.2.7)

where the numerical flux f̂j+ 1
2

defined in Eq. (2.2.2) and is,

i. consistent with the analytic flux, i.e.,

f̂(u, . . . , u) = f(u), (2.2.8)

ii. Lipschitz continuous in all of its arguments, that is, there is a uniform constant L such
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2.2 Numerical Methods for Conservation Laws

that, ∀j’s,

∣∣∣f̂(v̄nj−p+1, . . . , v̄
n
j+q;xj+ 1

2

)− f̂(u(xj , tn), . . . , u(xj , tn))
∣∣∣ ≤ L max

−p+1≤k≤q

∣∣v̄nj+k − u(xj , tn)
∣∣ .

(2.2.9)

The advantage of a conservative method is shown in the below Lax-Wendroff theorem ([98],

[55]) which guarantees the convergence to some weak solution of Eq. (2.1.1), in case of conver-

gence.

Theorem 2.2.1. (Lax-Wendroff) Let {v∆x} be an approximating sequence with respect to ∆x

to conservation law (2.1.1) obtained from a conservative method (2.2.7). Let Ω = (−∞,∞) ×
(0,∞). We assume that the following conditions hold for {v∆x}:

i. (Uniform boundedness) There is M > 0 constant such that

‖v∆x‖L∞(Ω) ≤M, for all ∆x, (2.2.10)

ii. (Pointwise convergence) There is a function u(x, t) such that

lim
∆x→0

v∆x(x, t) = u(x, t) a.e., in Ω. (2.2.11)

Then, u(x, t) is a weak solution of Eq. (2.1.1).

Proof. We need the following lemma for the proof. It is the summation by parts which is a

discrete analogue of the integration by parts, and is a useful technique in numerical analysis.

Lemma 2.2.1. (Summation by parts)

M∑

k=N+1

fk(gk − gk−1) = fMgM − fNgN −
M∑

k=N+1

(fk − fk−1)gk−1. (2.2.12)

The proof of the lemma is simple. One just needs to re-arrange the indexes and (2.2.12)

follows immediately.

Let ϕ(x, t) be any smooth function which vanishes as t and |x| are large. Restrict it to grid

points ϕn
j = ϕ(xj , tn). Multiplying Eq. (2.2.7) with ϕn

j , summing over the whole domain, and

15



2.2 Numerical Methods for Conservation Laws

rearranging terms we obtain that

0 =

∞∑

n=0

∞∑

j=−∞

[
v̄n+1
j − v̄nj

∆t
−
f̂j+ 1

2

− f̂j− 1
2

∆x

]
ϕn
j

=
∞∑

j=−∞

ϕ0
j v̄

0
j +

∞∑

n=0

∞∑

j=−∞

ϕn+1
j − ϕn

j

∆t
v̄nj +

∞∑

n=0

∞∑

j=−∞

ϕn
j+1 − ϕn

j

∆x
f̂j+ 1

2

,

(2.2.13)

where the last equality is obtained by summation by parts Eq. (2.2.12).

Multiplying Eq. (2.2.13) with ∆x∆t and letting ∆x → 0. We note that ∆t = O(∆x) → 0

as ∆x→ 0. Changing
∑

to
∫
, we obtain that

0 = lim
∆x→0

∫ ∞

−∞

ϕ(x, 0)v∆x(x, 0)dx + lim
∆x→0

∫ ∞

0

∫ ∞

−∞

ϕ(x, t+∆t)− ϕ(x, t)

∆t
v∆x(x, t)dxdt

+ lim
∆x→0

∫ ∞

0

∫ ∞

−∞

ϕ(x+∆x, t)− ϕ(x, t)

∆x
f̂j+ 1

2

dxdt,

(2.2.14)

where

f̂j+ 1

2

= f̂(v∆x(x+ (1− p)∆x, t), . . . , v∆x(x+ q∆x, t)). (2.2.15)

It suffices to show that:

lim
∆x→0

∫ ∞

0

∫ ∞

−∞

ϕ(x, t+∆t)− ϕ(x, t)

∆t
v∆x(x, t)dxdt =

∫ ∞

0

∫ ∞

−∞

ϕt(x, t)u(x, t)dxdt; (2.2.16)

lim
∆x→0

∫ ∞

−∞

ϕ(x, 0)v∆x(x, 0)dx =

∫ ∞

−∞

ϕ(x, 0)u0(x)dx; (2.2.17)

lim
∆x→0

∫ ∞

0

∫ ∞

−∞

ϕ(x+∆x, t)− ϕ(x, t)

∆x
f̂j+ 1

2

dxdt =

∫ ∞

0

∫ ∞

−∞

ϕx(x, t)f(u(x, t))dxdt. (2.2.18)

We first have that

∣∣∣∣v∆x(x, t)
ϕ(x, t +∆t)− ϕ(x, t)

∆t
− u(x, t)ϕt(x, t)

∣∣∣∣

≤ |v∆x(x, t)|
∣∣∣∣
ϕ(x, t+∆t)− ϕ(x, t)

∆t
− ϕt(x, t)

∣∣∣∣ + |v∆x(x, t)− u(x, t)| |ϕt(x, t)|

< Mε1 + M̃ε2,

(2.2.19)

for sufficiently small ∆x with ‖ϕt‖L∞(Ω) ≤ M̃ < ∞, thanks to conditions (2.2.10) and (2.2.11)
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2.2 Numerical Methods for Conservation Laws

and the fact that ϕ is smooth. Thus

lim
∆x→0

v∆x(x, t)
ϕ(x, t +∆t)− ϕ(x, t)

∆t
= u(x, t)ϕt(x, t) a.e. (2.2.20)

We also note that

∥∥∥∥v∆x
ϕ(·, · +∆t)− ϕ(·, ·)

∆t

∥∥∥∥
L∞(Ω)

≤ CMM̃, (2.2.21)

for all ∆x and some constant C which can be derived from a Taylor expansion. Hence, by

Lebesgue’s convergence theorem, we deduce Eq. (2.2.16).

The proofs of Eqs. (2.2.17) and (2.2.18) follow similarly. For the latter, we need the following

pointwise convergence.

By Lipschitz condition (2.2.9), we have that

∣∣∣f̂ (v∆x(xj + (1− p)∆x, tn), . . . , v∆x(xj + q∆x, tn)) −f̂(u(xj , tn), . . . , u(xj , tn))
∣∣∣

≤ L max
−p+1≤k≤q

|v∆x(xj+k, tn)− u(xj , tn)| ,
(2.2.22)

which implies that

lim
∆x→0

f̂j+ 1

2

= f̂(u(x, t), . . . , u(x, t)) = f(u(x, t)) a.e. (2.2.23)

since v∆x(x, t) → u(x, t) as ∆x → 0 a.e. in Ω. The last equality is due to the consistency

(2.2.8).

2.2.3 Total Variation Stability, Convergence, and Discrete Entropy Condi-

tion

The Lax-Wendroff theorem guarantees that a conservative method, if converges, will converge

to a weak solution, but says nothing about criteria for such a method to converge. It turns

out that the convergence depends heavily on the concept of compactness of bounded functions

whose total variations (TV) are also bounded. This stems from Helly’s selection principle below.

Firstly, we define the total variation of a function.

Definition 2.2.5. (Total variation)

i. Let ΠN = {0, 1, . . . , j, . . . , N − 1, N} be a set of natural indexes. We define the total
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2.2 Numerical Methods for Conservation Laws

variation of a function g(x) as below,

TV (g) = sup
ΠN

N∑

j=1

|g(xj)− g(xj−1)|, (2.2.24)

where the grid −∞ = x0 < . . . < xj < . . . < xN = ∞ and the supremum is taken over all

ΠN ’s.

ii. A function g(x) is of bounded total variation if its TV is finite.

Lemma 2.2.2. (Helly’s selection principle) (see [103]) Let an infinite sequence of functions {gk}
with gk(x) : [xa, xb] → R. Assuming that the sequence is uniformly bounded and of bounded total

variation, i.e., there exist constants M1, M2 such that, for all k’s,

i. ‖gk‖∞ ≤M1,

ii. TV (gk) ≤M2.

Then there is a subsequence {gkj} ⊂ {gk} and a function g(x) : [xa, xb] → R such that

lim
j→∞

gkj = g(x), a.e. (2.2.25)

We note that since the domain is bounded, and the functions are uniformly bounded, the

pointwise convergence (2.2.25) implies convergence in L1 norm by Lebesgue’s convergence the-

orem.

We are now ready to discuss the condition for a sequence of approximations of Eq. (2.1.1)

in the form (2.2.7) to converge. It is called total variation stability.

Definition 2.2.6. (Total variation stability) An approximation v∆x(x, t) is said to be total vari-

ation stable (TV-stable) if there is M > 0 constant such that

TV (v∆x(·, t)) ≤M, ∀∆x,∆t. (2.2.26)

The uniform bound in space in terms of total variation implies a uniform bound in time, as

stated in the following lemma (see [96]).

Lemma 2.2.3. (Uniform boundedness in time) There is a uniform M̃ > 0 such that, for fixed

∆x and all n’s,

‖v∆x(·, tn+1)− v∆x(·, tn)‖L1 ≤ M̃∆t. (2.2.27)
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Proof. For all n’s, we have by Eq. (2.2.7)

v̄n+1
j − v̄nj = −σ(f̂j+ 1

2

− f̂j− 1
2

), (2.2.28)

where σ = ∆t
∆x .

Summing over all j’s and multiplying both sides with ∆x, we obtain that

‖v∆x(·, tn+1)− v∆x(·, tn)‖L1 ≤ σ

∞∑

j=−∞

|f̂j+ 1

2

− f̂j− 1

2

|. (2.2.29)

Since f̂ is Lipschitz continuous, we have that

|f̂j+ 1

2

− f̂j− 1

2

| ≤ L max
−p≤l≤q

|v̄nj+l − v̄nj+l−1|

≤ L

q∑

l=−p

|v̄nj+l − v̄nj+l−1|.
(2.2.30)

Hence,

‖v∆x(·, tn+1)− v∆x(·, tn)‖L1 ≤ ∆tL

q∑

l=−p

∞∑

j=−∞

|v̄nj+l − v̄nj+l−1|

≤ ∆tL

q∑

l=−p

TV (v∆x(·, tn))

≤ ∆tL(p+ q + 1)M,

(2.2.31)

thanks to the uniform bound (2.2.26).

Choosing M̃ := L(p+ q + 1) completes the proof.

Theorem 2.2.2. Suppose that a sequence {v∆x(x, t)} with respect to ∆x obtained from a con-

servative method and is TV-stable. Then, for any bounded domain Ω ⊂ R, and a finite time

0 < T <∞, there are u(x, t) and {v∆xk
} ⊂ {v∆x} such that,

lim
∆xk→0

‖v∆xk
(·, t) − u(·, t)‖L1(Ω) = 0, uniformly for all t ∈ [0, T ]. (2.2.32)

Proof. (sketch of proof) (see [36], [54], or [127] for the Lax-Friedrichs scheme)

i. For any fixed time tn ∈ [0, T ], since Ω is bounded, and {v∆x} is TV-stable, i.e., there is
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M > 0 such that condition (2.2.26) holds, it can be checked that

‖v∆x(·, tn)‖L∞ ≤ M̃, (2.2.33)

for some constant M̃ dependent on M . Then, by Helly’s selection principle, there is an

L1-convergent subsequence of {v∆xn} ⊂ {v∆x} at time tn.

ii. Since the set {tn} ∈ Q is countable, by a diagonal argument, we can then select another

subsequence from all {v∆xn}’s which converges in L1 for all tn ∈ [0, T ]. We denote this

subsequence {v∆xk
}.

iii. We prove that {v∆xk
} converges for all t ∈ [0, T ]. Since {tn} is dense in R, ∀t ∈ [0, T ],

there is an index n such that tn ≤ t ≤ tn+1. Let v∆xki
, v∆xkj

∈ {v∆xk
}, we have that

∫

Ω
|v∆xki

(x, t)− v∆xkj
(x, t)|dx ≤

∫

Ω
|v∆xki

(x, t)− v∆xki
(x, tn)|dx

+

∫

Ω
|v∆xki

(x, tn)− v∆xkj
(x, tn)|dx

+

∫

Ω
|v∆xkj

(x, t)− v∆xkj
(x, tn)|dx.

(2.2.34)

The second term on the RHS converges pointwise at tn in space since {v∆xk
} is convergent.

The other two, thanks to the inequality (2.2.27), are uniformly bounded by O(∆t) =

O(∆x) → 0. Hence, v∆xk
(x, t) converges uniformly for all t ∈ [0, T ], which completes the

proof.

We immediately have the following corollaries.

Corollary 2.2.1. (Weak solution) The limit function u(x, t) obtained from Theorem 2.2.2 is a

weak solution of conservation law (2.1.1).

Proof. Since v∆x(x, t) is obtained from a conservative method, and converges by theorem 2.2.2,

by Lax-Wendroff theorem 2.2.1, the limit u(x, t) is a weak solution.

Lemma 2.2.4. (Uniqueness)([55]) Suppose v∆x(x, t) converges in the sense of theorem 2.2.2.

We further assume that v∆x(x, t) satisfies the discrete entropy condition

Un+1
j ≤ Un

j − σ(F̂j+ 1

2

− F̂j− 1

2

), (2.2.35)

20



2.3 Total Variation Diminishing (TVD) Schemes

where

Un
j = U(v̄nj ), F̂j+ 1

2

= F̂ (v̄nj−p+1, . . . , v̄
n
j+q;xj+ 1

2

), (2.2.36)

are the entropy pair defined in definition 2.1.2, F̂j+ 1
2

is the numerical entropy flux function,

consistent with F (u) and is Lipschitz continuous in the sense of Eqs. (2.2.8) and (2.2.9).

Then, v∆x(x, t) converges to a physically admissible weak solution, which is unique.

Proof. The proof follows that of the Lax-Wendroff theorem with v∆x and f̂j+ 1

2

replaced by

U(v∆x) and F̂j+ 1
2

, respectively, and the equality by an inequality.

We now proceed to discuss conservative schemes which satisfies the TV-stable condition

(2.2.26). In particular, we will mention total variation diminishing (TVD) schemes originated

from the work of Harten in [46] and his celebrated essentially non-oscillatory (ENO) schemes

([51]). For for former, the uniform bound M is taken to be TV (u0).

2.3 Total Variation Diminishing (TVD) Schemes

Definition 2.3.1. (TVD schemes) (see [46]) A conservative scheme

v̄n+1
j = v̄nj − σ(f̂(vnj−p+1, . . . , v

n
j+q;xj+ 1

2

)− f̂(vnj−p, . . . , v
n
j+q−1;xj− 1

2

)), (2.3.1)

or in its operator form,

vn+1
∆x = L(vn∆x), (2.3.2)

is called TVD if its total variation is non-increasing in time. That is,

TV (vn+1
∆x ) ≤ TV (vn∆x) ≤ . . . ≤ TV (v0∆x) = TV (u0). (2.3.3)

The following lemma sets the conditions for such a conservative scheme (2.3.1) to be TVD.

Lemma 2.3.1. (TVD conditions) ([46]) Suppose that a conservative scheme can be written in

the form

v̄n+1
j = v̄nj + C(v̄nj+1 − v̄nj )−D(v̄nj − v̄nj−1), (2.3.4)

where the coefficients may depend on vn∆x.
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2.3 Total Variation Diminishing (TVD) Schemes

Then the scheme is TVD providing that the following conditions hold,





C ≥ 0, D ≥ 0,

C +D ≤ 1.

(2.3.5)

Proof. We check that

TV (vn+1
∆x ) =

∑

j

|v̄n+1
j − v̄n+1

j−1 |

=
∑

j

|v̄nj + C(v̄nj+1 − v̄nj )−D(v̄nj − v̄nj−1)− v̄nj−1 − C(v̄nj − v̄nj−1) +D(v̄nj−1 − v̄nj−2)|

=
∑

j

|(1 − C −D)(v̄nj − v̄nj−1) + C(v̄nj+1 − v̄nj ) +D(v̄nj−1 − v̄nj−2)|

≤ (1− C −D)
∑

j

|v̄nj − v̄nj−1|+ C
∑

j

|v̄nj+1 − v̄nj |+D
∑

j

|v̄nj−1 − v̄nj−2|

= TV (vn∆x).

(2.3.6)

The inequality is thanks to condition (2.3.5). The last equality is obtained by rearranging the

indexes in the last two terms of the inequality.

Below we list the properties of TVD schemes. These are the analogues of those given in

proposition 2.1.1. The proofs can be found in the indicated references.

Proposition 2.3.1. For a TVD scheme, the following properties hold.

i. A TVD scheme is monotonicity preserving. (See [46].)

ii. (Maximum principle) (see [111]) Let m = minj v
0
∆x = minj u0(xj), M = maxj v

0
∆x =

maxj u0(xj). Then, for any time tn > 0 and each j,

m ≤ v̄nj ≤M. (2.3.7)

iii. A TVD scheme is at most first-order accurate at non-sonic critical points of the solution

u, that is, where f ′(u) = 0. (See [111].)

iv. A 2D TVD scheme is at most first-order accurate. (See [39].)

Remark 2.3.1.
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i. Properties (i.) and (ii.) assures no oscillations in the approximation in a sense that the

operator L in Eq. (2.3.2) is monotonicity preserving (see proposition 2.1.1).

ii. TVD condition (2.3.5) is crucial for preventing oscillations from happening, but is strict

and makes the scheme badly performs near critical points, i.e., at most first-order (see

properties (iii.) and (iv.) and [112] for high-order TVD schemes). It will be relaxed in

ENO and WENO schemes. See the below section.

In the following sections, we mention commonly discussed TVD schemes, starting from the

first-order ones. We discuss in detail the Godonov scheme, which is the fundamental approxima-

tion for all the others in the upwind approach. The term “upwind” refers to the incorporation

of the characteristic information of the solution in the numerical discretizations. Here, we note

that another approach based on central discretizations stands alone as an active research field

till the present. Central schemes stem from the first-order Lax-Friedrichs and was pioneered in

the paper of Nessyahu and Tadmor ([106]) for hyperbolic conservation laws on a staggered grid.

We refer to, e.g., [10], [94], or [117] for high-order central schemes. We then proceed to the

treatments on the coefficients C and D in definition 2.3.1 so that the accuracy is improved to

second order, except at critical points as indicated in proposition 2.3.1. Here, the essential idea

is to design such limiters that no oscillations occur in the numerical approximations. Typical

limiters will also be listed. We limit the discussion to only the case of scalar conservation laws.

2.3.1 First-order Schemes

For these schemes, the approximation of the flux at the interface xj+ 1
2

involves the information

of the solution at two grid points xj and xj+1. Thus Eq. (2.3.1) is written as

v̄n+1
j = v̄nj − σ(f̂(v̄nj , v̄

n
j+1;xj+ 1

2

)− f̂(v̄nj−1, v̄
n
j ;xj− 1

2

)). (2.3.8)

2.3.1.1 Godonov’s Scheme

Godonov in [37] (see also [55], [147]) proposed a method to approximate u(xj+ 1
2

, tn) by exactly

solving the Riemann problem of the piecewise-constant approximation v∆x(x, t). That is,

f̂(v̄nj , v̄
n
j+1;xj+ 1

2

) = f̂G(v̄nj , v̄
n
j+1) =

1

∆t

∫ tn+1

tn

f(ṽ(xj+ 1
2

, t))dt, (2.3.9)

where ṽ is the exact solution of the Riemann problem





ṽt + f(ṽ)x = 0, xj < x < xj+1, tn < t < tn+1,

ṽ(x, tn) =

{
v̄nj =: vL, if x < xj+ 1

2

,

v̄nj+1 =: vR, if x > xj+ 1
2

,

(2.3.10)
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Since vL, vR are constants, problem (2.3.10) can be solved exactly as follows, assuming that

f ′′(ṽ) ≥ 0, and that there are no interactions of waves, i.e., we limit their distance of propagation

at most half of the interval,

max
ṽ

|f ′(ṽ)|∆t ≤ 1

2
∆x. (2.3.11)

Eq. (2.3.11) is often referred as the CFL condition.

• Case 1: vL > vR (shock-wave)

ṽ(x, t) =

{
vL, x/t < s,

vR, x/t > s,
(2.3.12)

where

s =
f(vR)− f(vL)

vR − vL
, (2.3.13)

is the propagation speed of the shock by the Rankine-Hugoniot condition.

• Case 2: vL ≤ vR (rarefaction-wave)

ṽ(x, t) =





vL, x/t < f ′(vL),

f−1(x/t), f ′(vL) ≤ x/t ≤ f ′(vR),

vR, x/t > f ′(vR).

(2.3.14)

Thanks to condition (2.3.11), there are no interactions of waves, thus ṽ(xj+ 1
2

, t) remains constant

for all tn ≤ t < tn+1. The Godonov’s flux is then correspondingly written compactly as below

(see [109]),

f̂G(v̄nj , v̄
n
j+1) =

1

∆t

∫ tn+1

tn

f(ṽ(xj+ 1

2

, t))dt = f(ṽ(xj+ 1

2

, t))

=

{
minv̄nj ≤ṽ≤v̄nj+1

f(ṽ), if v̄nj ≤ v̄nj+1,

maxv̄nj+1≤ṽ≤v̄nj
f(ṽ), if v̄nj > v̄nj+1.

(2.3.15)

We check that Godonov’s scheme is conservative, TVD, and satisfies the discrete entropy

condition (2.2.35).

Proposition 2.3.2. (Godonov’s scheme) The Godonov scheme with the flux defined in Eq.

(2.3.15) is conservative, TVD, and converges to the unique physical weak solution.

Proof. i. (Conservativeness) It suffices to show that the Godonov flux (2.3.15) is consistent

and Lipschitz continuous. The former property follows directly from the definition of the
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flux. For the latter, since f(u) is C
2, by the mean value theorem there exists a constant

L such that, for any u1, u2 we have that

|f(u1)− f(u2)| ≤ L|u1 − u2|. (2.3.16)

Suppose that v̄nj ≤ v̄nj+1, then

f̂G(v̄nj , v̄
n
j+1) = min

v̄nj ≤ṽ≤v̄nj+1

f(ṽ) =: f(v̂), (2.3.17)

for some v̂ ∈ [v̄nj , v̄
n
j+1].

Thus,

|f̂G(v̄nj , v̄nj+1)− f(u)| = |f(v̂)− f(u))| ≤ L1|v̂ − u|, (2.3.18)

for sufficiently small |v̂−u|. Similarly, for v̄nj > v̄nj+1, there exists L2 such that Eq. (2.3.18)

holds. Choosing L = max(L1, L2) proves relation (2.3.16).

ii. (TVD’ness) Comparing the conservative form (2.2.7) and the TVD one (2.3.4), we deduce

that

∆x

∆t
C = −

f̂G
j+ 1

2

− f(v̄nj )

v̄nj+1 − v̄nj
≥ 0,

∆x

∆t
D = −

f̂G
j− 1

2

− f(v̄nj )

v̄nj − v̄nj−1

≥ 0, (2.3.19)

by the definition (2.3.15) of the Godonov flux (2.3.15). We next check that

C +D =
∆t

∆x

[f(v̄nj )− f̂G
j+ 1

2

v̄nj+1 − v̄nj
+
f(v̄nj )− f̂G

j− 1
2

v̄nj − v̄nj−1

]
≤ 1, (2.3.20)

thanks to the CFL condition (2.3.11). Hence, Godonov’s scheme is TVD.

iii. (Entropy condition) Since Godonov’s scheme solves the Riemann problem (2.3.10) exactly,

the following entropy condition holds for ṽ,

∂

∂t
U(ṽ(x, t)) +

∂

∂t
F (ṽ(x, t)) ≤ 0, (2.3.21)

where (U,F ) is an entropy pair.
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Integrating (2.3.21) over Ω := Ij × [tn, tn+1), we obtain that

1

∆x

∫ x
j+1

2

x
j− 1

2

U(ṽ(x, tn+1))dx− 1

∆x

∫ x
j+1

2

x
j− 1

2

U(ṽ(x, tn))dx

+
1

∆x

∫ tn+1

tn

F (ṽ(xj+ 1
2

, τ))dτ − 1

∆x

∫ tn+1

tn

F (ṽ(xj− 1
2

, τ))dτ ≤ 0.

(2.3.22)

Thanks to condition (2.3.11), ṽ is constant along its characteristic, i.e., for all (x, t) ∈ Ω,





ṽ(x, tn) = v̄nj ,

ṽ(xj± 1
2

, t) = ṽ(xj± 1
2

, tn),

(2.3.23)

we deduce that

1

∆x

∫ x
j+1

2

x
j− 1

2

U(ṽ(x, tn+1))dx ≤ U(v̄nj )− σ(F (ṽ(xj+ 1
2

, tn))− F (ṽ(xj− 1
2

, tn))). (2.3.24)

Since U(ṽ(x, t)) is convex, by Jensen’s inequality, we have that

U(v̄n+1
j ) = U

(
1

∆x

∫ x
j+1

2

x
j− 1

2

ṽ(x, tn+1)dx

)
≤ 1

∆x

∫ x
j+1

2

x
j− 1

2

U(ṽ(x, tn+1))dx; (2.3.25)

hence,

U(v̄n+1
j ) ≤ U(v̄nj )− σ(F (ṽ(xj+ 1

2

, tn))− F (ṽ(xj− 1
2

, tn)), (2.3.26)

which is the discrete entropy condition (2.2.35). The uniqueness then follows immediately.

2.3.1.2 Other Schemes

The Godonov scheme, due to the exact solving of a Riemann problem in order to approximate

v̄∆x(xj+ 1

2

, tn), is costly and complicated, especially when dealing with a system case. For the

the latter, an iterative solver must be facilitated. For example, see [138] for the solver of

Riemann problems for the Euler system. The below schemes, except for the Lax-Friedrichs,

are derivations of the Godonov one where v̄∆x(xj+ 1
2

, tn) is approximated from the Riemann

problem (2.3.10).
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• Lax-Friedrichs’ scheme:

f̂LF (v̄nj , v̄
n
j+1) =

1

2
(v̄nj + v̄nj+1)− α(v̄nj+1 − v̄nj ), (2.3.27)

where α = maxj |f ′(v̄nj )|.

• Engquist-Osher’s scheme: (see [28])

f̂EO(v̄nj , v̄
n
j+1) =

∫ v̄nj+1

0
min(f ′(s), 0)ds +

∫ v̄nj

0
max(f ′(s), 0)ds + f(0). (2.3.28)

• Roe’s scheme: ([118])

f̂R(v̄nj , v̄
n
j+1) =

{
f(v̄nj ), if s > 0,

f(v̄nj+1), if s < 0,
(2.3.29)

where

s =
f(v̄nj+1)− f(v̄nj )

v̄nj+1 − v̄nj
. (2.3.30)

Remark 2.3.2.

i. The Godonov flux (2.3.15) is also applicable for a non-convex flux function f(u). (See

[109].)

ii. The Engquist-Osher flux and Roe flux are approximations of the Godonov one in a sense

of using only rarefaction-waves or shock-waves, respectively. (See [147], [128], [111], [56],

etc.)

iii. Roe’s scheme is especially efficient for a system case, e.g., the Euler equations ([118]),

thanks to its simplicity. A tradeoff is that the scheme does admit nonphysical weak

solutions, i.e., expansion shock-waves (see [55]), due to the use of shock-waves only in

defining the flux. A remedy for this drawback is called an entropy fix, for example (see

[92]),

f̂RF (v̄nj , v̄
n
j+1) =





f(v̄nj ), if s ≥ 0,

f(v̄n+1
j ), if s ≤ 0,

f̂LF (v̄nj , v̄
n
j+1),

(2.3.31)

where min(v̄nj , v̄
n
j+1) ≤ ṽ ≤ max(v̄nj , v̄

n
j+1).
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iv. Except for the Roe flux, the other ones are called monotone fluxes, i.e., for all j’s,

∂f̂

∂v̄nj
≥ 0,

∂f̂

∂v̄nj+1

≤ 0, (2.3.32)

and are consistent and Lipschitz continuous; thus satisfy the discrete entropy condition

(2.2.35). See [21] for detailed discussions on monotone fluxes and schemes. See also [109]

for E schemes whose fluxes satisfy the entropy condition.

v. It is worthy to mention the Godonov theorem ([37]) which states that all monotone

schemes are at most first-order. This implies all linear schemes applying to conserva-

tion laws are also at most first-order (see [46]). Hence, in order to improve the accuracy,

one must design schemes whose coefficients depend on the solution themselves. This leads

to the concept of “limiters” which play roles as an adapting mechanism of high- and low-

order fluxes, or a controller of the slope of stencil-wise approximating polynomials so that

condition (2.3.5) holds, i.e., no oscillations occur in the approximation. We discuss these

approaches in the below section.

2.3.2 High-resolution TVD Schemes

Definition 2.3.2. (High resolution schemes) A numerical scheme is said to be of high resolution if

its accuracy is higher than first-order. The term resolution implies how well the scheme resolves

discontinuities in the numerical approximation.

There are three approaches in improving the accuracy and resolution of a scheme. These

include the modified-equation-based, the flux-limiting, and slope-limiting methods. We recall

that a modified equation is obtained by substituting the exact solution u(x, t) into the differ-

ence equation of the approximation v∆x(x, t). Hence, an error term will appear which gives

information on the behavior of the scheme. In this section, we briefly mention the main ideas

underlying the latter two approaches, i.e., the flux and slope limiting. The schemes which de-

pend on modified equations are limited to low orders due to its complication in manipulating

the modified equations and are omitted here. Interested readers may refer to, e.g., [46] and the

references therein for more detail.

A main difficulty when designing a high-resolution method is how one handles the dissipation

and dispersion in the scheme. The former is responsible for smoothing (thus smearing) out

all discontinuities or high gradients appearing in the numerical approximation, which in turn

guarantees no oscillations. On the other hand, dispersion improves the resolution of the scheme,

i.e., giving sharp capturing of discontinuities or small-scaled structure like vortices, but allows

oscillations to occur. A typical technique to control the amount of dispersion of the scheme is
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through the so-called “limiters” which we will discuss below. We follow the presentation given

in [96]. See also [128] for a complete discussion.

For simplicity, we discuss the schemes for a linear scalar case, i.e,

ut + (au)x = 0, a > 0. (2.3.33)

2.3.2.1 Flux-limiting Schemes

The underlying idea is to use a low-order (first-order) flux which is dissipative to handle dis-

continuities while in smooth regions, a high-order (second-order or higher) flux is employed for

improving the formal accuracy order. The approach originated from the multi-step flux cor-

rected transport (FCT) scheme by Boris and Book (see, e.g., [7], [138]) and later adapted for

one-step methods and improved in, for examples, [119], [23], and the references therein.

In seeking for such a scheme, we write the numerical flux in the following adaptive form,

f̂j+ 1

2

= f̂1
j+ 1

2

+ φ(rj)(f̂
2
j+ 1

2

+ f̂1
j+ 1

2

), (2.3.34)

where f̂1
j+ 1

2

and f̂2
j+ 1

2

are the numerical fluxes of a 1st- and 2nd-order, respectively. φ is called

a limiter depending on r which is defined as follows,

rj =
v̄nj − v̄nj−1

v̄nj+1 − v̄nj
. (2.3.35)

We point out that r measures how smooth the solution is around xj in a sense that it is

considered smooth for rj close to 1 and nonsmooth when r is far from 1. The principle to

design φ is the TVD condition (2.3.5).

If we take the 2nd-order Lax-Wendroff flux (see [96], [97])

f̂2
j+ 1

2

= av̄nj +
1

2
a(1− aσ)(v̄nj+1 − v̄nj ), (2.3.36)

and the 1st-order upwind one

f̂1
j+ 1

2

= av̄nj , (2.3.37)

substituted into Eq. (2.3.34), we obtain that

f̂j+ 1
2

= av̄nj + φja(1− aσ)(v̄nj+1 − v̄nj ), (2.3.38)

where φj = φ(rj). We recall that σ = ∆t
∆x .
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Comparing with the TVD form (2.3.4), we deduce that

{
C = aσ

[
1 + 1

2(1− aσ)
(
φj

rj
− φj−1

)]
,

D = 0.
(2.3.39)

In order that the TVD property of the scheme is acquired, we require that

0 < C ≤ 1; (2.3.40)

that is, for all j’s (see [128]),





aσ ≤ 1,∣∣∣∣
φj
rj

− φj−1

∣∣∣∣ ≤ 2,
(2.3.41)

where the first is the normal CFL condition, while the second one is required from the TVD

property. These are further reduced to





φ(r) = 0, for r ≤ 0,

0 ≤
(
φ(r)

r
, φ(r)

)
≤ 2.

(2.3.42)

It is shown in [144] that any 2nd-order scheme relying on the stencil {uj−2, uj−1, uj , uj+1}
is a convex combination of the Lax-Wendroff (LW) and Beam-Warming (BW) scheme, i.e.,

φ(r) = (1− θ(r))φLW (r) + θ(r)φBW (r), (2.3.43)

where

|θ(r)| ≤ 1, φLW (r) = 1, φBW (r) = r. (2.3.44)

Thus,

φ(r) = 1 + θ(r)(r − 1). (2.3.45)

Combining condition (2.3.45) with the TVD restriction (2.3.42), Sweby ([128]) indicated a

region in which the limiter φ(r) must belong to so that the scheme is TVD. We refer to Figs.

1 and 2 in [128] for the visualization of the TVD region and limiters. We note that only Van

Leer’s limiter is continuous. See also [96], [97].
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• Van Leer’s limiter ([144]):

φV L(r) =
|r|+ r

|r|+ 1
. (2.3.46)

• Minmod limiter ([129]):

φMM (r) = minmod(1, r), (2.3.47)

where the minmod function is defined as follows,

minmod(a, b) =





|a|, for ab > 0, |a| < |b|,
|b|, for ab > 0, |a| ≥ |b|,
0, for ab ≤ 0.

(2.3.48)

• Superbee limiter ([120]):

φSB(r) =

{
maxmod(1, r), for 1

2 ≤ r ≤ 2,

2minmod(1, r), for r < 1
2 or r > 2.

(2.3.49)

Here, the maxmod function is similar to the minmod except for choosing the larger

modulus of between a and b if they are of the same sign.

• Chakravarthy and Osher’s limiter ([23]):

φCO(r) = minmod(r, ψ), (2.3.50)

for some 1 ≤ ψ ≤ 2.

2.3.2.2 Slope-limiting Schemes

The idea for slope-limiting schemes is to improve the Godonov method by using a more accurate

stencil-wise approximating polynomials instead of a piecewise constant one. That is, we consider

v∆x(x, tn) as follows,

vn∆x(x) =
∑

j

vnSj
(x)χSj

(x), (2.3.51)

where vnSj
(x) is, say a linear polynomial, defined over the stencil Sj ≡ Ij = [xj− 1

2

, xj+ 1
2

], i.e.,

vnSj
(x) = vnIj(x) = v̄nj + γj(x− xj), xj− 1

2

< x ≤ xj+ 1
2

, (2.3.52)
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for some slope γj . It is easy to check that, for any finite slope γj , we have that

v̄nj =
1

∆x

∫ x
j+1

2

x
j− 1

2

(v̄nj + γj(x− xj))dx. (2.3.53)

Thus the approximation (2.3.51) is conservative. The second order of the scheme is confirmed

by observing that if we let

γj =
v̄nj+1 − v̄nj

∆x
, (2.3.54)

then Eq. (2.3.51) is an approximation obtained from the 2nd-order Lax-Wendroff scheme.

In order to satisfy the TVD condition (2.3.5) which prevents oscillations from generating,

we need to limit the slope γj in some sense. Hence, the schemes are called slope-limiting. Good

examples for these schemes are the MUSCL by Van Leer (see [144], [145], [146], [147], [110]), or

the quadratic PPM scheme by Colella Woodward (see [25]). The latter scheme uses a quadratic

reconstructing polynomial instead of the linear one in Eq. (2.3.52).

Since the equation is linear with a > 0, we can solve for the solution exactly at tn+1, i.e.,

vn+1
∆x (x) = vn∆x(x− a∆t). (2.3.55)

Thus for each interval Ij, we have that

vn+1
Ij

(x) = vnIj−1
(x)χ[x

j− 1
2
,x

j−1
2
+a∆t)(x) + vnIj(x)χ[x

j− 1
2
+a∆t,x

j+1
2
](x). (2.3.56)

Integrating vn+1
Ij

(x) over Ij , we obtain that

v̄n+1
j = v̄nj − aσ(v̄nj − v̄nj−1)−

1

2
aσ(1− aσ)(γj − γj−1)∆x, (2.3.57)

for which the flux is,

f̂j+ 1

2

= av̄nj +
1

2
a(1− aσ)γj∆x. (2.3.58)

Setting

γj =

(
v̄nj+1 − v̄nj

∆x

)
φj , (2.3.59)

gives the flux in Eq. (2.3.58) to be the same as that of a flux-limiting scheme, i.e., Eq. (2.3.34).

Hence, the limiters given in Eqs. (2.3.46) - (2.3.50) can be applied in this case. This shows a

close relation between the two approaches.
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For a nonlinear conservation law, i.e., a replaced by f ′(u), the ideas are essential the same

although the implementation is more complicated and tedious. We refer readers to, e.g., [128],

[96], [97], or [138], etc.

Remark 2.3.3.

i. All TVD schemes have poor performance around critical points so that condition (2.3.5)

holds, which in turn implies the monotonicity preserving property to prevent oscillations

from happening. We take the minmod limiter for example. In the regions where the

solution is monotone, the minmod chooses the linear approximating polynomial vnIj (x) in

Eq. (2.3.52) with a slope of smaller modulus (see Eq. (2.3.59)), but near a critical point

where (v̄nj − v̄nj−1) and (v̄nj+1 − v̄nj ) have opposite signs, thus minmod(φj) = 0, and so

vnIj (x) = av̄nj which is just first-order. This is indeed the nature of TVD schemes where

they are at most first-order at critical points. (See proposition 2.3.1.)

ii. In order to improve the accuracy at critical points, one must relax condition (2.3.5). In

fact, comparing (2.3.5) and the TV-stability condition (2.2.26), the uniform constant M

is not necessarily the TV of the initial data. This relaxation is given in ENO and WENO

schemes. In the next section, we briefly mention the principles of ENO schemes, whereas

the WENO will be discussed in detail in the next chapter.

2.4 Essentially Non-Oscillatory (ENO) Schemes

As indicated in the concluding remark in the previous section, the main drawback of TVD

schemes is that it is necessary for the schemes to reduce the accuracy to first-order, no matter

what order the schemes can achieve in smooth regions. Attempts to overcome this difficulty

mostly involves how to relax the TVD condition (2.3.5) yet the TV stability (2.2.26) still holds,

at least in some sense. One of the approaches was proposed by Shu in [123] where he constructed

the total variation bounded (TVB) schemes, in which the total variation of the numerical

approximation is not diminishing in time, but instead there remains a uniform bound dependent

on the final time T . The author claimed that the scheme is uniformly high-order, including

critical regions. In [59], [60], and later [51], Harten et al. suggested a new concept in designing

a shock-capturing scheme. They named these essentially non-oscillatory (ENO) schemes. The

non-oscillatory property of the numerical approximation does not depend on limiters as that

of TVD schemes, but on the choice of the smoothest of the stencils for the reconstruction

procedure. Here, the smoothness of a stencil is determined in the sense of undivided Newton’s

difference, which we will discuss below.
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2.4.1 Semi-discrete Discretization

Approximating the 1D scalar conservation law (2.1.1) by a semi-discrete form, i.e., we only

discretize with respect to space and let the time be continuous,

dv̄j(t)

dt
= −

f̂j+ 1
2

− f̂j− 1
2

∆x
, (2.4.1)

which is a discrete form of Eq. (2.1.3). The numerical flux

f̂j+ 1
2

= f̂(v−
j+ 1

2

, v+
j+ 1

2

) ≈ f(u(xj+ 1
2

, tk)), tn ≤ tk < tn+1. (2.4.2)

Here, we have abused the notation. The numerical flux (2.4.2) is different from that defined in

Eq. (2.2.2) since not the time integration but the flux is approximated directly. In addition,

v±
j+ 1

2

is time-dependent for a time integrator must be employed together with the ENO spatial

discretization. For example, we can use the typical third-order TVD RK3 method (see the

next chapter about WENO schemes). For simplicity, we suppress the time dependence of v±
j+ 1

2

,

which will be discussed below.

The scheme (2.4.1) is said to have r-order of accuracy if its spatial discretization, e.g., ENO

type, is r-order. It is noted that for high-order schemes, in general, the accuracy of the time

integrator is less than that of the spatial discretization method. Nevertheless, we can choose

an appropriate time step ∆t so that a uniform order is achieved in both time and space. Let

rt and rx be the accuracy orders of the time integrator and spatial discretization, respectively.

The truncation errors of the scheme (2.4.1) are

dv̄j(t)

dt
= −

f̂j+ 1
2
− f̂j− 1

2

∆x
= −∂f

∂x

∣∣∣∣
x=xj

+ O(∆trt) + O(∆xrx). (2.4.3)

Choosing the time step such that

∆t = min(∆tCFL,∆x
rx/rt), (2.4.4)

where the first argument is restrained from the CFL condition. Substituting in Eq. (2.4.3), we

obtain a uniform ∆xrx truncation error.

We note that v±
j+ 1

2

= v±(xj+ 1
2

) where v±(x) are the reconstruction polynomials of the so-

lution u(x, tk) for fixed time tk on either side of interface xj+ 1
2

, respectively. The procedure

is called reconstruction since a pointwise value is approximated from the averaged ones. Here,

we again abuse the notations by not mentioning the time dependence of v̄j ’s with the impli-

cation that these are given information from some fixed time step tk. In terms of notations,
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f̂(v−
j+ 1

2

, v+
j+ 1

2

) is consistent with f̂(v̄j−p, . . . , v̄j+q;xj+ 1
2

) for





v−
j+ 1

2

= v−(xj+ 1
2

; v̄nj−p, . . . , v̄
n
j+q−1),

v+
j+ 1

2

= v+(xj+ 1
2

; v̄nj−p+1, . . . , v̄
n
j+q).

(2.4.5)

We notice that in general, v−
j+ 1

2

6= v+
j+ 1

2

since v−(x) 6= v+(x).

2.4.2 Reconstruction

For simplicity, we discuss the 1D scalar case. Let Sj := {Ij−p, . . . , Ij+q−1} be the reconstruction

stencil with p + q = r points. We remind that the global reconstruction function is denoted as

follows at some fixed time tk,

v∆x(x) =
∑

j

vSj
(x)χSj

(x). (2.4.6)

Comparing Eq. (2.4.6) with (2.4.5), we have that v−(x) = vSj
(x) and v+(x) = vSj+1

(x).

An ENO reconstruction v∆x(x) with vSj
(x) be a polynomial of degree at most (r−1) satisfies

the following conditions ([51], [124]),

i. Order of accuracy:

v∆x(x) = v(x) + O(∆xr), (2.4.7)

where v(x) is smooth over some neighborhood of x. Here, v(x) is as follows, for all j’s,

v̄j =
1

∆x

∫ x
j+1

2

x
j− 1

2

v(x)dx. (2.4.8)

Note that we are given only {v̄j}, not v(x).

ii. Conservation: for all j’s,

1

∆x

∫ x
j+1

2

x
j− 1

2

v∆x(x)dx = v̄j . (2.4.9)

iii. Monotonicity: v∆x(x) is monotone in any interval which contains a discontinuity.

iv. ENO property:

TV (v∆x) ≤ TV (v) + O(∆xr). (2.4.10)
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The last inequality implies that v∆x is reconstructed in such a way that no oscillations of

order O(1) occur near discontinuities, but indeed allows those in the order of the truncation

error. This follows from properties (i) and (ii) (see [124], [60]).

ENO reconstruction is based on the primitive function V ′(x) = v(x), and is constructed in

a hierarchical approach in which a point either from the left or the right of the current stencil

is added to form a new one. The basic stencil is chosen to be S0 := {xj− 1
2

, xj+ 1
2

}. We note

that, thanks to property (iii.) above, it is admissible for S0 to contain a discontinuity. A point

is added in such a way that the modulus of the undivided Newton difference of V over the

new stencil is smaller. For example, starting from S0, we compute V [xj− 3

2

, xj− 1

2

, xj+ 1

2

] and

V [xj− 1
2

, xj+ 1
2

, xj+ 3
2

]. We note that an undivided Newton’s difference has the recursive formula

g[x0, . . . , xk] = g[x1, . . . , xk]− g[x0, . . . , xk−1], (2.4.11)

where g[x0] = g(x0).

We then choose S1 = S0 ∪ {xj− 3
2

} if

∣∣V [xj− 3
2

, xj− 1
2

, xj+ 1
2

]
∣∣ ≤

∣∣V [xj− 1
2

, xj+ 1
2

, xj+ 3
2

]
∣∣; (2.4.12)

or S1 = S0 ∪ {xj+ 3
2

} otherwise.

The procedure continues until the designed accuracy order is achieved.

We note that the undivided Newton’s difference is closely related to the smoothness of a

function given appropriate smoothness. That is, for a polynomial g(x) of degree k over the

stencil {x0, . . . , xk}, we have that

g[x0, . . . , xk] =
1

k!

dkg(ξ)

dxk
∆xk = O(∆xk), for some ξ ∈ [x0, xk]; (2.4.13)

whereas

g[x0, . . . , xk] = O(1), (2.4.14)

in case g(x) is a function containing a discontinuity. This property can be checked directly

from observing that the polynomial g(x) can be represented in terms of undivided Newton’s

differences as follows,

g(x) =

k∑

l=0

g[x0, . . . , xl]∆x
l
k−1∏

m=0

(x− xm). (2.4.15)

Differentiating g(x) k times, we obtain relation (2.4.13) immediately.
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2.4 Essentially Non-Oscillatory (ENO) Schemes

Eq. (2.4.13) implies that our choice of stencils in the ENO reconstruction in Eq (2.4.12)

always results in a smoother stencil. Proofs of properties (i) - (iv) for ENO reconstruction can

be found in [60], or [124]. Details on the reconstruction algorithms, ENO schemes in terms of

finite volume, finite difference, and numerical illustrations are given in [124].

2.4.3 Numerical Flux

By reconstruction, we can obtain approximations on the left and right of xj+ 1
2

, i.e., v±
j+ 1

2

=

v±(xj+ 1
2

). The issue now is how one can approximate f̂(v−
j+ 1

2

, v+
j+ 1

2

). As suggested in the

section of the Godonov scheme, we seek for ṽ(x, t) such that

f̂(v−
j+ 1

2

, v+
j+ 1

2

) = f(ṽ(xj+ 1
2

)), (2.4.16)

where ṽ is the exact or approximate solution of the generalized Riemann problem,





ṽt + f(ṽ)x = 0, x ∈ Sj, tn ≤ t < tn+1,

ṽ(x, tn) =

{
v−(x), for x < xj+ 1

2

,

v+(x), for x > xj+ 1
2

.

(2.4.17)

We note that since the initial data is dependent on x ∈ Sj, it is not a trivial task in solving

Eq. (2.4.17). A closer observation at the numerical flux reveals that we do not need ṽ for all

x, but at xj+ 1
2

only. Denoting vL := v−
j+ 1

2

, vR := v+
j+ 1

2

, problem (2.4.17) reduces to exactly Eq.

(2.3.10) whose solution is explicit. Hence, the monotone fluxes given in Eqs. (2.3.15), (2.3.27),

(2.3.28), or the Roe’s one with entropy fix Eq. (2.3.31) can be employed for ENO schemes, with

v̄nj and v̄nj+1 replaced by v−
j+ 1

2

, v+
j+ 1

2

, respectively.

2.4.4 Characteristic Projection

In this subsection, we consider the hyperbolic conservation law

{
ut + f(u)x = 0, −∞ < x <∞, t > 0,

u(x, 0) = u0(x).
(2.4.18)

For ENO schemes, we need the assumption that there are a finite number of discontinuities

in the solution so that for sufficiently small grid size ∆x, we can always choose such a smooth

stencil for the reconstruction. Unfortunately, this condition is not always satisfied. For example,

if there are two shocks propagating in time with different directions, there is a certain point

of time when these shocks collide. A typical shock collision problem can be found in the the

paper of Woodward and Colella ([151]). See also numerical test 5 in the next chapter. Thus no

matter how small ∆x is, there does not exist enough grid points for the reconstruction, which
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2.4 Essentially Non-Oscillatory (ENO) Schemes

leads to oscillations. This implies that ENO discretizations of the component-wise variable u is

not a good choice.

To circumvent the situation, it is suggested in [51] that ENO discretizations can be em-

ployed in the characteristic fields. As demonstrated in the previous section about characteristic

decomposition, there is only one simple wave, either shock, rarefaction, or contact discontinuity,

which propagates in time in each characteristic field. Thus the case that two shocks may collide

is eliminated, and there is enough space to choose an appropriate smooth stencil for the recon-

struction. A difficulty is for a nonlinear case, these characteristic fields continuously depends

on the solution itself. To overcome this, we seek for the numerical solution of not the system

(2.4.18) but the linearized one,

ut +A(uj+ 1

2

)ux = 0, (2.4.19)

where A(uj+ 1
2

) is the average (in some sense) Jacobian of the flux f(u). A good candidate is

Roe’s averaging one Ã(uj ,uj+1), which satisfies the following conditions

i. Ã(uj ,uj+1) is hyperbolic, i.e., the eigenvalues are real and eigenvectors are linearly inde-

pendent.

ii. Ã(uj ,uj+1) is consistent with A(u), i.e., Ã(u,u) = A(u).

iii. The following relation holds

f(uj)− f(uj+1) = Ã(uj ,uj+1)(uj − uj+1). (2.4.20)

The last property mimics the Rankine-Hugoniot condition which ensures the conservation

of the system in a sense that a shock wave is correctly recognized. In fact, by Eq. (2.4.20), the

shock propagation speed is an eigenvalue of Ã. There exists a closed form of Ã for the Euler

systems. See [118], [138] for detail.

For ENO schemes in characteristic fields, we first seek for the eigenvalues, left and right

eigenvectors of the Roe average Ã(uj ,uj+1). We then project the variable u to the charac-

teristic fields by left multiplying (2.4.19) with L the matrix of left eigenvectors to obtain the

characteristic variable w. ENO discretization is applied to w, then the approximation is pro-

jected back the the physical field by multiplying with R the matrix of right eigenvectors. For a

detailed algorithm, we refer to [124].
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3

WENO and the Adaptive WENO-θ

Schemes

In the previous chapter, we have presented numerical approaches to conservation laws so that

oscillations near discontinuities can be controlled in some sense. For TVD schemes, this goal is

achieved through limiters, whereas for ENO schemes, a stencil-wise polynomial is reconstructed

on the smoothest stencil so that it is essentially non-oscillatory. The smoothness depends on

a comparison of the undivided Newton differences. This allows ENO schemes to achieve much

higher order of accuracy than the TVD ones, which usually have 2nd-order.

The limitation of ENO schemes is that it is costly and hard to analyze due to lots of “if”

statements, and somehow inefficient since only one of the stencil candidates is chosen, i.e., the

smoothest one. For an rth-order ENO scheme, only the smoothest stencil is chosen among r

candidates to approximate the numerical flux. The smoothness of the solution on each stencil

is determined by an indicator of smoothness. Later on, Liu, Osher, and Chan ([92]) upgraded

ENO schemes and introduced the Weighted ENO (WENO) by combining all stencil candidates

(hereafter sub-stencils) in the numerical flux approximation. Here, a nonlinear weight is assigned

to each sub-stencil to control its contribution in the procedure. WENO schemes maintain the

essentially non-oscillatory property of the ENO near discontinuities and outperform the latter

in smooth regions where the accuracy order is increased to (r + 1)th-order if r sub-stencils

are used. Consequently, Jiang and Shu (see [78], also [122], and the review [125]) constructed

WENO schemes in the framework of finite difference and further improved the order to (2r−1)th

in smooth regions by introducing a new class of smoothness indicators. Hereafter, we denote

WENO-JS for the 5th-order finite difference WENO developed in [78]. In [12], [135] higher

order than 5th-order WENO schemes are given.

Since the introduction of WENO, many improvements and derivatives of the schemes have

been developed and introduced. Henrick et al. in [50] carefully analyzed the sufficient conditions

of the nonlinear weights and found that WENO-JS does not achieve the designed 5th-order but
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3.1 Overview

reduces to only 3rd-order in case the first and third derivatives of the flux are simultaneously

zero (e.g., f ′(xj) = 0 but f ′′′(xj) 6= 0 for the scalar case of Eq. (3.1.1) below). They then

suggested an improved version which is called mapped WENO, abbreviated by WENO-M. By

using a mapping on the nonlinear weights, WENO-M satisfies the sufficient condition on which

WENO-JS fails and obtains optimal order near simple smooth extrema. In a different approach

on the construction of the nonlinear weights, in [8] Borges et al. introduced the 5th-order

WENO-Z scheme. Here, the authors also measured the smoothness of the large stencil which

comprises all sub-stencils and incorporated this in devising the new smoothness indicators and

nonlinear weights. It was proven numerically that WENO-Z is less dissipative than WENO-JS

and more efficient than WENO-M, respectively. It was also checked that WENO-Z attains 4th-

order near simple smooth extrema comparing with 3rd-order of WENO-JS. For higher order

WENO-Z schemes, we refer readers to [13]. Another approach to improve WENO schemes is

the new designs of the smoothness indicators. In [53], L1-norm based smoothness indicators

are suggested, and the ones devised from Lagrange interpolation polynomials are given in [31],

and [35]. See also [34] for a new mapped WENO scheme.

3.1 Overview

3.1.1 Finite Difference Schemes

For simplicity, we consider Eq. (2.1.1) in a scalar case. We write the equation as below,

{
ut + f(u)x = 0, x ∈ [xl, xr],

u(x, 0) = u0(x).
(3.1.1)

For simplicity, periodic boundary conditions, i.e., u(xl, t) = u(xr, t), are applied.

We denote h(x) the flux function defined as follows,

f(u(x, ·)) = h̄(x) :=
1

∆x

∫ x+∆x
2

x−∆x
2

h(y)dy. (3.1.2)

Evaluating Eq. (3.1.1) at grid point xj , we obtain the semi-discrete form as follows,

duj
dt

= −∂f
∂x

∣∣∣∣
x=xj

= −
h(xj+ 1

2

)− h(xj− 1
2

)

∆x
=: L(u). (3.1.3)

It is noticed that Eq. (3.1.3) is exact since there are no approximating errors in the formula.

Approximating Eq. (3.1.3) by

dvj(t)

dt
= −

f̂j+ 1
2

− f̂j− 1
2

∆x
=: L̂(v), (3.1.4)
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3.2 5th-order Upwind WENO Schemes

where the numerical flux f̂(x) is an approximation of the flux h(x). We notice that vj(t) here

is a pointwise approximation of u(xj , t). Hence, the scheme is finite difference.

We say that a scheme is of pth order of accuracy providing that

L̂(v) = −f(u(x, t))x
∣∣
x=xj

+ O(∆xp). (3.1.5)

3.1.2 Time Integration

We first mention about time advancing for Eq. (3.1.3). Following [43] and the references therein,

for all below WENO schemes, we apply the 3rd-order TVD Runge-Kutta method as below. For

TVD, we mean that the time integrator follows the same property in the previous chapter.

Here, ∆t is the time step satisfying some proper CFL condition.

v(1) = vn +∆tL̂(vn),

v(2) =
3

4
vn +

1

4
v(1) +

1

4
∆tL̂(v(1)),

vn+1 =
1

3
vn +

2

3
v(2) +

2

3
∆tL̂(v(2)),

(3.1.6)

where L̂(u) obtained from some method is an approximation of the spatial operator L(u). In

particular, see the below WENO discretizations L̂
5(u) in Eq. (3.2.13) where f̂5

j+ 1

2

follows Eq.

(3.2.14) and L̂
6(u) in Eq. (3.3.5) where f̂6

j+ 1

2

is defined in Eq. (3.3.6) with γk’s replaced by

ωk’s.

We now proceed to the discussions on the spatial discretizations.

3.2 5th-order Upwind WENO Schemes

3.2.1 Reconstruction

We notice that for simplicity, we can assume that f ′(u) ≥ 0 over the whole computational

domain. In case there is a change in signs of f ′(u), a flux splitting technique is invoked. We

discuss this in remark 3.2.1 below.

Originally, WENO schemes were constructed in the context of finite volume (see [92]).

Thanks to lemma 3.1 given in [125], the schemes can be transformed into finite difference

through relation (3.1.2). The h̄j is called an average value of the numerical flux h(x) over the

interval Ij . We then seek for an approximating polynomial f̂5(x) of degree four of h(x) as below

h(x) ≈ f̂5(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4, (3.2.1)

over the large stencil S5 = {xj−2, xj−1, xj , xj+1, xj+2}. We note that S5 is chosen biased to the

left with respect to the point xj+ 1
2

for the stability purpose. Hence, the scheme is in an upwind
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3.2 5th-order Upwind WENO Schemes

sense.

Substituting the polynomial in Eq. (3.2.1) into Eq. (3.1.2) and evaluating at

xk = (k − j)∆x, k = j − 2, . . . , j + 2, around xj = 0, (3.2.2)

we obtain that





1
∆x

∫ − 3∆x
2

− 5∆x
2

(a0 + a1y + a2y
2 + a3y

3 + a4y
4)dy = fj−2,

1
∆x

∫ −∆x
2

− 3∆x
2

(a0 + a1y + a2y
2 + a3y

3 + a4y
4)dy = fj−1,

1
∆x

∫ ∆x
2

−∆x
2

(a0 + a1y + a2y
2 + a3y

3 + a4y
4)dy = fj,

1
∆x

∫ 3∆x
2

∆x
2

(a0 + a1y + a2y
2 + a3y

3 + a4y
4)dy = fj+1,

1
∆x

∫ 5∆x
2

3∆x
2

(a0 + a1y + a2y
2 + a3y

3 + a4y
4)dy = fj+2.

(3.2.3)

We then obtain the Vandermonde matrix of the coefficients ak’s as follows,

M =




1 −2∆x
49

12
∆x2 −17

2
∆x3

1441

80
∆x4

1 −∆x
13

12
∆x2 −5

4
∆x3

121

80
∆x4

1 0
1

12
∆x2 0

1

80
∆x4

1 ∆x
13

12
∆x2

5

4
∆x3

121

80
∆x4

1 2∆x
49

12
∆x2

17

2
∆x3

1441

80
∆x4




. (3.2.4)

By solving the linear system

M ĉ = f , (3.2.5)

where ĉ is the column vector of the unknown coefficients, f is the grid values of the flux function

f(u) given in the right-hand side of Eq. (3.2.3), the reconstruction polynomial f̂5(x) is uniquely

determined with the coefficients given as follows,




a0

a1

a2

a3

a4




=




3

640
fj−2 −

29

480
fj−1 +

1067

960
fj −

29

480
fj+1 +

3

640
fj+2

5

48∆x
fj−2 −

17

24∆x
fj−1 +

17

24∆x
fj+1 −

5

48∆x
fj+2

− 1

16∆x2
fj−2 +

3

4∆x2
fj−1 −

11

8∆x2
fj +

3

4∆x2
fj+1 −

1

16∆x2
fj+2

− 1

12∆x3
fj−2 +

1

6∆x3
fj−1 −

1

6∆x3
fj+1 +

1

12∆x3
fj+2

1

24∆x4
fj−2 −

1

6∆x4
fj−1 +

1

4∆x4
fj −

1

6∆x4
fj+1 +

1

24∆x4
fj+2




. (3.2.6)
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Evaluating f̂5(x) at xj+ 1

2

= ∆x/2 gives us,

f̂5
j+ 1

2

=
2

60
fj−2 −

13

60
fj−1 +

47

60
fj +

27

60
fj+1 −

3

60
fj+2. (3.2.7)

Here, we recall fk = f(uk) = f(u(xk, ·)).
Since the procedure is via the average h̄k = h̄(xk) = f(u(xk, ·)) in Eq. (3.1.2), we call this

the reconstruction and f̂5(x) is the reconstruction polynomial.

To justify the approximation error, we denote the polynomial H(x) such that

H ′(x) = h(x). (3.2.8)

We then deduce from Eq. (3.1.2) that

f(u(x, ·)) = 1

∆x

∫ x+∆x
2

x−∆x
2

H ′(y)dy =
H(x+ ∆x

2 )−H(x− ∆x
2 )

∆x
. (3.2.9)

Substituting Eq. (3.2.9) into the approximation (3.2.7), evaluating at xk, k = j−2, . . . , j+2,

and applying Taylor expansions of H(x) at x = xj+ 1

2

, we obtain the following truncation error,

f̂5
j+ 1

2

=
1

60∆x
(−2Hj− 5

2

+ 15Hj− 3
2

− 60Hj− 1
2

+ 20Hj+ 1
2

+ 30Hj+ 3
2

− 3Hj+ 5
2

)

= H ′

j+ 1
2

− 1

60

d6H

dx6

∣∣∣∣
x=x

j+1
2

∆x5 + O(∆x6) = hj+ 1
2

− 1

60

∂5f

∂x5

∣∣∣∣
x=xj

∆x5 + O(∆x6).
(3.2.10)

The last equality in Eq. (3.2.10) is justified as follows. Thanks to the relation in (3.2.9), by

a Taylor expansion around xj+ 1
2

we have that

∂5f

∂x5

∣∣∣∣
x=xj

=
1

∆x


d

5H

dx5

∣∣∣∣
x=x

j+1
2

− d5H

dx5

∣∣∣∣
x=x

j+1
2
−∆x


 =

d6H

dx6

∣∣∣∣
x=x

j+1
2

+ O(∆x). (3.2.11)

Together with Eq. (3.2.8), we deduce the last equality in Eq. (3.2.10).

Similarly, we have

f̂5
j− 1

2

=
2

60
fj−3 −

13

60
fj−2 +

47

60
fj−1 +

27

60
fj −

3

60
fj+1 (3.2.12)

= hj− 1
2

− 1

60

∂5f

∂x5

∣∣∣∣
x=xj

∆x5 + O(∆x6).

43



3.2 5th-order Upwind WENO Schemes

Figure 3-1: Stencils for 5th-order WENO schemes.

Hence, we have

duj
dt

≈ −
f̂5
j+ 1

2

− f̂5
j− 1

2

∆x
=: L̂5(u). (3.2.13)

The scheme is 5th-order of accuracy in space.

For non-smooth solutions, we employ WENO reconstruction. The idea of WENO schemes

is that, instead of the 5-point stencil S5, a convex combination of three 3-point sub-stencils are

facilitated for an adaptive choice of candidates for the reconstruction. That is,

f̂j+ 1
2

=

2∑

k=0

ωkf̂
k
j+ 1

2

, (3.2.14)

where f̂k
j+ 1

2

’s are defined below and ωk is the non-linear weight satisfying ωk ≥ 0, ∀k and

2∑

k=0

ωk = 1. (3.2.15)

The necessity of non-negative nonlinear weights is discussed in [95] and in [131] for practical

implementations. And f̂k
j+ 1

2

is the approximation of hj+ 1

2

by the reconstruction polynomial

f̂k(x) = b0 + b1x + b2x
2 over the sub-stencil Sk, k = 0, 1, 2. Here, S0 = {xj−2, xj−1, xj},

S1 = {xj−1, xj, xj+1}, and S2 = {xj , xj+1, xj+2} (see Fig. 3-1). Carrying a similar process as

for the large stencil S5, we find that around xj = 0,

f̂0(x) =
−fj−2 + 2fj−1 + 23fj

24
+

(
fj−2 − 4fj−1 + 3fj

2∆x

)
x+

(
fj−2 − 2fj−1 + fj

2∆x2

)
x2, (3.2.16)

f̂1(x) =
−fj−1 + 26fj − fj+1

24
+

(
fj+1 − fj−1

2∆x

)
x+

(
fj−1 − 2fj + fj+1

2∆x2

)
x2, (3.2.17)
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f̂2(x) =
23fj + 2fj+1 − fj+2

24
+

(−3fj + 4fj+1 − fj+2

2∆x

)
x+

(
fj − 2fj+1 + fj+2

2∆x2

)
x2. (3.2.18)

Evaluating each of these f̂k(x)’s at xj+ 1

2

, we obtain that

f̂0
j+ 1

2

=
2

6
fj−2 −

7

6
fj−1 +

11

6
fj, (3.2.19)

f̂1
j+ 1

2

= −1

6
fj−1 +

5

6
fj +

2

6
fj+1, (3.2.20)

f̂2
j+ 1

2

=
2

6
fj +

5

6
fj+1 −

1

6
fj+2. (3.2.21)

Carrying a similar process as given in Eqs. (3.2.10) - (3.2.11) with f̂k
j+ 1

2

replacing f̂5
j+ 1

2

, we

obtain that

hj+ 1
2

= f̂k
j+ 1

2

+ O(∆x3). (3.2.22)

Comparing between f̂5
j+ 1

2

given in Eq. (3.2.7) and the ones in Eqs. (3.2.19) - (3.2.21), we

deduce the following linear relation

f̂5
j+ 1

2

=
2∑

k=0

γkf̂
k
j+ 1

2

, (3.2.23)

where

γ0 =
1

10
, γ1 =

6

10
, γ2 =

3

10
, (3.2.24)

are called the linear (optimal) weights. We note that

2∑

k=0

γk = 1. (3.2.25)

Adding and subtracting
∑2

k=0 γkf̂
k
j+ 1

2

into and from Eq. (3.2.14), thanks to the truncation

errors in Eqs. (3.2.10), (3.2.22), the normalization in Eqs. (3.2.15), (3.2.25), and the linear
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relation (3.2.23) we obtain that

f̂j± 1

2

=

2∑

k=0

(ω±
k − γ±k )f̂

k
j± 1

2

+

2∑

k=0

γ±k f̂
k
j± 1

2

=

2∑

k=0

(ω±
k − γ±k )(hj± 1

2

+ O(∆x3)) +

(
hj± 1

2

− 1

60

∂5f

∂x5

∣∣∣∣
x=xj

∆x5 + O(∆x6)

)

= hj± 1
2

− 1

60

∂5f

∂x5

∣∣∣∣
x=xj

∆x5 +

2∑

k=0

(ω±
k − γ±k )O(∆x

3) + O(∆x6),

(3.2.26)

where γ±k , ω
±
k are the linear and non-linear weights of the sub-stencils S

j± 1
2

k corresponding to

the interfaces xj± 1

2

, respectively.

Hence, in order that the discretization in Eq. (3.2.13) where f̂5
j± 1

2

= f̂j± 1
2

follow the nonlin-

ear relation (3.2.14) to be 5th-order, we deduce the sufficient condition for the nonlinear weights

as follows,

ω±
k − γ±k = O(∆x3), ∀k. (3.2.27)

Different WENO schemes depends on how these nonlinear weights and the smoothness in-

dicators are defined. The latter ones are introduced in the below section. In the following

subsections, we summarize the 5th-order upwind and 6th-order central WENO schemes dis-

cussed previously.

3.2.2 WENO-JS

In [78], Jiang and Shu defined the nonlinear weights as follows,

ωJS
k =

αJS
k∑2

l=0 α
JS
l

, αJS
k =

γk
(ε+ βk)p

, (3.2.28)

where γk is defined in Eq. (3.2.24), βk is called the smoothness indicator of Sk which measures

how smooth the solution is over this sub-stencil. The authors defined these βk’s through the

normalized L2-norm of high-order variations of the reconstruction polynomials given in Eqs.

(3.2.19) - (3.2.21). Explicitly, for a 5th-order scheme, we have

βk = ∆x

∫ x
j+1

2

x
j− 1

2

(
d

dx
f̂k(x)

)2

dx+∆x3
∫ x

j+1
2

x
j− 1

2

(
d2

dx2
f̂k(x)

)2

dx, (3.2.29)

where f̂k(x)’s are as in Eqs. (3.2.16) - (3.2.18) and the sub-stencils S0, S1, S2 are centered

around xj = 0.
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3.2 5th-order Upwind WENO Schemes

Evaluating for each k, we obtain that

β0 =
13

12
(fj−2 − 2fj−1 + fj)

2 +
1

4
(fj−2 − 4fj−1 + 3fj)

2 (3.2.30)

= f ′2∆x2 +

(
13

12
f ′′2 − 2

3
f ′f ′′′

)
∆x4 + O(∆x5),

β1 =
13

12
(fj−1 − 2fj + fj+1)

2 +
1

4
(fj+1 − fj−1)

2 (3.2.31)

= f ′2∆x2 +

(
13

12
f ′′2 +

1

3
f ′f ′′′

)
∆x4 + O(∆x6),

β2 =
13

12
(fj − 2fj+1 + fj+2)

2 +
1

4
(3fj − 4fj+1 + fj+2)

2 (3.2.32)

= f ′2∆x2 +

(
13

12
f ′′2 − 2

3
f ′f ′′′

)
∆x4 + O(∆x5),

where the derivatives are evaluated at x = xj.

In formula (3.2.28), ε is a small parameter to prevent zero division. In most cases, WENO-

JS works well with ε = 10−6. A thorough analysis of the role of ε can be found in [50]. The

parameter p is to increase the dissipation of the scheme. For WENO-JS, p = 2 is chosen.

If f ′j = f ′(xj) 6= 0, ∀k, βk can be written in the form

βk = (f ′j∆x)
2(1 + O(∆x2)). (3.2.33)

Substituting these into Eq. (3.2.28) with the removal of ε, since (1 + y)−2 = 1 + O(y), by Eq.

(3.2.25) we obtain that

ωJS
k =

γk(f
′
j∆x)

−2(1 + O(∆x2))

(f ′j∆x)
−2
∑2

l=0 γl(1 + O(∆x2))
= γk + O(∆x2), (3.2.34)

which is a relaxed form of (3.2.27). We notice that for WENO-JS, ωJS
k cannot satisfy condition

(3.2.27) directly. Moreover, if f ′j = 0, it is observed from Eqs. (3.2.30) - (3.2.32) that βk =
13
12(f

′′
j )

2∆x4(1+O(∆x)) for k = 0, 2 and β1 =
13
12(f

′′
j )

2∆x4(1 +O(∆x2)), in which the condition

(3.2.33) is not satisfied for all k’s. Similarly, we find that

ωJS
k = γk + O(∆x), (3.2.35)

which is a loss of accuracy near this critical point. Numerically checks show that with ε = 10−40,

WENO-JS is only 3rd-order near simple smooth critical points, i.e., f ′j = 0 6= f
(k)
j , k ≥ 2. This

accuracy loss is improved by the mapped WENO, and later by the WENO-Z scheme presented
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3.2 5th-order Upwind WENO Schemes

in the next subsections.

3.2.3 Mapped WENO

Henrick et al. ([50]) proposed a method to improve the relaxed condition (3.2.34) of WENO-JS

by introducing the mapping function, for k = 0, 1, 2,

gk(ω) =
ω(γk + γ2k − 3γkω + ω2)

γ2k + ω(1− 2γk)
, (3.2.36)

where γk is the linear weight in Eq. (3.2.24).

All of these functions are monotonically increasing with gk(0) = 0, gk(1) = 1, gk(γk) = γk,

and they are flat up to 2nd-order, i.e.,

g′k(γk) = g′′k(γk) = 0 (3.2.37)

about the optimal value.

The new non-linear weights are modified as

ωM =
αM
k∑2

l=0 α
M
l

, αM
k = gk(ω

JS
k ), (3.2.38)

whereas the other procedures follows exactly as those of the WENO-JS scheme.

We check that by the mapping functions gk(x), condition (3.2.27) is satisfied directly. By a

Taylor expansion abut γk of gk(ω), we deduce that

αM
k = gk(γk) + g′k(γk)

(
ωJS
k − γk

)
+

1

2
g′′
(
ωJS
k − γk

)2
+

1

6
g′′′
(
ωJS
k − γk

)3
+ O(ωJS

k − γk)

= γk + O(
(
ωJS
k − γk

)3
)

= γk + O(∆x3),

(3.2.39)

thanks to condition (3.2.37) and the observation (3.2.35). It implies that

ωM
k = γk + O(∆x3), (3.2.40)

which is condition (3.2.27).

The disadvantage of mapped WENO is that the scheme is more expensive since the non-

linear weights are computed twice, one for those of WENO-JS and the other for the mapping,

and it is not easy to generalize. We discuss the WENO-Z scheme below that somehow overcomes

these difficulties.
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3.2 5th-order Upwind WENO Schemes

3.2.4 WENO-Z

Borges et al. in [8] proposed a new WENO-Z. In their scheme, the nonlinear weights are defined

differently from those of WENO-JS. They are as follows,

ωZ
k =

αZ
k∑2

l=0 α
Z
l

, αZ
k = γk

(
1 +

(
τZ

ε+ βk

)q)
, (3.2.41)

where the smoothness indicators βk’s are the same as those given in Eqs. (3.2.30) - (3.2.32),

ε = 10−40, and τZ is the smoothness indicator of S5. Power q is used to tune the relation

between the dispersive and dissipative property of the scheme. It is checked numerically in [8]

that the scheme becomes more dissipative when q is increased. For WENO-Z, τZ is defined as

follows,

τZ = |β0 − β2| =
13

3
|f ′′f ′′′|∆x5 + O(∆x6). (3.2.42)

We note that if f ′j 6= 0 and q = 1, βk = O(∆x2), ∀k. Then

τZ

βk
= O(∆x3), ∀k. (3.2.43)

Similarly to Eq. (3.2.34), we obtain that

ωZ
k = γk + O(∆x3), (3.2.44)

directly without using the relaxed version as the WENO-JS scheme. It was also proven in [8]

that WENO-Z is 4th-order near simple smooth critical points (i.e. where f ′j = 0) for q = 1 and

attains the designed 5th-order for q = 2. The tradeoff for the latter case is that the scheme is

more dissipative. Throughout this work, we choose q = 1. One more advantage of WENO-Z over

WENO-JS is that the former is more central in a sense that the stencil over which the solution

is discontinuous plays more roles in the approximation of the numerical flux. This assessment is

checked as follows. We suppose that S2 contains a discontinuity whereas the solution is smooth

over the other two sub-stencils. Hence, τZ = O(1), β2 = O(1), and βk = O(∆x2), k = 0, 1.

Then,

αZ
2

αZ
k

=
γ2

(
1 + τZ

β2

)

γk

(
1 + τZ

βk

) =

γ2
β2
(β2 + τZ)

γk
βk
(βk + τZ)

=
αJS
2 (β2 + τZ)

αJS
k (βk + τZ)

≥ αJS
2

αJS
k

, (3.2.45)
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since

β2 + τZ

βk + τZ
≈ β2 + τZ

τZ
≥ 1. (3.2.46)

Hence, WENO-Z has a sharper capturing of discontinuities than WENO-JS.

Remark 3.2.1.

i. In case the condition f ′(u) ≥ 0 is not satisfied, which is general in real applications, we

apply a flux splitting technique to decompose f(u) into positive and negative components.

The global Lax-Friedrichs flux splitting is used in most applications (see [78] and the

references therein),

f±(u) =
1

2
(f(u)± αu), (3.2.47)

where α = max |f ′(u)| over the whole computational domain. Then,

f̂j+ 1
2

= f̂+
j+ 1

2

+ f̂−
j+ 1

2

. (3.2.48)

The negative flux f̂−
j+ 1

2

is symmetric to f̂+
j+ 1

2

with respect to xj+ 1
2

.

ii. If the flux splitting is employed, the overall number of grid points used in the reconstruc-

tion of the numerical flux is increased by one. That is, let S5+ and S5− be the stencils

over which f̂+
j+ 1

2

and f̂−
j+ 1

2

are determined, then

S6 := S5+
⋃
S5− = {xj−2, xj−1, xj , xj+1, xj+2, xj+3}, (3.2.49)

which consists of six points. We note that with this S6, there exists a polynomial of degree

five which reconstructs h(x) over the stencil. Therefore, the accuracy of WENO schemes

can be increased up to sixth. These schemes are discussed in the subsection below.

3.3 6th-order Central WENO Schemes

As indicated in the previous remark, for a general flux where the signs of the eigenvalues of the

Jacobian A(u) are not uniform throughout the domain, a flux splitting technique, for example,

the global or local Lax-Friedrichs or the Roe with entropy fix (see [78] and the references

therein) is needed. This increases the number of grid points in the numerical flux approximating

procedure by one. We take the 5th-order WENO-JS scheme for example, the total number of
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grid points used in the reconstruction for both positive and negative fluxes will be six instead

of five. We also note that with these six points, one can indeed improve the scheme up to

6th-order in smooth regions. The difficulty of this approach lies in the dispersive nature of a

central scheme if six points are employed. In this case, oscillations are expected to occur near

discontinuities. In [157] (see also [16] for the boundary condition treatment), Yamaleev and

Carpenter for the first time introduced a 6th-order WENO scheme by adding one more sub-

stencil into the numerical flux approximation. We denote this scheme WENO-NW6. For this

most downwind sub-stencil, an ad hoc treatment on the smoothness indicator β3 was suggested.

The idea is originated from that of Mart́ın et al. in [102]. In order that oscillations do not

happen, β3 is computed using the information of f(u) on all grid points of the large stencil,

i.e, six points. Hence, the sub-stencil only plays roles in case the solution is smooth over this

large stencil. In a similar manner, recently Hu, Wang, and Adams in [64] proposed an adaptive

central-upwind WENO-CU6 scheme which switches between a 5th-order upwind and 6th-order

central WENO scheme automatically. The difference of their work from that given in [157] is

that β3 is defined via a Lagrange interpolating polynomial of degree five over the large stencil.

In [49], the authors successfully applied WENO-CU6 in the LES simulation of scale separation.

Other hybrid WENO schemes can be found in, for examples, [14], or [93], [61], etc.

3.3.1 Reconstruction

Carrying a similar process with instead stencil S6, we obtain that

f̂6(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5, (3.3.1)

where the coefficients are




a0

a1

a2

a3

a5

a5




=




3

640
fj−2 −

29

480
fj−1 +

1067

960
fj −

29

480
fj+1 +

3

640
fj+2

341

5760∆x
fj−2 −

557

1152∆x
fj−1 −

259

576∆x
fj +

667

576∆x
fj+1 −

379

1152∆x
fj+2 +

259

5760∆x
fj+3

− 1

16∆x2
fj−2 +

3

4∆x2
fj−1 −

11

8∆x2
fj +

3

4∆x2
fj+1 −

1

16∆x2
fj+2

− 5

144∆x3
fj−2 −

11

144∆x3
fj−1 +

35

72∆x3
fj −

47

72∆x3
fj+1 +

47

144∆x3
fj+2 −

7

144∆x3
fj+3

1

24∆x4
fj−2 −

1

6∆x4
fj−1 +

1

4∆x4
fj −

1

6∆x4
fj+1 +

1

24∆x4
fj+2

− 1

120∆x5
fj−2 +

1

24∆x5
fj−1 −

1

12∆x5
fj +

1

12∆x5
fj+1 −

1

24∆x5
fj+2 +

1

120∆x5
fj+3




.

(3.3.2)
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Figure 3-2: Stencils for 6th-order WENO schemes.

Evaluating f̂6(x) at xj+ 1
2

= ∆x
2 gives us the approximation f̂6

j+ 1

2

as follows,

f̂6
j+ 1

2

=
1

60
fj−2 −

8

60
fj−1 +

37

60
fj +

37

60
fj+1 −

8

60
fj+2 +

1

60
fj+3

= hj+ 1
2

+
1

140

∂6f

∂x6

∣∣∣∣
x=xj

∆x6 + O(∆x7).
(3.3.3)

Similarly,

f̂6
j− 1

2

=
1

60
fj−3 −

8

60
fj−2 +

37

60
fj−1 +

37

60
fj −

8

60
fj+1 +

1

60
fj+2

= hj− 1

2

+
1

140

∂6f

∂x6

∣∣∣∣
x=xj

∆x6 + O(∆x7).
(3.3.4)

Hence we obtain that

duj
dt

≈ −
f̂6
j+ 1

2

− f̂6
j− 1

2

∆x
=: L̂6(u). (3.3.5)

The scheme is increased to 6th-order of accuracy in space.

Adding one more sub-stencil S3 = {xj+1, xj+2, xj+3} into the approximation of the interfaced

value f̂j+ 1
2

(see Fig. 3-2), we deduce a similar linear relation with Eq. (3.2.23) as follows

f̂6
j+ 1

2

=

3∑

k=0

γkf̂
k
j+ 1

2

, (3.3.6)

where

γ0 = γ3 =
1

20
, γ1 = γ2 =

9

20
. (3.3.7)
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Here, f̂3
j+ 1

2

is the 3rd-order approximation of the numerical flux h(x) at the interface xj+ 1
2

from the reconstruction polynomial f̂3(x) over the sub-stencil S3. Explicitly, we have that

f̂3(x) =

(
71

24
fj+1 −

35

12
fj+2 +

23

24
fj+3

)
+

1

∆x

(
−5

2
fj+1 + 4fj+2 −

3

2
fj+3

)
x

+
1

∆x2

(
1

2
fj+1 − fj+2 +

1

2
fj+3

)
x2.

(3.3.8)

Evaluating at xj+ 1
2

= ∆x
2 , we obtain that

f̂3
j+ 1

2

=
11

6
fj+1 −

7

6
fj+2 +

2

6
fj+3. (3.3.9)

The other approximations f̂k
j+ 1

2

’s, k = 0, 1, 2 follow Eqs. (3.2.19) - (3.2.21).

The nonlinear combination using the nonlinear weights is similar to that of the linear case

(3.3.6), except for the linear weight γk replaced by its nonlinear version ωk, k = 0, . . . , 3.

Remark 3.3.1.

i. Since the accuracy order is increased to sixth, the sufficient condition for the nonlinear

weights given in (3.2.27) is also increased by one. That is,

ω±
k − γ±k = O(∆x4), ∀k. (3.3.10)

ii. Observing from Eq. (3.3.6) that the approximations f̂j+ 1
2

’s are now symmetric with

respect to xj+ 1

2

. It means that the scheme now is central. Hence, spurious oscillations are

expected to occur near discontinuities. A treatment on the most downwind sub-stencil

S3 is needed to sustain the ENO property of the scheme. We now overview the 6th-order

WENO schemes for this case.

3.3.2 WENO-NW6

In [157], Yamaleev and Carpenter proposed a 6th-order energy-stable WENO scheme. They

introduced an artificial dissipative term and proved that this makes the new scheme be stable in

L2 sense. In this work, we only discuss their treatment on the nonlinear weights and omit this

artificial dissipative term (see [157] for a detailed discussion on the term). Hence, the scheme

here is denoted by WENO-NW6, not ESWENO as in their paper.

The nonlinear weights follow those defined in the WENO-Z scheme which are given in Eq.

(3.2.41), for k = 0, . . . , 3. The differences lie on the smoothness indicator of the most downwind

sub-stencil β3 and the one for the large stencil S6. For the former, in order that there are no
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oscillations occurring near discontinuities, all grid values of the flux over S6 are accounted for

the computation of β3. It is as follows,

β3 =
1

4
(β40 + β41 + β42 + β̃43)

1/4, (3.3.11)

where β̃3 is computed using the formula given in Eq. (3.2.29). That is,

β̃3 =
13

12
(fj+1 − 2fj+2 + fj+3)

2 +
1

4
(−5fj+1 + 8fj+2 − 3fj+3)

2

= f ′2∆x2 +

(
13

12
f ′′2 − 11

3
f ′f ′′′

)
∆x4 + O(∆x5),

(3.3.12)

where the derivatives are evaluated at x = xj. The other indicators βk’s, k = 0, 1, 2 follow Eqs.

(3.2.30) - (3.2.32).

The smoothness indicator of the large stencil S6 is defined as the highest, i.e., fifth-degree,

undivided difference as follows

τNW = (fj−2 − 5fj−1 + 10fj − 10fj+1 + 5fj+2 − fj+3)
2

= (f (5))2∆x10 + O(∆x11).
(3.3.13)

Carrying a similar procedure as in Eqs. (3.2.43) - (3.2.44) with a change in τ , thanks to Eq.

(3.3.13), we obtain that

τNW

βk
=

{
O(∆x8), if f ′j 6= 0,

O(∆x6), if f ′j = 0,
∀k, (3.3.14)

thus condition (3.3.10) is satisfied. Hence, the scheme is 6th-order in smooth regions. The case

where the derivatives of f vanish will be checked numerically in the below section.

3.3.3 WENO-CU6

In [64], Hu et al. developed the adaptive central-upwind scheme WENO-CU6 based on the prin-

ciple that the most downwind sub-stencil only plays roles in smooth regions and is suppressed

near discontinuities. Hence the scheme is central in smooth regions and upwind near discon-

tinuities. The scheme is different from WENO-NW6 in defining the smoothness indicators β3
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and τ . In particular, they are as below,

β3 =
1

120960
[271779f2

j−2 + fj−2(−2380800fj−1 + 4086352fj − 3462252fj+1 + 1458762fj+2 − 245620fj+3)

+ fj−1(5653317fj−1 − 20427884fj + 17905032fj+1 − 7727988fj+2 + 1325006fj+3) + fj(19510972fj

− 35817664fj+1 + 15929912fj+2 − 2792660fj+3) + fj+1(17195652fj+1 − 15880404fj+2

+ 2863984fj+3) + fj+2(3824847fj+2 − 1429976fj+3) + 139633f2
j+3]

= f ′2∆x2 +
13

12
f ′′2∆x4 + O(∆x6).

(3.3.15)

It is noticed that there is a typo in Eq. (25) in [64], and we have corrected it in Eq. (3.3.15).

From there, the smoothness indicator of the large stencil S6 is defined as follows,

τCU = β3 −
1

6
(β0 + 4β1 + β2) = O(∆x6). (3.3.16)

Hence, we have for k = 0, . . . , 3,,

τCU

βk
=





O(∆x4), if f ′
j 6= 0,

O(∆x2), if f ′
j = 0,

(3.3.17)

which satisfies the condition (3.3.10).

It is also noteworthy that αCU
k in Eq. (3.2.41) has a change as below,

αCU
k = γk

(
C +

τCU

ε+ βk

)
, (3.3.18)

where C ≫ 1 is to increase the contribution of the linear weights when the smoothness indicators have

comparable magnitudes (see [142]). Following [64], we choose C = 20.

As indicated in example 3.4.1, the 6th-order WENO-NW6 and WENO-CU6 schemes suffer from

the loss of accuracy near the smooth critical points just right behind, with respect to the characteristic

direction, a critical point where the first derivative of the solution is undefined, that is, the solution is just

C0 at that point. The explanation for this defect is given in the below section. In the next section, we

propose a new scheme which automatically switches between a 6th-order central and 5th-order upwind

scheme and overcomes the defect occurred in the mentioned schemes.

3.4 The New 6th-order WENO-θ Scheme

3.4.1 An illustrative example

A drawback of the presented 6th-order WENO schemes (i.e., WENO-NW6, WENO-CU6) is that they

suffer from a loss of resolution near the smooth critical region which is just behind another one where
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Figure 3-3: Left: Numerical solutions of Eq. (3.4.1) at time t = 2.4 obtained from different WENO
schemes. Right: Zoom near the critical region.

the first derivative of the flux is undefined. To illustrate this, we consider Eq. (2.1.1) in a scalar case

where f(u) = u in the following example.

Example 3.4.1.





ut + ux = 0, x ∈ (−1, 1),

u0(x) = max(− sin(πx), 0),

(3.4.1)

subject to periodic boundary conditions.

We approximate the solution of (3.4.1) by the WENO-JS, WENO-Z, WENO-NW6, and WENO-

CU6 schemes. The results at time t = 2.4 with 201 grid points are plotted in Fig. 3-3 with the critical

region zoomed in. It is clearly shown the above mentioned defect of the WENO-NW6 and WENO-CU6

schemes. Near the smooth critical region, we note that these schemes are worse than both WENO-JS and

WENO-Z. Since there are many problems whose solution often exhibits the same behavior as mentioned

above, we notice that this loss of accuracy is an important issue.

In [76], Jung and Nguyen constructed a new WENO scheme which overcomes the drawback of

WENO-NW6 and WENO-CU6 presented in the previous example. They introduced a different switching

mechanism between a 5th-order upwind and 6th-order central scheme. Unlike the WENO-NW6 or

WENO-CU6 scheme in which the change depends on the smoothness indicator of the most downwind

sub-stencil, in our scheme, whether the scheme is upwind or central is due to the smoothness indicator

of the large stencil. Moreover, instead of using all six points for the indicator β3, the number of points is

reduced down to only four. The reason for this is explained in the below section. They also introduced

a new set of smoothness indicators which are constructed in a central sense in Taylor expansions with

respect to the point xj . The feature of the new scheme is that it automatically switches between a

5th-order upwind scheme near discontinuities to prevent spurious oscillations, and a 6th-order central

scheme in smooth regions which improves the loss of resolution of WENO-NW6 and WENO-CU6. We
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3.4 The New 6th-order WENO-θ Scheme

start the discussion on this scheme by the central reconstruction.

3.4.2 The New Scheme

We first observe that the 5th- and 6th-order linear approximations given in Eqs. (3.2.7) and (3.3.3),

respectively, can be combined linearly in the following manner,

f̂j+ 1
2
= γθ0 f̂

0
j+ 1

2
+ γθ1 f̂

1
j+ 1

2
+ γθ2 f̂

2
j+ 1

2
+ γθ3 f̂

3
j+ 1

2
, (3.4.2)

where

γθ0 =
1

20
(1 + θ), γθ1 =

3

20
(3 + θ), γθ2 =

3

20
(3− θ), γθ3 =

1

20
(1− θ), (3.4.3)

and f̂k
j+ 1

2

, k = 0, 1, 2, 3 is given in Eqs. (3.2.19) - (3.2.21) and (3.3.9), respectively.

We deduce that

f̂j+ 1
2
=





f̂5
j+ 1

2

if θ = 1,

f̂6
j+ 1

2

if θ = 0.

(3.4.4)

We then propose a new scheme in which f̂j+ 1
2
is chosen between f̂5

j+ 1
2

and f̂6
j+ 1

2

adaptively. Hence,

the scheme is 5th-order upwind or 6th-order central depending on the smoothness of the stencils S5 and

S6. We expect that this will get over the drawback of accuracy degeneration of the above mentioned

central 6th-order schemes. To proceed, we first rewrite Eq. (3.4.2) using instead the non-linear weights

ωθ
k’s as follows,

f̂j+ 1
2
= ωθ

0 f̂
0
j+ 1

2
+ ωθ

1 f̂
1
j+ 1

2
+ ωθ

2 f̂
2
j+ 1

2
+ ωθ

3 f̂
3
j+ 1

2
, (3.4.5)

where, for k = 0, . . . , 3, and

ωθ
k =

αθ
k∑3

l=0 α
θ
l

, αθ
k = γθk

(
1 +

τθ

ε+ β̃k

)
. (3.4.6)

Here, τθ is the smoothness indicator of the large stencil, and β̃k is the smoothness indicator of the

sub-stencil Sk. We note that the scheme works best with ε = 10−10. We define these indicators in the

following subsection.

3.4.3 Central Reconstruction, New Central Smoothness Indicators β̃k

For a 6th-order central scheme over the large stencil S6, spurious oscillations are expected to occur near

discontinuities. To overcome this, WENO-NW6 and WENO-CU6 choose to construct their β3 over all

points of S6. A more careful observation reveals that this cost can be reduced in the following way.

We remind that the principle of WENO schemes is that there is at least one smoothest sub-stencil is
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used in the reconstruction of the numerical flux. We suppose that β3 follows Eq. (3.3.12), that is, it

measures the smoothness of the most downwind S3 only. We further assume that the grid size ∆x is

so small that a discontinuity does not spread over two neighboring grid points, then for a 6th-order

WENO scheme, the only case where oscillations occur is when a discontinuity is in between xj and

xj+1. In this case, both f̂0
j+ 1

2

and f̂3
j+ 1

2

play main roles in the combination (3.4.5) since β0 and β3 are

much smaller than the other two. This leads to oscillations since the downwind f̂3
j+ 1

2

is wrongly chosen.

To prevent this from happening, we choose β3 to measure the smoothness of an extended sub-stencil

S̃3 := {xj , xj+1, xj+2, xj+3} (see Fig. 3-2 with S3 extended by the dashed line). It is observed that S2

is now a subset of S̃3 and all sub-stencils share the point xj . Hence, the case where oscillations occur is

essentially eliminated.

For 5th-order schemes, all sub-stencils are symmetric with respect to xj . As a result, the smoothness

indicators βk’s are also symmetric with respect to xj (see Eqs. (3.2.30) - (3.2.32)). That is, β0 and β2 are

equal to each other up to orderO(∆x4) in Taylor expansions. We recall that WENO discretizations choose

the sub-stencils depending on the non-linear weights ωk’s which are very sensitive to the smoothness

indicators βk’s due to the latter’s smallness in smooth regions (see Eq. (3.2.28) for WENO-JS, Eq.

(3.2.41) for WENO-Z, WENO-NW6, and WENO-CU6). For the sensitivity, we mean that a small

change in any βk leads to a large difference among αk’s, thus ωk’s. In that sense, the symmetry in

terms of Taylor expansions of βk’s reduces the effects of this sensitivity, especially in transition regions

where the solution is smooth and discontinuous. We refer to Figs. 3-5 and 4-1 below for numerical

evidences for this assessment in which the schemes with symmetric βk’s (i.e., WENO-Z and WENO-θ)

show better results than the ones without this property. Unfortunately, the 6th-order methods lack of

this (comparing β3 in Eq. (3.3.11) for WENO-NW6, and Eq. (3.3.15) for WENO-CU6 with the other

βk’s, k = 0, 1, 2, defined Eqs. (3.2.30) - (3.2.32)). In our new scheme, we try to recover the property.

We devise our new smoothness indicators in a central sense. That is, they are constructed based on the

reconstruction polynomials which are symmetric with respect to xj+ 1
2
. In addition, it is shown below

that the new indicators are symmetric in terms of Taylor expansions with respect to xj . We notice that

Taylor expansions about xj are natural since the approximation of f(u)x is at the interval center xj (see

Eq. (3.1.3)) although the reconstruction of the numerical flux function h(x) is at the interface xj+ 1
2
(see

Eqs. (3.2.7) and (3.3.3) for 5th-order and 6th-order schemes, respectively).

Substituting the 4th-degree reconstruction polynomial

f̃5(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4, (3.4.7)

into Eq. (3.1.2) and evaluating at

xk =

(
k − j − 1

2

)
∆x, k = j − 2, . . . , j + 2, around xj+ 1

2
= 0, (3.4.8)
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we obtain the following,





1
∆x

∫ −2∆x

−3∆x (b0 + b1y + b2y
2 + b3y

3 + b4y
4)dy = fj−2,

1
∆x

∫ −∆x

−2∆x
(b0 + b1y + b2y

2 + b3y
3 + b4y

4)dy = fj−1,

1
∆x

∫ 0

−∆x
(b0 + b1y + b2y

2 + b3y
3 + b4y

4)dy = fj ,

1
∆x

∫∆x

0
(b0 + b1y + b2y

2 + b3y
3 + b4y

4)dy = fj+1,

1
∆x

∫ 2∆x

∆x
(b0 + b1y + b2y

2 + b3y
3 + b4y

4)dy = fj+2.

(3.4.9)

The corresponding Vandermonde matrix of the coefficients bk’s is as follows,

N =




1 −5

2
∆x

19

3
∆x2 −65

4
∆x3

211

5
∆x4

1 −3

2
∆x

7

3
∆x2 −15

4
∆x3

31

5
∆x4

1 −1

2
∆x

1

3
∆x2 −1

4
∆x3

1

5
∆x4

1
1

2
∆x

1

3
∆x2

1

4
∆x3

1

5
∆x4

1
3

2
∆x

7

3
∆x2

15

4
∆x3

31

5
∆x4




. (3.4.10)

By solving the linear system

N c̃ = f , (3.4.11)

where c̃ is the column vector of the unknown coefficients, f is the grid values of the flux function f(u)

given in the right-hand side of Eq. (3.4.9), the reconstruction polynomial f̃5(x) is computed with the

coefficients as follows,




b0

b1

b2

b3

b4




=




1

30
fj−2 −

13

60
fj−1 +

47

60
fj +

9

20
fj+1 −

1

20
fj+2

1

12∆x
fj−1 −

5

4∆x
fj +

5

4∆x
fj+1 −

1

12∆x
fj+2

− 1

8∆x2
fj−2 +

3

4∆x2
fj−1 −

1

∆x2
fj +

1

4∆x2
fj+1 +

1

8∆x2
fj+2

− 1

6∆x3
fj−1 +

1

2∆x3
fj −

1

2∆x3
fj+1 +

1

6∆x3
fj+2

1

24∆x4
fj−2 −

1

6∆x4
fj−1 +

1

4∆x4
fj −

1

6∆x4
fj+1 +

1

24∆x4
fj+2




. (3.4.12)

Evaluating f̃5(x) at xj+ 1
2
= 0 gives us exactly the approximation f̂5

j+ 1
2

in Eq. (3.2.7) above (compare

with f̂5(x) at xj+ 1
2
= ∆x

2 in subsections 3.2.1 and 3.3.1). This f̃5(x) is also used in computing the

smoothness indicator τθ in Eq. (3.4.26) of the new WENO-θ scheme.
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Similarly, we have

f̃6(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5, (3.4.13)

where




b0

b1

b2

b3

b5

b5




=




1

60
fj−2 −

2

15
fj−1 +

37

60
fj +

37

60
fj+1 −

2

15
fj+2 +

1

60
fj+3

− 1

90∆x
fj−2 +

5

36∆x
fj−1 −

49

36∆x
fj +

49

36∆x
fj+1 −

5

36∆x
fj+2 +

1

90∆x
fj+3

− 1

16∆x2
fj−2 +

7

16∆x2
fj−1 −

3

8∆x2
fj −

3

8∆x2
fj+1 +

7

16∆x2
fj+2 −

1

16∆x2
fj+3

1

36∆x3
fj−2 −

11

36∆x3
fj−1 +

7

9∆x3
fj −

7

9∆x3
fj+1 +

11

36∆x3
fj+2 −

1

36∆x3
fj+3

1

48∆x4
fj−2 −

1

16∆x4
fj−1 +

1

24∆x4
fj +

1

24∆x4
fj+1 −

1

16∆x4
fj+2 +

1

48∆x4
fj+3

− 1

120∆x5
fj−2 +

1

24∆x5
fj−1 −

1

12∆x5
fj +

1

12∆x5
fj+1 −

1

24∆x5
fj+2 +

1

120∆x5
fj+3




.

(3.4.14)

Evaluating f̃6(x) at xj+ 1
2
= 0 gives us exactly the approximation f̂6

j+ 1
2

in Eq. (3.3.3) above. This

f̃6(x) is used in computing the smoothness indicator τθ in Eq. (3.4.27) of the new WENO-θ scheme.

With the same setting of grid points as in Eq. (3.4.8), applying the same process to the sub-stencil

Sk, k = 0, 1, 2, 3, we obtain the central reconstruction polynomial f̃k(x) given as follows,

f̃0(x) =
2fj−2 − 7fj−1 + 11fj

6
+

(
fj−2 − 3fj−1 + 2fj

∆x

)
x+

(
fj−2 − 2fj−1 + fj

2∆x2

)
x2, (3.4.15)

f̃1(x) =
−fj−1 + 5fj + 2fj+1

6
+

(
fj+1 − fj

∆x

)
x+

(
fj−1 − 2fj + fj+1

2∆x2

)
x2, (3.4.16)

f̃2(x) =
2fj + 5fj+1 − fj+2

6
+

(
fj+1 − fj

∆x

)
x+

(
fj − 2fj+1 + fj+2

2∆x2

)
x2, (3.4.17)

f̃3(x) =
3fj + 13fj+1 − 5fj+2 + fj+3

12
+

(−11fj + 9fj+1 + 3fj+2 − fj+3

12∆x

)
x

+

(
3fj − 7fj+1 + 5fj+2 − fj+3

4∆x2

)
x2 +

(−fj + 3fj+1 − 3fj+2 + fj+3

6∆x3

)
x3.

(3.4.18)

We notice that these reconstruction polynomials are different from those given in Eqs. (3.2.16)

- (3.2.18) which are constructed symmetrically with respect to xj = 0. Substituting these into Eq.

(3.2.29) with f̃k(x) replacing f̂k(x), k = 0, 1, 2, 3, we deduce the new central smoothness indicators as
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follows,

β̃0 =
13

12
(fj−2 − 2fj−1 + fj)

2 + (fj−2 − 3fj−1 + 2fj)
2

= f ′2∆x2 + f ′f ′′∆x3 +

(
4

3
f ′′2 − 5

3
f ′f ′′′

)
∆x4 + O(∆x5),

(3.4.19)

β̃1 =
13

12
(fj−1 − 2fj + fj+1)

2 + (fj+1 − fj)
2

= f ′2∆x2 + f ′f ′′∆x3 +

(
4

3
f ′′2 +

1

3
f ′f ′′′

)
∆x4 + O(∆x5),

(3.4.20)

β̃2 =
13

12
(fj − 2fj+1 + fj+2)

2 + (fj − fj+1)
2

= f ′2∆x2 + f ′f ′′∆x3 +

(
4

3
f ′′2 +

1

3
f ′f ′′′

)
∆x4 + O(∆x5),

(3.4.21)

and

β̃3 =
13

48
(3fj − 7fj+1 + 5fj+2 − fj+3)

2 + (2fj+1 − 3fj+2 + fj+3)
2

= f ′2∆x2 + f ′f ′′∆x3 +

(
4

3
f ′′2 − 5

3
f ′f ′′′

)
∆x4 + O(∆x5),

(3.4.22)

where the derivatives are evaluated at x = xj . We note that for the most downwind β̃3, we treated f̃3(x)

in Eq. (3.4.18) as a 2nd-degree polynomial by ignoring the 3rd-degree term when substituting it into Eq.

(3.2.29) so that
∫ x

j+1
2

x
j− 1

2

(
d2

dx2 f̃
3(x)

)2
dx is the highest-order variation. This is for the consistency with

the other reconstruction polynomials f̃k’s, k = 0, 1, 2, which are of lower-degree. We also modified the

second term in the obtained indicator so that its Taylor expansion agrees with that of β̃0 up to order

O(∆x4); thus all β̃k’s are now symmetric with respect to xj in Taylor expansions, which is our goal in

designing these new smoothness indicators. The original β̂3 obtained from Eq. (3.2.29) was as below,

β̂3 =
13

48
(3fj − 7fj+1 + 5fj+2 − fj+3)

2 +
1

144
(−11fj + 9fj+1 + 3fj+2 − fj+3)

2. (3.4.23)

In order to enhance the dispersion of the scheme, following the approach by Taylor et al. ([142]), we

set a restriction on the smoothness indicators as below, for k = 0, . . . , 3,

β̃k =





0, if R(β̃) ≤ αR,

β̃k, otherwise;

(3.4.24)

where

R(β̃) =
maxk(β̃k)

ε+mink(β̃k)
. (3.4.25)
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Here, αR is a threshold value depending on the configurations of flows. αR is taken small for flows with

the presence of shocks. For a detailed discussion, consult [142].

3.4.4 New τ θ

We next devise the smoothness indicator of the large stencil S6. Since the one proposed by Yamaleev

and Carpenter in [157] (see Eq. (3.3.13)) is too dispersive and may lead to oscillations (see Fig. 4-4

below and the evidence in [157]), we introduce a new smoothness indicator τθ which is based on Eq.

(3.2.29) but at a much higher order variations for the large stencil S6. We consider the following τ ’s,

τ5 = ∆x5
∫ x

j+1
2

x
j− 1

2

(
d3

dx3
f̃5(x)

)2

dx+∆x7
∫ x

j+1
2

x
j− 1

2

(
d4

dx4
f̃5(x)

)2

dx

=
13

12
(fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2)

2 + (−fj−1 + 3fj − 3fj+1 + fj+2)
2

= f ′′′2∆x6 + f ′′′f (4)∆x7 +

(
1

2
f ′′′f (5) +

4

3
(f (4))2

)
∆x8 + O(∆x9),

(3.4.26)

and

τ6 = ∆x7
∫ x

j+ 1
2

x
j− 1

2

(
d4

dx4
f̃6(x)

)2

dx+∆x9
∫ x

j+1
2

x
j− 1

2

(
d5

dx5
f̃6(x)

)2

dx

=
13

12
(−fj−2 + 5fj−1 − 10fj + 10fj+1 − 5fj+2 + fj+3)

2

+
1

4
(fj−2 − 3fj−1 + 2fj + 2fj+1 − 3fj+2 + fj+3)

2

= (f (4))2∆x8 + f (4)f (5)∆x9 +

(
5

6
f (4)f (5) +

4

3
(f (5))2

)
∆x10 + O(∆x11),

(3.4.27)

where f̃5(x) and f̃6(x) are the central reconstruction polynomials around xj+ 1
2
= 0 constructed in a

similar way as with f̃k(x)’s in Eqs. (3.4.15) - (3.4.18) but for the large stencils S5 and S6, respectively;

and the derivatives are evaluated at xj .

We then choose our τθ and set θ in Eq. (3.4.3) as follows,

(τθ , θ) =





(τ6, 0) if τ6 < τ5,

(τ5, 1) if τ6 ≥ τ5.

(3.4.28)

It is noted that by choosing such τθ and θ as in Eq. (3.4.28), the scheme achieves a 6th-order in

smooth regions since τ6 ≪ τ5; whereas it adaptively chooses the smoother large stencil between S5 and

S6 in the WENO reconstruction near discontinuities or unresolved regions. The new scheme now chooses

the smoothest not only sub-stencils but also large one in the reconstruction procedure. The non-linear

weights follow Eq. (3.4.6) above. Since our new method depends on θ to switch between a 5th-order

upwind and 6th-order central scheme, we name it WENO-θ. In the numerical simulations below, we use

the name WENO-θ6 for the compatibility with the other 6th-order schemes.

Remark 3.4.1.
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i. Although the definition of τθ has a switching mechanism by an if statement, it does not ruin the

methodology of WENO schemes. This is because the switching applies to the smoothness indicator

of the large stencil, not to the choice of smoother sub-stencils.

ii. Although the switching is discontinuous in nature, WENO-θ is robust for problems with highly

unstable fluid flows. We illustrate this by conducting a numerical simulation of the Rayleigh-Taylor

instability problem in the below section.

iii. The role of ε is well investigated in [50]. We note here that for cases with increasing number of

vanishing derivatives, since both τ and βk are very small at critical points, ε does play roles to

sustain the designed formal accuracy order. For this reason, except for WENO-JS where ε = 10−6,

we choose ε = 10−10 for other schemes. See the accuracy tests in the below section.

In the next step, we test the accuracy, efficiency, and resolutions of the new scheme.

3.4.5 Accuracy Tests

We note that either τ5 or τ6 is chosen in Eq. (3.4.28), the sufficient condition (3.3.10) is always satisfied.

Hence the new scheme is 6th-order in smooth regions.

For the tests of accuracy, we choose the linear scalar conservation law,





ut + ux = 0, x ∈ (−1, 1),

u(x, 0) = u0(x),

(3.4.29)

subject to periodic boundary conditions. The following initial data are considered:

• Initial condition 1:

u0(x) = sin(πx); (3.4.30)

and

• Initial condition 2:

u0(x) =

(
x+

1

2

)k

exp

(
−100

(
x+

1

2

)2
)
, (3.4.31)

where k − 1 is the number of vanishing spatial derivatives at x = − 1
2 , that is, 0 = ∂f

∂x

∣∣
x=0

= . . . =

∂(k−1)f
∂x(k−1)

∣∣
x=0

6= ∂(k)f
∂x(k)

∣∣
x=0

.

L1 and L∞ errors of 6th-order schemes at time t = 1 are measured and listed in Table 3-1 together

with the order of accuracy (in brackets), and are plotted in Fig. 3-4. We choose the time step ∆t = ∆x6/3

so that the numerical errors in time do not contribute to the results. In the figures, we also show the

errors of the 5th-order schemes for comparison.
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Table 3-1: Convergence of ut + ux = 0 with initial conditions (3.4.30) and (3.4.31), at time t = 1.

Eq.
(3.4.30)

Eq.
(3.4.31),
k = 2

Eq.
(3.4.31),
k = 3

N L1 error L∞ error L1 error L∞ error L1 error L∞ error
WENO- 40 4.5E-07 (-) 3.4E-07 (-) 4.5E-04 (-) 2.2E-03 (-) 4.2E-05 (-) 1.3E-04 (-)

CU6 80 6.9E-09
(6.0)

5.4E-09
(6.0)

3.8E-05
(3.6)

2.0E-04
(3.5)

8.9E-06
(2.2)

4.5E-05
(1.5)

160 1.1E-10
(6.0)

8.4E-11
(6.0)

6.5E-07
(5.9)

3.6E-06
(5.8)

1.3E-07
(6.1)

8.1E-07
(5.8)

320 4.1E-13
(8.0)

3.8E-13
(7.8)

1.1E-08
(5.9)

6.0E-08
(5.9)

1.8E-09
(6.1)

1.1E-08
(6.2)

WENO- 40 4.5E-07 (-) 3.4E-07 (-) 5.0E-04 (-) 2.2E-03 (-) 4.3E-05 (-) 1.4E-04 (-)

NW6 80 6.9E-09
(6.0)

5.3E-09
(6.0)

4.1E-05
(3.6)

2.2E-04
(3.4)

8.7E-06
(2.3)

4.7E-05
(1.6)

160 1.1E-10
(6.0)

8.4E-11
(6.0)

6.4E-07
(6.0)

3.6E-06
(5.9)

1.4E-07
(5.9)

9.6E-07
(5.6)

320 4.1E-13
(7.8)

3.6E-13
(7.9)

1.0E-08
(5.9)

6.0E-08
(5.9)

1.8E-09
(6.3)

1.1E-08
(6.5)

WENO- 40 4.5E-07 (-) 3.4E-07 (-) 3.7E-04 (-) 1.8E-03 (-) 3.2E-05 (-) 1.2E-04 (-)

θ6 80 6.9E-09
(6.0)

5.3E-09
(6.0)

4.2E-05
(3.1)

2.3E-04
(2.9)

4.8E-06
(2.7)

2.2E-05
(2.4)

160 1.1E-10
(6.0)

8.4E-11
(6.0)

7.6E-07
(5.8)

3.9E-06
(5.9)

1.2E-07
(5.3)

6.3E-07
(5.1)

320 4.1E-13
(8.0)

3.7E-13
(7.8)

1.3E-08
(5.9)

8.0E-08
(5.6)

2.1E-09
(5.9)

1.1E-08
(5.9)

3.4.6 Resolution Tests

We now test if our new scheme overcomes the loss of accuracy of WENO-CU6 and WENO-NW6. We

revisit the initial condition given in example 3.4.1 which is as follows,

u0(x) = max(sin(πx), 0), x ∈ (−1, 1). (3.4.32)

The numerical solution obtained from our new scheme is added and shown in Fig. 3-5, together with

those given in example 3.4.1. We also plot the pointwise errors in the same figure. It is shown that the

new WENO-θ6 scheme approximates the critical region around x = −0.1 much better than WENO-CU6

and WENO-NW6. Indeed, the pointwise errors of the former around this region is comparable to those

of WENO-JS and WENO-Z.

The nonlinear weights ωk’s of these schemes are plotted in Fig. 3-6. We observe that around the

critical point, the ωk’s of WENO-Z and WENO-θ6 are stable and converge to their optimal values γk’s.

We note that for the latter scheme, the nonlinear weights keep fluctuating between the optimal weights
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Figure 3-4: Convergence of Eq. (3.4.29) at time t = 1. Left: Initial condition (3.4.30); Middle:
Initial condition (3.4.31) with k = 2. Right: Initial condition (3.4.31) with k = 3. Top: in L1 norm;
Bottom: in L∞ norm.

of the 5th-order upwind and 6th-order central linear schemes. We also notify the non-convergence of ωk’s

of the WENO-CU6 and WENO-NW6 schemes around the critical region. This shows the improvement

of our new scheme over the other 6th-order ones.
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Figure 3-5: Left: Numerical solutions of Eq. (3.1.1) with initial condition (3.4.32) at time t = 2.4.
Grid 200. Middle: Zoom near the critical point. Right: Pointwise errors in log scale.
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Figure 3-6: Distribution of the non-linear weights for the initial data (3.4.32). From top to bottom,
left to right: WENO-Z, WENO-CU6, WENO-NW6, and WENO-θ6.
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4

Numerical Results

In this chapter, we perform a number of tests to compare the results of our new scheme described in Chap-

ter 3 with those obtained from the other WENO schemes, including the 5th-order upwind WENO-JS,

WENO-Z, and the 6th-order central WENO-CU6, WENO-NW6. Since WENO-Z is a good replacement

for the mapped WENO, we omit the latter one in our numerical experiments.

4.1 Scalar Conservation Laws

4.1.1 TEST 1: Linear Case

We solve the one-dimensional linear advection equation (3.4.29) with the following initial condition u0(x)

which contains a C∞ Gaussian, a square wave, a triangle, and a semi-ellipse (see [78]),

u0(x) =





1
6 [G(x, β, z − δ) + 4G(x, β, z) +G(x, β, z + δ)], −0.8 ≤ x ≤ −0.6,

1, −0.4 ≤ x ≤ −0.2,

1− |10(x− 0.1)|, 0 ≤ x ≤ 0.2,

1
6 [F (x, α, a− δ) + 4F (x, α, a) + F (x, α, a+ δ)], 0.4 ≤ x ≤ 0.6,

0, otherwise,

(4.1.1)

where

G(x, β, z) = exp(−β(x − z)2), (4.1.2)

F (x, α, a) =
√
max(1 − α2(x− a)2, 0); (4.1.3)

the constants are z = −0.7, δ = 0.005, β = log 2
36δ2 , a = 0.5, and α = 10.

We compute the solution up to time t = 6.3 with N = 401 and periodic boundary conditions. The
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Figure 4-1: Left: Linear advection Eq. (3.4.29) with initial condition (4.1.1). Time t = 6.3. Grid
400. The others: zooms at critical regions.

results obtained from the WENO-CU6, WENO-NW6, and WENO-θ6 schemes are plotted in Fig. 4-1.

Zooms around the shocks and top of the semi-ellipse are also shown in the same figure. It is observed

that WENO-θ6 is comparable to WENO-NW6 in capturing the shocks, but the former is much better

than the latter and WENO-CU6 in approximating top of the semi-ellipse.

4.1.2 TEST 2: Nonlinear Case

For this, we choose the Burgers equation





ut +

(
u2

2

)

x

= 0, x ∈ (−1, 1),

u(x, 0) = u0(x),

(4.1.4)

subject to periodic boundary conditions.

In Fig. 4-2, we show the numerical results of the 6th-order WENO schemes for the initial condition

u0(x) = − sin(πx); (4.1.5)

at time t = 1.5 and

u0(x) =
1

2
+ sin(πx) (4.1.6)

at t = 0.55. We choose a grid of N = 200 grid points. It is shown that the shocks are very well captured

by all schemes.

4.2 Euler Equations of Gas Dynamics

In this subsection, we consider the one-dimensional Euler equations of gas dynamics given in the following,

ut + f(u)x = 0, (4.2.1)
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Figure 4-2: Burgers’ Eq. (4.1.4). Grid 200. Left: initial condition (4.1.5) at time t = 1.5; Right:
initial condition (4.1.6) at time t = 0.55.

where

u = (u1, u2, u3) = (ρ, ρu,E)T ,

f(u) = (f1, f2, f3) = (ρu, p+ ρu2, (E + p)u)T ,
(4.2.2)

where ρ, u, p, E are density, velocity, pressure, and total energy, respectively. The total energy has the

form

E =
1

2
ρu2 + ρe, (4.2.3)

where

e = e(ρ, p), (4.2.4)

is the specific internal energy. For ideal gases, e has the form

e =
p

(γ − 1)ρ
. (4.2.5)

Here, γ is the ratio of specific heats. Except indicated, for all numerical simulations in this chapter, we

choose γ = 1.4.

Thus the total energy becomes

E =
1

2
ρu2 +

p

γ − 1
, (4.2.6)

hence, the pressure is

p = (γ − 1)

(
E − 1

2
ρu2
)
. (4.2.7)
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4.2 Euler Equations of Gas Dynamics

Writing Eq. (4.2.1) in a non-conservative form, we obtain that

ut +A(u)ux = 0. (4.2.8)

Here, A(u) is the Jacobian of the flux f(u), which is

A(u) =




0 1 0

−1

2
(γ − 3)

(
u2
u1

)2

(3− γ)
u2
u1

(γ − 1)

−γ u2u3
u21

+ (γ − 1)

(
u2
u1

)3

γ
u3
u1

− 3

2
(γ − 1)

(
u2
u1

)2

γ
u2
u1



. (4.2.9)

Let

H =
E + p

ρ
=

1

2
u2 + h, h = e +

p

ρ
, (4.2.10)

be the total specific enthalpy and specific enthalpy, respectively. After some computation (see, e.g.,

[138]), we obtain the eigenvalues of right eigenvectors of A(u) to be as follows,

λ1 = u− c, λ2 = c, λ3 = u+ c, (4.2.11)

and

R =

[
r1

∣∣∣∣r2
∣∣∣∣r3
]
=




1 1 1

u− c u u+ c

H − uc
1

2
u2 H + uc


 . (4.2.12)

Here,

c =

√
γp

ρ
, (4.2.13)

is the speed of sound. It implies that the waves corresponding to λ1 and λ3 are only non-linear ones,

i.e., either shocks or rarefactions; whereas the ones corresponding to λ2 are only contact discontinuities.

For the purpose of computation, we also list the left eigenvectors, which are as follows,

L =

[
l1

∣∣∣∣l2
∣∣∣∣l3
]T

=




1

2

(
u

c
+

u2

2H − u2

)
−1

2

(
1

c
+

2u

2H − u2

)
1

2H − u2

1− u2

2H − u2
2u

2H − u2
− 2

2H − u2

−1

2

(
u

c
− u2

2H − u2

)
1

2

(
1

c
− 2u

2H − u2

)
1

2H − u2



. (4.2.14)

We notice that LR = I.

For all below numerical simulations, we apply the WENO schemes in characteristic fields of the flux

f(u). That is, we first find an average of the Jacobian Aj+ 1
2
at the interface x = xj+ 1

2
. For this, we apply
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the Roe’s mean matrix (see [118]). Then the eigenvalues λs’s, L = [ls]
m
s=1, R = [rs]

m
s=1 the complete sets

of the left and right eigenvectors, respectively, of Aj+ 1
2
are determined. We next project the flux f(u)

into the characteristic fields by left multiplying it with L. WENO schemes with a global Lax-Friedrichs

flux splitting are applied to approximate the components of the flux. After that, the approximation in

each characteristic field is projected back to the component space by a right multiplying with the matrix

R.

4.2.1 TEST 3: Riemann Problems

We consider the shock-tube problems which are Eq. (4.2.1) with Riemann initial data. In particular,

the Sod problem, the Lax problem, and the 123 problem are given below.

• Sod’s problem:

(ρ, u, p) =





(0.125, 0, 0.1), −5 < x < 0,

(1, 0, 1), 0 < x < 5;

(4.2.15)

and the final time t = 1.7.

• Lax’s problem:

(ρ, u, p) =





(0.445, 0.698, 3.528), −5 < x < 0,

(0.5, 0, 0.571), 0 < x < 5;

(4.2.16)

and the final time t = 1.3.

• The 123 problem:

(ρ, u, p) =





(1, −2, 0.4), −5 < x < 0,

(1, 2, 0.4), 0 < x < 5;

(4.2.17)

and the final time t = 1.

We apply a transmissive condition at both boundaries. The exact solution of these shock-tube

problems can be found in, for example, [138].

Numerical results of the density obtained from all WENO schemes with a grid of N = 300 are shown

in Figs. 4-3 - 4-5, respectively. It is shown that WENO-NW6 and WENO-θ6 have the sharpest capturing

of the discontinuities for the Sod problem. For the Lax problem, we notice an overshoot at the contact

discontinuity about x = 2 of the WENO-NW6 and WENO-Z schemes; whereas WENO-θ6 does not

experience this. It is also observe that for the 123 problem, WENO-JS, WENO-Z, and WENO-θ6 are

better than WENO-NW6, WENO-CU6 in approximating the trivial contact discontinuity around x = 0.
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Figure 4-3: Left: Sod’s problem with initial data (4.2.15). Time t = 1.7. Grid 300. Right: zoom
at the contact discontinuity.
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Figure 4-4: Left: Lax problem with initial data (4.2.16). Time t = 1.3. Grid 300. Right: zoom at
the contact discontinuity.
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Figure 4-5: Left: The 123 problem with initial data (4.2.17). Time t = 1.0. Grid 300. Right:
zoom at the trivial contact discontinuity.
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Figure 4-6: Shock density wave interaction with initial data (4.2.18). Density. Time t = 1.8. Left:
medium grid 200; Right: fine grid 400.

4.2.2 TEST 4: Shock Density Wave Interaction

We consider the following initial data,

(ρ, u, p) =





(3.857143, 2.629369, 31/3), −5 < x < −4,

(1 + 0.2 sin(5x), 0, 1), −4 < x < 5,

(4.2.18)

with zero-gradient boundary conditions.

The problem simulates the interaction of a right-moving Mach 3 shock with a wavelike perturbed

density whose magnitude is much smaller than the shock. As a result, a flow field of compressed and

amplified wave trails is created right behind the shock. For more details, see [78]. In Fig. 4-6, we

show the numerical results of the 6th-order WENO schemes at time t = 1.8 with grids of N = 200 and

N = 400 points. The “exact” solution is computed by WENO-JS with a fine grid N = 4000. It is

shown that all schemes give satisfactory approximations of the compressed wavelike structures behind

the shock. A careful observation reveals that WENO-NW6 and WENO-θ6 are better than WENO-CU6

in case N = 201.

4.2.3 TEST 5: Two Interacting Blast Waves

In this test, we show that our new scheme WENO-θ6 passes the tough test of two interacting blast waves

which the initial data are given as follows,

(ρ, u, p) =





(1, 0, 1000), 0 < x < 0.1,

(1, 0, 0.01), 0.1 < x < 0.9,

(1, 0, 100), 0.9 < x < 1,

(4.2.19)
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Figure 4-7: Two interacting blast waves with initial data (4.2.19). Density. Time t = 0.038. Grid
801.

and a reflective condition is applied at both boundaries. This problem is used to test the robustness of

shock-capturing methods since many interactions are observed in a small area. A detailed discussion of

this problem can be found in [151].

Numerical results of 6th-order WENO schemes are computed up to time t = 0.038 with a grid of

N = 801 and plotted in Fig. 4-7 for the density. The exact solution is approximated by WENO-JS

with a much fine grid N = 4001. It is shown that all schemes well capture the shocks as well as contact

discontinuities. A zoom near x = 0.745 indicates that WENO-θ6 gives better resolutions than WENO-

NW6 and WENO-CU6. We also emphasize that there exists a stair-casing phenomenon in the solutions

of the latter methods in this region, which is similar to that at the top of the semi-ellipse in test 1 (see

Fig. 4-1), and the 123 problem (see Fig. 4-5).

4.3 Two-dimensional Euler’s Equations

In this subsection, we extend the problem to two-dimensional cases. We choose the 2D Euler equations

which are as follows,





ut + f(u)x + g(u)y = 0,

u(x, y, 0) = u0(x, y),

(4.3.1)
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where u = (ρ, ρu, ρv, E)T , f(u) = (ρu, p + ρu2, ρuv, u(E + p))T , g(u) = (ρv, ρuv, p + ρv2, v(E + p))T .

The relation of pressure and conservative quantities is through the equation of state

p = (γ − 1)

(
E − 1

2
|u|2

)
, (4.3.2)

where |u|2 = u2 + v2. Here, we choose the ratio of specific heats γ = 1.4.

Eq. (4.3.1) is written in a non-conservative form as below,

ut +A(u)ux +B(u)uy = 0, (4.3.3)

where the Jacobian matrices are (see [115], [138])

A =




0 1 0 0
1

2
(γ − 1)|u|2 − u2 (3 − γ)u −(γ − 1)v (γ − 1)

−uv v u 0

u

[
1

2
(γ − 1)|u|2 −H

]
H − (γ − 1)u2 −(γ − 1)uv γu



, (4.3.4)

B =




0 0 1 0

−uv v u 0
1

2
(γ − 1)|u|2 − v2 −(γ − 1)u (3− γ)v (γ − 1)

v

[
1

2
(γ − 1)|u|2 −H

]
−(γ − 1)uv H − (γ − 1)v2 γv



. (4.3.5)

The eigenvalues and corresponding eigenvectors are

λA1 = u− c, λA2 = λA3 = u, λA4 = u+ c, (4.3.6)

RA =




1 0 1 1

u− c 0 u u+ c

v 1 v v

H − uc v
1

2
|u|2 H + uc



, (4.3.7)

LA =




1

2

(
u

c
+

|u|2
2H − |u|2

)
−1

2

(
1

c
+

2u

2H − |u|2
)

− v

2H − |u|2
1

2H − |u|2
−v 0 1 0

1− |u|2
2H − |u|2

2u

2H − |u|2
2v

2H − |u|2 − 2

2H − |u|2

−1

2

(
u

c
− |u|2

2H − |u|2
)

1

2

(
1

c
− 2u

2H − |u|2
)

− v

2H − |u|2
1

2H − |u|2




; (4.3.8)
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and

λB1 = v − c, λB2 = λB3 = v, λB4 = v + c, (4.3.9)

RB =




1 0 1 1

u 1 u u

v − c 0 v v + c

H − vc u
1

2
|u|2 H + vc



, (4.3.10)

LB =




1

2

(
v

c
+

|u|2
2H − |u|2

)
− u

2H − |u|2 −1

2

(
1

c
+

2v

2H − |u|2
)

1

2H − |u|2
−u 1 0 0

1− |u|2
2H − |u|2

2u

2H − |u|2
2v

2H − |u|2 − 2

2H − |u|2

−1

2

(
v

c
− |u|2

2H − |u|2
)

− u

2H − |u|2
1

2

(
1

c
− 2v

2H − |u|2
)

1

2H − |u|2




. (4.3.11)

4.3.0.1 TEST 6: Rayleigh-Taylor Instability

In the following tests, we show numerical evidence that WENO-θ6 maintains symmetry in the solutions

much better than the other 6th-order schemes, and outperforms 5th-order schemes in resolving small-

scaled structures occurring in flow configurations. We first simulate the Rayleigh-Taylor instability. The

instability occurs where there is a heavy fluid falling into a light fluid (see [38], [2], [35]). Following [2], we

set up the problem as follows. The domain is (x, y) = (−0.25, 0.25)× (−0.75, 0.75). Initial density has a

discontinuity at the interface, i.e., ρ = 2 for y ≥ 0 and ρ = 1 for y < 0. The pressure is set at hydrostatic

equilibrium initially p = 2.5 − ρgy where g = 0.1 is the gravitational acceleration. The x-component

velocity u = 0, while the y-component is perturbed with v = 0.01
4 (1+cos(4πx))(1+cos(43πy)) for a single

mode perturbation. Boundary conditions are set periodic in x-direction, and reflective in y-direction.

The ratio of specific heats γ = 1.4. We add −gρ and −gρv in the y-momentum and energy equations of

(4.3.1) as source terms.

In Fig. 4-8, we plot the density with 20 equally spaced contours obtained from 5th- and 6th-order

WENO schemes at time t = 9.5 with a 120×360 grid. It is shown that the 6th-order schemes have much

better numerical resolution comparing with the 5th-order ones. We notice that WENO-θ6 preserves

the symmetry of the solution; whereas WENO-NW6 and WENO-CU6 do not. We conjecture the lack

of symmetry of WENO-NW6 is due to the loss of accuracy around critical regions which is shown in

previous numerical tests. The test also shows that the discontinuous switching of τθ in Eq. (3.4.28) does

not have its effect on the robustness of the new WENO-θ scheme, even for problem with highly unstable

fluid flows as the Rayleigh-Taylor instability.
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Figure 4-8: The Rayleigh-Taylor instability. Density at time t = 9.5. Grid 120× 360. CFL = 0.5.
From left to right: WENO-Z, WENO-NW6, WENO-CU6, and WENO-θ6.

4.3.0.2 TEST 7: Implosion problem

The next numerical test is the implosion problem (see [2], [98]) with initial data as follows,

(ρ, p) =





(1, 1) for x+ y > 1
2 ,

(0.125, 0.14) otherwise,

(4.3.12)

and zero velocity everywhere initially. We choose reflecting conditions for all boundaries.

Symmetry is important for this test. For such a scheme, due to the interactions of shock waves and

reflecting boundaries, jets along the diagonal are created. Longer and narrower jets are produced for less

dissipative schemes.

In Fig. 4-9, we show the results obtained from different schemes on computational domain (0, 1)×
(0, 1) at final time t = 5. We choose a grid of 400 × 400. For WENO-θ, we choose αR = 1. It is

shown that only WENO-Z and WENO-θ well preserve the symmetry of the problem; whereas the other

6th-order schemes do not. The jets created by WENO-NW6 and WENO-CU6 tend to diverge from the

main diagonal x = y. We also note that the jets produced by WENO-θ is much longer and narrower

than those of WENO-Z, which means that the former scheme is less dissipative than the latter one.

4.3.0.3 TEST 8: 2D Riemann Initial Data

The 2D Riemann problem is set up by assigning different constant states of (ρk, uk, vk, pk), k = 1, 2, 3, 4,

to four quadrants of the computational domain Ω = (0, 1) × (0, 1). The constant states are chosen so

that there is only a single elementary wave, namely, shock-, rarefaction-, and contact-wave, connecting

two neighboring quadrants (see [130]). For our test, we choose the following configuration for the initial
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Figure 4-9: The implosion problem. Density with 20 contours uniformly distributing from 0
to 1. Grid 400 × 400. Final time t = 5. Left to right, top to bottom: WENO-Z, WENO-NW6,
WENO-CU6, WENO-θ6.
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data, respectively, for quadrants 1, 2, 3, 4,

(ρ, u, v, p) =





(0.5313, 0, 0, 0.4), x > 0.5, y > 0.5,

(1, 0.7276, 0, 1), x < 0.5, y > 0.5,

(0.8, 0, 0, 1), x < 0.5, y < 0.5,

(1, 0, 0.7276, 1), x > 0.5, y < 0.5,

(4.3.13)

which has shocks through quadrants 1 - 2 and 1 - 4, and contact discontinuities through quadrants 2 - 3

and 3 - 4. Transmissive boundary conditions are imposed on all boundaries for these two cases.

The approximations of the density with initial data (4.3.13) at time t = 0.25 are plotted in Fig. 4-10

with 50 contours for WENO-NW6 and WENO-θ6. Here, we use a fine grid with 1000 × 1000 intervals

for the capturing of the small vortices along the contacts. Zooms near the spirals region are also shown

on the right column in the same figure. Again, we observe a better performance of the WENO-θ6 over

WENO-NW6 and WENO-CU6 schemes over these small-scaled structures without oscillations on the

contours.

4.3.0.4 TEST 9: Double Mach Reflection of a Strong Shock

Finally, we investigate the double Mach reflection of a strong shock which is a typical benchmark test

for shock-capturing methods. The problem simulates the reflection occurring when a simple planar

shock interacts with a wedge making with the x-axis an angle α. The strength of the moving shock is

characterized by the Mach number Ms. For a double Mach reflection problem, Ms = 10 and the wedge

angle is chosen as α = 30◦. Detailed discussions on this type of problems can be found in [151] and

the references therein. For numerical purpose, we choose the computational domain Ω = (0, 4)× (0, 1).

Initially the shock is located at x0 = 1/6, inclined with the x-axis by the angle 90◦ − α. For boundary

treatments, we apply Inflow and zero gradients conditions on the left and right boundaries, respectively.

On the bottom one, a reflective condition is applied to the interval [x0, 4] representing the wedge, and

the exact post-shock state is imposed over [0, x0]. The top boundary is treated in a way that there

are no interactions of the shock with this boundary. That is, the exact post- and pre-shock states are

employed over the intervals [0, xs(t)] and [xs(t), 4], respectively, on the top boundary. Here, xs(t) =

x0+
1

tan 60◦
+
Msapre
cos 30◦

t, where apre is the sound speed of the pre-shock state, is the location of the shock

in time. These states can be computed exactly when one of them is pre-described (see, e.g., [138]). In

particular, for our problem the initial data is given as follows,

(ρ, u, v, p) =





(8, 8.25 cos 30◦, −8.25 sin30◦, 116.5), x < x0 +
y

tan 60◦ ,

(1.4, 0, 0, 1), x ≥ x0 +
y

tan 60◦ .

(4.3.14)

Numerical results of the density obtained from the 5th-order WENO-Z, the 6th-order WENO-NW6,

WENO-CU6, and WENO-θ6 schemes at time t = 0.2 are plotted in Fig. 4-11 with 30 contours. For this
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Figure 4-10: Left: The 2D Riemann problem with initial data (4.3.13). Density with 50 contours.
Time t = 0.25. Grid 1000 × 1000. Right: Zoom at the spirals. From top to bottom, respectively:
WENO-NW6, WENO-CU6, WENO-θ6.
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Figure 4-11: The double-Mach reflection problem with initial data (4.3.14). Density with 30
contours. Time t = 0.2. Grid 800 × 200. From top to bottom, respectively: WENO-Z, WENO-
NW6, WENO-CU6, and WENO-θ6.
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Figure 4-12: The double-Mach reflection problem with initial data (4.3.14). Zoom at the double
Mach stems region. From top to bottom, respectively: WENO-Z, WENO-NW6, WENO-CU6, and
WENO-θ6.
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4.3 Two-dimensional Euler’s Equations

case, we choose a fine grid of 800× 200 points for all schemes. We notice the rendering of small vortices

at the end of the slip line and the wall jet, starting from WENO-Z and becoming clearer for the 6th-order

schemes. The zoom-in on the Mach stems region shown in Fig. 4-12 reveals that the WENO-θ6 scheme

gives more satisfactory resolution than the WENO-NW6 and WENO-CU6 ones.
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5

Maxwell Solutions in Media with

Multiple Random Interfaces

5.1 Introduction

Time evolution of waves in random media has important applications in a wide range of areas such as

medical imaging, wave scattering, radar detection, ionospheric plasmas and photonic devices (see e.g.

[65]). Although the problem under consideration here is a forward problem, our approach reveals the

effects of random inputs and provide some insights into inverse problems, e.g., the reconstruction of the

interior of a human body from MRI or Ultrasound, recovery of the interior structural parameters of

machines from non-destructive measurements, ionospheric dynamics and related problems.

In this chapter, we study the evolution of the cumulative distribution functions (CDF) in time of

electromagnetic(EM) fields, which are governed by the following 2D transverse magnetic (TM) Maxwell

equations (e.g., [19], [100], [140]): for (x, y, t) ∈ R2 × (0,∞),





∂H1

∂t
= − 1

µ

∂E3

∂y
,

∂H2

∂t
=

1

µ

∂E3

∂x
,

∂E3

∂t
=

1

ǫ

∂H2

∂x
− 1

ǫ

∂H1

∂y
.

(5.1.1)

The initial conditions are H1(x, y, 0) = h1(x, y), H2(x, y, 0) = h2(x, y), E3(x, y, 0) = e3(x, y), where

H = (H1, H2, 0)
T is the magnetic field, E = (0, 0, E3)

T is the electric field, and h1, h2, e3 are smooth

functions. The boundary conditions will be specified below. Here the parameters (permeability, permit-

tivity) are, e.g., (µ, ǫ) = (µ1, ǫ1) for z(x, y) < ξ1, (µ, ǫ) = (µi, ǫi) for ξi−1 < z(x, y) < ξi, i = 2, 3, · · · , n
and (µ, ǫ) = (µn+1, ǫn+1) for z(x, y) > ξn where ξi’s are random variables and µi, ǫi > 0, µi’s and ǫi’s

may be distinct (see Fig.5-1).

The randomness of the EM fields is inherited from the randomness of the locations of interfaces, i.e.,

it is uncertain where there are two or more different media interfaces (see [33], [41], [45], and [143]). In
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Figure 5-1: Two random interfaces for the model (5.1.1).

particular, the permeability and permittivity fluctuate randomly in space around their mean values.

For this type of problems, it has been demonstrated that the polynomial chaos expansion (PCE)

methods are superior to Monte Carlo methods (e.g., [121]) in a number of applications (see e.g., [17],

[18], [43], [44], [57], [86], [99], [152], [153], [155], [154]). The latter method depends on a sufficiently large

number of sampling to obtain the results; whereas for the PCE methods, the solutions are projected into

a random space spanned by the orthogonal polynomials whose arguments are the random variables, and

are equipped with an inner product. In our problems, we choose shifted Legendre polynomials for the

random variables ξi’s following a uniform distribution.

ξ
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2
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2
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3
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3
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1
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Figure 5-2: Multiple random interfaces {z(x, y) = ξi} described by a level set function z(x, y).

The EM fields with a single interface were studied and simulated in [68]. In this chapter, we extend

our scope to discuss the case of two or multiple interfaces which are described as level sets, {z(x, y) = ξi}
where z(x, y) is a function of x, y, and ξi is a random variable (see Fig.5-2). Here, we assume that ξi’s

are uniformly distributed over (ai, bi).
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5.2 PCE Methods for Multiple Random Interfaces

We note that the conventional PCE methods have some severe limitations. If the number of random

variables increases, the computational cost will grow exponentially as indicated in the Polynomial chaos

(PC) expansions (5.2.1), (5.2.9) below while the polynomials pertaining to each random variable are

multiplied in a tensor product form. Thus the number of unknown coefficients (PC modes) grows

exponentially and the computations are very expensive. Monte Carlo methods are then more feasible.

To avoid this curse of dimensionality, along with the time explicit scheme, we will update the PC modes

in each medium one by one. The computational cost then grows linearly as explained in Sec. 5.2.1.2 and

5.2.2 below.

The following discussions and results follow what presented in [69].

5.2 PCE Methods for Multiple Random Interfaces

5.2.1 2-random Interfaces

We begin with two random interfaces (see Fig. 5-1). We consider two cases. The first one is that the

two random interfaces depend on a single random variable. In this case, a one-dimensional PC is used

to approximate the randomness. The other one is that the two random interfaces depend on different

random variables which are independent.

5.2.1.1 Case 1

In this section we consider the case ξ1 = ξ ∈ (a, b), ξ2 = ξ + δ, δ > b − a > 0, where ξ is a uniform

random variable over (a, b), for which its probability density function (PDF) is f(ξ) = 1
b−aχ(a,b)(ξ). Here

χ is the corresponding characteristic function. To deal with the random interfaces {z(x, y) = ξ1} and

{z(x, y) = ξ2}, employing the so-called Legendre polynomial chaos (PC) we write:





H1 =

N∑

k=0

H1k(x, y, t)Pk(ξ),

H2 =

N∑

k=0

H2k(x, y, t)Pk(ξ),

E3 =

N∑

k=0

E3k(x, y, t)Pk(ξ),

(5.2.1)

where Pk = P a,b
k are shifted Legendre polynomials. Here,

Pk(ξ) = P a,b
k (ξ) = P̃k

(
2ξ − a− b

b− a

)
(5.2.2)

where P̃k are the standard Legendre polynomials with span (−1, 1).

Note that the number of PC modes in Eq. (5.2.1) does not grow in time and is fixed as N . This is

because the fluctuations of the random variable(s) ξ or ξi below does not depend on t, x, y but depend

only on the span of ξ. Substituting the PC expansions (5.2.1) in Eq. (5.1.1)1, multiplying Pi(ξ) and
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integrating over (a, b) in ξ we obtain the PC mode equations for H1i:

∂H1i

∂t
= −

N∑

k=0

cµik
∂E3k

∂y
, (5.2.3)

cµik =

∫∞

−∞
1
µPi(ξ)Pk(ξ)χ(a,b)(ξ)dξ
∫ b

a
P 2
i (ξ)dξ

. (5.2.4)

The PC mode equations for H2i, E3i similarly follow.

Depending on the value of z the coefficients cµik = cµik(x, y) can be computed as follows. We note that

µ = µ1 for z < ξ, µ = µ2 for ξ < z < ξ + δ, and µ = µ3 for z > ξ + δ (the parameter ε follows similarly).

As in Fig. 5-2, a1 = a, b1 = b, a2 = a+ δ and b2 = b+ δ with n = 2. Using
∫ b

a
Pi(ξ)Pk(ξ)dξ =

b− a

2i+ 1
δik,

we first obtain that

cµik = δik





µ−1
1 if z < a,

µ−1
2 if b < z < a+ δ,

µ−1
3 if z > b+ δ,

(5.2.5a)

and

cµik =





1
µ1
δik +

(
1
µ2

− 1
µ1

)
2i+1
b−a

∫ z

a
Pi(ξ)Pk(ξ)dξ if a < z < b,

1
µ2
δik +

(
1
µ3

− 1
µ2

)
2i+1
b−a

∫ z−δ

a Pi(ξ)Pk(ξ)dξ if a+ δ < z < b+ δ,
(5.2.5b)

where the integrations
∫ z

a Pi(ξ)Pk(ξ)dξ are given in explicit forms as in [68], [72] which can be evaluated

with low computational cost.

We deduce the PC mode equations: for H1(x, y, t) = (H10, · · · , H1N ), H2(x, y, t) = (H20, · · · , H2N )

and E3(x, y, t) = (E30, · · · , E3N ),





H1t = −Λµ(z)E3y,

H2t = Λµ(z)E3x,

E3t = Λǫ(z) (H2x −H1y) ,

(5.2.6)

where the initial conditions are H1(x, y, 0) = (h1(x, y), 0, · · · , 0), H2(x, y, 0) = (h2(x, y), 0, · · · , 0) and

E3(x, y, 0) = (e3(x, y), 0, · · · , 0). The matrices Λµ(z) = Λµ(z(x, y)) = (cµik) and Λǫ(z) = Λǫ(z(x, y)) =

(cǫik), c
ǫ
ik is the cµik in (5.2.5) with µ1 and µ2 being replaced by, respectively, ǫ1 and ǫ2. Note that the

entries cµik, c
ǫ
ik are continuous in z.

To compute the solutions of the system (5.2.6), we apply the Finite-Difference Time-Domain (FDTD)

method by K. Yee (see [156], [140], and [68]). 2nd-order centered finite difference is employed on a

staggered grid for the space discretizations of the magnetic and electric fields. On this staggered grid,

the magnetic and electric fields are located on the sides and at the center of each grid cell, respectively.

The time derivatives are approximated in a same manner: the magnetic fields are first updated to the

half time step; then the electric field is marched to the next time step based on the updated values of
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5.2 PCE Methods for Multiple Random Interfaces

the former fields. For our Eqs. (5.2.6), we use the following notations for the magnetic fields H1,2 and

electric field E3 at the node points on the staggered grid as in Fig. 5-10: for I, J, n ∈ Z+, on the space

domain Ω = (−2, 2)× (0, 1),





H
n−1/2
1,i,j+1/2 = H1(xi, yj+1/2, tn−1/2), i = 0 : I, j = 0 : J − 1,

H
n−1/2
2,i+1/2,j = H2(xi+1/2, yj , tn−1/2), i = 0 : I − 1, j = 0 : J,

En
3,i,j = E3(xi, yj , tn), i = 0 : I, j = 0 : J,

(5.2.7)

where xp = −2 + p∆x, yq = q∆y and tr = r∆t, p, q, r ∈ Z+, p ∈ [0, I], q ∈ [0, J ], r ∈ [0, T ]; and

∆x = 4/I, ∆y = 1/J are the space steps and ∆t is the time step. We note that H1,2, E3 are vectors of

the deterministic PC modes defined in Eqs. (5.2.6). We then discretize the system (5.2.6) as follows: for

n ∈ Z+,





H
n+1/2
1,i,j+1/2 = H

n−1/2
1,i,j+1/2 −

∆t

∆y
Λµ
i,j+1/2

[
En

3,i,j+1 −En
3,i,j

]
,

i = 1 : I − 1, j = 0 : J − 1,

H
n+1/2
2,i+1/2,j = H

n−1/2
2,i+1/2,j +

∆t

∆x
Λµ
i+1/2,j

[
En

3,i+1,j −En
3,i,j

]
,

i = 0 : I − 1, j = 1 : J − 1,

En+1
3,i,j = En

3,i,j + Λǫ
i,j

{
∆t

∆x

[
H

n+1/2
2,i+1/2,j −H

n+1/2
2,i−1/2,j

]
− ∆t

∆y

[
H

n+1/2
1,i,j+1/2 −H

n+1/2
1,i,j−1/2

]}
,

i = 1 : I − 1, j = 1 : J − 1,

(5.2.8)

where Λµ
i,j+1/2 = Λµ(z(xi, yj+1/2)), Λ

µ
i+1/2,j = Λµ(z(xi+1/2, yj)) and Λǫ

i,j = Λǫ(z(xi, yj)).

5.2.1.2 Case 2

In this section we consider two random variables which determine two random interfaces, respectively.

The random variables ξi ∈ (ai, bi), i = 1, 2, are uniformly distributed over (ai, bi) where a1 < ξ1 < b1 <

a2 < ξ2 < b2, and the PDFs are, respectively, f1(ξ1) =
1

b1−a1
χ(a1,b1)(ξ1), f2(ξ2) =

1
b2−a2

χ(a2,b2)(ξ2).

To deal with the random interfaces {z(x, y) = ξ1} and {z(x, y) = ξ2}, employing the PC expansions

we write:





H1 =

N1∑

k=0

N2∑

l=0

H1kl(x, y, t)P
a1,b1
k (ξ1)P

a2,b2
l (ξ2),

H2 =

N1∑

k=0

N2∑

l=0

H2kl(x, y, t)P
a1,b1
k (ξ1)P

a2,b2
l (ξ2),

E3 =

N1∑

k=0

N2∑

l=0

E3kl(x, y, t)P
a1,b1
k (ξ1)P

a2,b2
l (ξ2).

(5.2.9)

Substituting the PC expansions in (5.1.1), multiplying Pi(ξ1)Pj(ξ2) and integrating over (a1, b1) ×

89
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(a2, b2) we obtain the following modal equations:

∂H1ij

∂t
= −

N1∑

k=0

N2∑

l=0

cµijkl
∂E3kl

∂y
, (5.2.10)

cµijkl =

∫
R2

1
µPi(ξ1)Pk(ξ1)χ(a1,b1)(ξ1)Pj(ξ2)Pl(ξ2)χ(a2,b2)(ξ2)dξ1dξ2∫ b1

a1
P 2
i (ξ1)dξ1

∫ b2
a2
P 2
i (ξ2)dξ2

. (5.2.11)

Then the coefficients cµijkl are evaluated as follows:

cµijkl = δikδjl





µ−1
1 if z < a1,

µ−1
2 if b1 < z < a2,

µ−1
3 if z > b2,

(5.2.12a)

and

cµijkl =





δjl

[
1
µ1
δik +

(
1
µ2

− 1
µ1

)
2i+1
b1−a1

∫ z

a1
Pi(ξ1)Pk(ξ1)dξ1

]
if a1 < z < b1,

δik

[
1
µ2
δjl +

(
1
µ3

− 1
µ2

)
2j+1
b2−a2

∫ z

a2
Pj(ξ2)Pl(ξ2)dξ2

]
if a2 < z < b2,

(5.2.12b)

Hence we similarly deduce the PC mode equations (5.2.6) and the Yee (FDTD) scheme (5.2.8). Here

the corresponding vectors areH1(x, y, t) = (H1,ij) (the indices i, j are in a dictionary order), H2(x, y, t) =

(H2,ij) and E3(x, y, t) = (E3,ij), and the initial conditions are H1,00 = h1(x, y), H2,00 = h2(x, y), and

E3,00 = e3(x, y). The matrices Λµ(z) = (cµijkl) and Λǫ(z) = (cǫijkl).

One disadvantage of the modal equation (5.2.10) is that it leads to a huge algebraic system when the

Yee scheme (5.2.8) is applied since all the PC modes are arranged into vector forms, which in turn causes

the coefficient matrices Λµ and Λε to have very large sizes, i.e., (1+N1)(1+N2)× (1+N1)(1+N2). The

case becomes worse when more interfaces are introduced into the modal problem. In the following part,

we introduce a modification in deriving the PC modes which overcomes the drawback discussed above.

Substituting the PC expansions (5.2.9) in (5.1.1), multiplying by Pi(ξ1)Pj(ξ2) and integrating over

Ω, if a1 ≤ z < b1, since µ = µ(ξ1), ε = ε(ξ1) (see Fig. 5-1), ξ2 does not affect the parameters µ, ε and

thus the integration with respect to ξ2 has no effect in the resulting equations. Hence, we obtain that

∂H1il

∂t
= −ci

N1∑

k=1

λik
∂E3kl

∂y
, i = 0 · · ·N1, (5.2.13)

where

ci =

[∫ b1

a1

(Pi(ξ1))
2dξ1

]−1

=
2i+ 1

b1 − a1
, (5.2.14)

and

λik = λµik =

∫ b1

a1

1

µ
Pk(ξ1)Pi(ξ1)dξ1. (5.2.15)
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For other intervals, a similar procedure follows. Since λµik = λµki, ci and λ
µ
ik do not change when we

march the indexes, after the marching, we obtain,





∂H1

∂t
= − 1

µ1

∂E3

∂y
, z < a1,

∂H1

∂t
= −Λµ

1

∂E3

∂y
, a1 ≤ z < b1,

∂H1

∂t
= − 1

µ2

∂E3

∂y
, b1 ≤ z < a2,

∂H1

∂t
= −Λµ

2

∂E3

∂y
, a2 ≤ z < b2,

∂H1

∂t
= − 1

µ3

∂E3

∂y
, b2 ≤ z,

(5.2.16)

whereH1 = (H1kl), E3 = (E3kl), k = 1, · · · , N1, l = 1, · · · , N2; and Λµ
1,2 = (ckλkl)1,2 are matrices of sizes

(1+N1)×(1+N1) and (1+N2)×(1+N2), respectively. The entries (ckλkl)
1,2 are similar to the coefficients

cµik defined in (5.2.5b), respectively with the removal of δik and a, b replaced by appropriate a1, b1 and

a2, b2, respectively. We notice that the sizes of Λµ
(.) are much reduced. Moreover, the computational cost

is much reduced in case more random interfaces are introduced. H2, E3 follow similarly.

Remark 5.2.1.

It is noted that in the system (5.2.16), we treat the matrices H1, E3 as vectors by fixing one index and

marching the other. Order of the indexes is important for intervals containing the random interfaces ξ1,

ξ2, i.e., (a1, b1) and (a2, b2), respectively. In particular, for the interval (a1, b1), by fixing l, we march H1

by columns and solve for each column vector (H1il), i = 0, · · · , N1 as in Eq. (5.2.13); whereas for the

interval (a2, b2), we fix k and solve for each row vector (H1kj), j = 0, · · · , N2.
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Applying the Yee scheme to (5.2.16), we obtain an algebraic system as below, for n, i, j ∈ Z+,





• if z < a1,

H
n+ 1

2

1,i,j+ 1
2

= H
n− 1

2

1,i,j+ 1
2

− ∆t

∆y

1

µ1

[
En

3,i,j+1 −En
3,i,j

]
,

H
n+ 1

2

2,i+ 1
2 ,j

= H
n− 1

2

2,i+ 1
2 ,j

+
∆t

∆y

1

µ1

[
En

3,i+1,j −En
3,i,j

]
,

En+1
1,i,j = En

1,i,j +
1

ǫ1

{
∆t

∆x

[
H

n+ 1
2

2,i+ 1
2 ,j

−H
n+ 1

2

2,i− 1
2 ,j

]
− ∆t

∆y

[
H

n+ 1
2

1,i,j+ 1
2

−H
n+ 1

2

1,i,j− 1
2

]}
,

• if a1 ≤ z < b1,

H
n+ 1

2

1,i,j+ 1
2

= H
n− 1

2

1,i,j+ 1
2

− ∆t

∆y
Λµ

1,i,j+ 1
2

[
En

3,i,j+1 −En
3,i,j

]
,

H
n+ 1

2

2,i+ 1
2 ,j

= H
n− 1

2

2,i+ 1
2 ,j

+
∆t

∆y
Λµ

1,i+ 1
2 ,j

[
En

3,i+1,j −En
3,i,j

]
,

En+1
1,i,j = En

1,i,j + Λǫ
1,i,j

{
∆t

∆x

[
H

n+ 1
2

2,i+ 1
2 ,j

−H
n+ 1

2

2,i− 1
2 ,j

]
− ∆t

∆y

[
H

n+ 1
2

1,i,j+ 1
2

−H
n+ 1

2

1,i,j− 1
2

]}
,

• if b1 ≤ z < a2,

H
n+ 1

2

1,i,j+ 1
2

= H
n− 1

2

1,i,j+ 1
2

− ∆t

∆y

1

µ2

[
En

3,i,j+1 −En
3,i,j

]
,

H
n+ 1

2

2,i+ 1
2 ,j

= H
n− 1

2

2,i+ 1
2 ,j

+
∆t

∆y

1

µ2

[
En

3,i+1,j −En
3,i,j

]
,

En+1
1,i,j = En

1,i,j +
1

ǫ2

{
∆t

∆x

[
H

n+ 1
2

2,i+ 1
2 ,j

−H
n+ 1

2

2,i− 1
2 ,j

]
− ∆t

∆y

[
H

n+ 1
2

1,i,j+ 1
2

−H
n+ 1

2

1,i,j− 1
2

]}
,

• if a2 ≤ z < b2,

H
n+ 1

2

1,i,j+ 1
2

= H
n− 1

2

1,i,j+ 1
2

− ∆t

∆y
Λµ

2,i,j+ 1
2

[
En

3,i,j+1 −En
3,i,j

]
,

H
n+ 1

2

2,i+ 1
2 ,j

= H
n− 1

2

2,i+ 1
2 ,j

+
∆t

∆y
Λµ

2,i+ 1
2 ,j

[
En

3,i+1,j −En
3,i,j

]
,

En+1
1,i,j = En

1,i,j + Λǫ
2,i,j

{
∆t

∆x

[
H

n+ 1
2

2,i+ 1
2 ,j

−H
n+ 1

2

2,i− 1
2 ,j

]
− ∆t

∆y

[
H

n+ 1
2

1,i,j+ 1
2

−H
n+ 1

2

1,i,j− 1
2

]}
,

• if z ≥ b2,

H
n+ 1

2

1,i,j+ 1
2

= H
n− 1

2

1,i,j+ 1
2

− ∆t

∆y

1

µ3

[
En

3,i,j+1 −En
3,i,j

]
,

H
n+ 1

2

2,i+ 1
2 ,j

= H
n− 1

2

2,i+ 1
2 ,j

+
∆t

∆y

1

µ3

[
En

3,i+1,j −En
3,i,j

]
,

En+1
1,i,j = En

1,i,j +
1

ǫ3

{
∆t

∆x

[
H

n+ 1
2

2,i+ 1
2 ,j

−H
n+ 1

2

2,i− 1
2 ,j

]
− ∆t

∆y

[
H

n+ 1
2

1,i,j+ 1
2

−H
n+ 1

2

1,i,j− 1
2

]}
,

(5.2.17)

where Λµ

(.),i,j+ 1
2

= Λµ(z(xi, yj+ 1
2
)), Λµ

(.),i+ 1
2 ,j

= Λµ(z(xi+ 1
2
, yj)), and Λǫ

.,i,j = Λǫ(z(xi, yj)).

Notice that the coefficient matrices Λ
(.)
1 (z) and Λ

(.)
2 (z) are independent of time. We just store those

matrices only at the first step n = 1 and reuse them at n ≥ 2.

5.2.2 n-random Interfaces

We now extend the PC expansions (5.2.9) to the case with n-interfaces. Substituting the expansion

H1 =
∑

H1j1...jn(x, y, t)Pj1 (ξ1) . . . Pjn(ξn), (5.2.18)
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into Eq. (5.1.1)1, we obtain

∑ ∂

∂t
H1j1...jn(x, y, t)Pj1(ξ1) . . . Pjn(ξn) = − 1

µ

∑ ∂

∂t
E3j1...jn(x, y, t)Pj1 (ξ1) . . . Pjn(ξn). (5.2.19)

Here,
∑

=
∑N1

j1=1

∑N2

j2=1 . . .
∑Nn

jn=1 and µ = µi if ξi−1 ≤ z < ξi with ξ0 = −∞, ξn+1 = ∞ as in Fig.

5-2. Here, the random variables ξi are uniformly distributed over (ai, bi). The PDFs are respectively

fi(ξi) =
1

bi−ai
χ(ai,bi)(ξi). Multiplying Eq. (5.2.19) by Pj1 (ξi) . . . Pjn(ξn) and integrating over Ω, we find

that, if a1 ≤ z < b1,

∂

∂t
H1i1...in(x, y, t) = −ci1

N1∑

j1=1

λj1
∂

∂y
E3j1,i2...in(x, y, t), (5.2.20)

where

ci1 =

[∫ b1

a1

(Pi1(ξ1))
2dξ1

]−1

=
2i1 + 1

b1 − a1
, (5.2.21)

and

λj1 = λi1,j1 =

∫ z

a1

1

µ
Pj1(ξ1)Pi1 (ξ1)dξ1 (5.2.22)

=
1

µ2

∫ b1

a1

Pj1(ξ1)Pi1(ξ1)dξ1 +
1

µ1

∫ b1

z

Pj1(ξ1)Pi1(ξ1)dξ1.

Note here that although we consider the n-tensor product of one-dimensional PC expansions, only an

integration in one dimension needs to be computed to evaluate the coefficients in Eq. (5.2.20) and this

makes the whole computational cost grows linearly. Furthermore, the explicit formula of the integration

in Eq. (5.2.22) is available in [68].

For other intervals, the same procedure can be applied. In particular, if b1 ≤ z < a2, µ = µ2, and

hence

∂

∂t
Hi1...in(x, y, t) = − 1

µ2

∂

∂y
Ei1,i2...in(x, y, t), (5.2.23)

and H2, E3 follow similarly.

We can now discretize (5.2.20), (5.2.23) using the Yee scheme as in (5.2.17). The numerical simula-

tions with 3 and 5 random interfaces are shown in Figs. 5-9, 5-12 below.
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5.3 Statistics

Thanks to the orthogonality of Legendre polynomials, we can explicitly obtain the mean and variance.

For example, we can obtain the mean and variance of E3: for Case I, as in section 1.1.1,

E(E3) =

∫ ∞

−∞

E3f1(ξ)dξ = E3,0(x, y, t), (5.3.1)

V ar(E3) =

∫ ∞

−∞

(E3)
2f1(ξ)dξ − (E(E3))

2 =

N∑

i=1

(E3,i(x, t))
2

2i+ 1
. (5.3.2)

and, in general,

E(E3) =

∫

Rn

E3

n∏

i=1

fi(ξi)dξ1 · · · dξn = E3,0···0(x, y, t), (5.3.3)

V ar(E3) =

∫

Rn

(E3)
2

n∏

i=1

fi(ξi)dξ1 · · · dξn − (E(E3))
2

=

N1∑

i1=0

N2∑

i2=0

· · ·
Nn∑

in=0
(i1,··· ,in) 6=(0,··· ,0)

(E3,i1i2···in(x, y, t))
2

Πin
k=i1

(2ik + 1)
.

(5.3.4)

Here, fi(ξi) =
1

bi−ai
χ(ai,bi)(ξi) are uniform probability density functions.

The Cumulative distribution functions (CDF), and the Probability density functions (PDF) can

be also evaluated via the PC expansions and the post-processing Monte Carlo method. We randomly

choose a Monte Carlo sampling {E1
3 , . . . , E

k
3 , . . . , E

M
3 } with Ek

3 ∈ (s0, sK), for all 1 ≤ k ≤ M . Here,

M is sufficiently large, and k is the multi-index of the random variables xii’s. The CDF and PDF are

evaluated as follows (see [68] for detailed discussions), respectively,

F (s) = P (E3 ≤ s) =

∫ s

−∞

f(E3)dE3 ≈ 1

M

M∑

k=1

χ(−∞,s)(E
k
3 ), (5.3.5)

f(sk) ≈
F (sk+1 − F (sk))

h
, (5.3.6)

where sk = s0 + kh.

5.4 Numerical Results

For the simulation purposes, we use the level set function z as below,

z(x, y) =
3

4
x2 + 12

(
y − 1

2

)2

− 3

2
, (5.4.1)

for which two random interfaces {z(x, y) = ξ1} and {z(x, y) = ξ2}, where ξ1, ξ2 are uniform random

variables over (a1, b1) and (a2, b2), respectively, are plotted in Fig. 5-3. The values of ai, bi, i = 1, 2, are
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Figure 5-3: Two random interfaces {z(x, y) = ξ1} and {z(x, y) = ξ2}; the case ξ1 = −0.5 (inner)
and ξ2 = 1 (outer) are plotted.

specified in the simulations below.

Here and after, we use the computational domain Ω = (−2, 2) × (0, 1). In Figs. 5-4 and 5-5, we

consider the initial conditions:

H1 = H2 = 0, E3 = (x+ 2)(x− 2)y(y − 1), (5.4.2)

boundary conditions

E3 = 0, (5.4.3)

and the parameters,





µ1 = ε1 = 1 if z < ξ1,

µ2 = ε2 = 2 if ξ1 ≤ z < ξ2,

µ3 = ε3 = 3 if ξ2 ≤ z < ξ3.

(5.4.4)

We notice that the boundary conditions for H1, H2 are not needed since following the Yee scheme

(5.2.17), H1, H2 are first updated using the information of the previous time step of E3; then E3 is

updated by the newly obtained H1, H2.

We consider the case 1 in section 1.1.1 of two random interfaces fluctuating with the same random

parameter ξ and thickness δ between the two level sets. Two cases are taken into account. One for a

small fluctuation with a = −0.5, b = 0, δ = 0.6; and a = −1, b = 0.8, δ = 2 for a large fluctuation. We

observe the CDFs of the Maxwell solutions evolving in time for both cases as in Fig. 5-4. It is shown

that the fluctuation of the CDF of E3 for the latter case is much wider than the former case. This is due
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Figure 5-4: Case I: Evolution of Cumulative distribution function (CDF) of E3 at x = 0, y = 0.75
with N = 10, (µi, εi), µ1 = ε1 = 1, µ2 = ε2 = 2 and µ3 = ε3 = 3; LEFT: with a relatively small
fluctuation (a = −0.5, b = 0, δ = 0.6); RIGHT: with a relatively large fluctuation (a = −1, b =
0.8, δ = 2).

to the wider variance of the random variable ξ in the latter case compared with that in the former one.

We now test with case 2 in which the two random variables ξ1, ξ2 are independent of each other.

In this case, we use the intervals a1 = −1, b1 = −0.1, a2 = 0, b2 = 0.9. The CDF, mean and variance

of E3 at t = 1.5 are plotted in Fig. 5-5. Here, we also observe the fluctuation of the CDF of the field

E3 when it evolves in time; and the fluctuation occurs in the regions locating the random interfaces (see

Fig. 5-53 showing the variance of E3).

In Fig. 5-6, for the compatible initial/boundary conditions, we use some known solutions for (5.1.1)

as follows:




H1

H2

E3


 =




−β
α√
µ

ǫ




exp

(
iω

(
t√
ǫµ

+ αx+ βy + γ

))
, (5.4.5)

where α, β, γ, ω ∈ R, α2+β2 = 1. We can then choose the compatible boundary conditions which satisfy

(5.4.5) on ∂Ω and the compatible initial conditions (5.4.5) with t = 0. We try the real part of solutions

(5.4.5) with α = β = 1/
√
2, ǫ = µ = 2 and ω = 2, γ = 0. Hence the initial conditions are: for all

(x, y) ∈ Ω,








H1,00

H2,00

E3,00




=




−1/
√
2

1/
√
2

1



cos
(√

2x+
√
2y
)
,

H1kl = H2kl = E3kl = 0 for k, l = 1, · · · , N.

(5.4.6)

Here we set the parameters µ1 = ε1 = 1, µ2 = ε2 = 3, µ3 = ε3 = 2. Since ∂Ω ⊂ {z(x, y) = ξ} for

all ξ ∈ [−1, 1], the conditions (5.4.6) are compatible with the boundary conditions. For the boundary
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Figure 5-5: Case II: TOP: Evolution of Cumulative distribution function (CDF) of E3 at x =
0, y = 0.75 with N = 10, initial and boundary conditions as in (5.4.2) and (5.4.3); BOTTOM: mean
and variance of E3 at t = 1.5, respectively.
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Figure 5-6: Case II: TOP: Evolution of Cumulative distribution function (CDF) of E3 at x =
0, y = 0.75 with N = 10 using compatible initial/boundary conditions (5.4.6) and (5.4.7), µ and ε
as in (5.4.4); BOTTOM: mean and variance of E3 at t = 1.5, respectively.

conditions, we only have to impose on E3 field as indicated in (5.2.8) and (5.2.17) (i.e., the H- fields are

updated from the E- field): for all (x,y) ∈ ∂Ω, t > 0,





E3,00 = cos
(
t+

√
2x+

√
2y
)
,

E3,kl = 0, for k, l = 1, · · · , N.
(5.4.7)

Notice also that the initial/boundary conditions are deterministic and thus only the conditions of the

zero PC mode are imposed as in (5.4.7) and the conditions of other PC modes are zero.

The evolution in time of the electric field E3 for the case 2 of the compatible initial and boundary

conditions (5.4.6)–(5.4.7) is then simulated and the results are shown in Fig. 5-7 at time t = 0, 1, 2, 3

respectively with two random interfaces. It is shown in the figures that even though we have deterministic

initial and boundary conditions, the mean of E3 becomes rough in the regions where the random interfaces

fluctuate. This can be explained by the discontinuity of the parameters µ and ε across the interfaces.

We also check the decay of the PC modes of E3 for both cases of initial/boundary conditions (5.4.2)–

(5.4.6). The results are presented in Fig. 5-8 with the z-axis is plotted in log scale. We notice that

the PC modes decay exponentially. This implies that computations with only the first few modes, e.g.,

N = 10 in our numerical simulations, can produce a good approximation.
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Table 5-1: Mean and variance of E3 with 3 random interfaces at some points (x, y), t = 1.5 with
different number of PC modes.

PC
(x, y) 5 10 15

(−0.8, 0.2) −0.4535 −0.4525 −0.4517
(0, 0.75) −0.6236 −0.6227 −0.6220

Mean (−1.2, 0.8) −0.2212 −0.2200 −0.2194
(1.2, 0.5) −0.2645 −0.2631 −0.2625
(0.4, 0.4) −0.6585 −0.6572 −0.6565

(−0.8, 0.2) 4.25E-03 4.35E-03 4.35E-03
(0, 0.75) 8.51E-04 8.89E-04 8.98E-04

Variance (−1.2, 0.8) 1.26E-03 7.27E-03 7.29E-03
(1.2, 0.5) 5.19E-03 5.18E-03 5.17E-03
(0.4, 0.4) 8.15E-03 9.15E-03 9.17E-03

In Fig. 5-9, we plot the CDF, mean and variance of E3 at x = 0, y = 0.75 at t = 1.5 with 3

random interfaces {z(x, y) = ξ1}, {z(x, y) = ξ2}, {z(x, y) = ξ3}. We use the same initial/boundary

conditions as in (5.4.2), µ and ε are as in (5.4.4) with additional µ4 = ε4 = 4 if ξ3 ≤ z < ξ4 and

a1 = −1, b1 = −0.5, a2 = −0.4, b2 = 1.4, a3 = 1.5, b3 = 2. In Table 5-1, we compare the means

and variances of the E3 field at t = 1.5 at some specified points with different number of PC modes

PC = 5, 10, 15. It is shown that these results are not much different from each other. This is due to

the exponential decay of the PC modes (see Fig. 5-8). Hence, for a simulation of increasing number

of interfaces, a relatively small number of PC modes (N = 5) can be used for saving computational costs.

5.5 Parallel Computing

In this section, we present the parallelization of our numerical codes using the Message Passing Interface

(MPI) library (see [85], [40], and [114]) for the purpose of saving computational time.

Before proceeding, we recall that our objective in this article is to study the evolution of the CDF

in time of the electromagnetic fields in case there appear some uncertainties in the governing equations

(5.1.1). By projecting the solutions of Eqs. (5.1.1) into the random space using the PC projection

method, we were able to separate the deterministic and random parts of the solutions. We, then, could

apply the well-known Yee scheme for solving the former parts numerically. In order to obtain the

CDF evolution in time, we applied the Monte Carlo sampling method in a post-processing stage. To

compare our Monte Carlo sampling with the conventional one, we just note that the latter is applied as

a preprocessing to the equations and then the resulting equations are deterministic for which we may

use classical numerical methods. However, to get reliable statistics, large samples are required and this

causes a high cost in computations. Hence, there are two independent stages in the algorithm, i.e., the

Yee scheme and the Monte Carlo sampling stages. Thus, it is natural that these two stages are objectives

of our parallelization.
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Figure 5-9: CDF, mean and variance of E3 at x = 0, y = 0.75 with 3 independent random variables
and 5 PC modes using initial/boundary conditions (5.4.2) and (5.4.3), µ and ε as in (5.4.4) with
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Figure 5-10: Domain decomposition for the parallel codes in a staggered grid.
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5.5 Parallel Computing

In the first stage, i.e., the Yee scheme, for parallel purposes, we apply the so-called domain decom-

position in the x-direction to the 2D grid of the computational domain. We divide the computational

domain into sub-domains and assign all computational loads relating to each of them to a process. We

notice that between two neighboring sub-domains, there exists an interface in which data transfer is

required between the two processes responsible for these sub-domains during the parallel computing (see

Fig. 5-10). We call these interfaces “parallel boundaries” to distinguish with the physical boundaries

defined in the governing equations; and the data transfer among processes “parallel boundary update”.

Hence, for each time step, we need to update both the physical and parallel boundaries in each sub-

domain. We note that since we parallel our computation based on the computational domain, not on the

PC modes, the amounts of data transferring through the parallel boundaries are equal to each other and

do not depend on the number of random interfaces and the fact that whether the sub-domains contain

the random interfaces {z = ξi} or not. We also notice that the Yee scheme is a type of multi-stage

methods, i.e., at each time step, the update of H1, H2, and E3 in the system (5.2.17) consists of two

sub-steps: firstly, the new H1 and H2 are updated based on the old E3 of the previous time step; then,

the new E3 is updated following the new H1, H2 of the current time step. Hence, we need to have the

parallel boundaries updated twice. Since we decompose the computational domain in the x−direction,

only parallel boundaries for H2 and E3 need updating (see the Yee scheme in (5.2.17)).

The parallelization of the Monte Carlo sampling stage as a post-processing is simpler than that of the

Yee scheme stage because we parallel our codes based on the number of samples used in the Monte Carlo

method and all these samples are independent of each other. Thus we only need to divide the samples

into portions and assign each portion to a process. We, then, collect the results from all processes to

obtain the aiming CDFs.

For numerical simulations, we test our parallel codes with two cases. In the first case, we simulate

with two random variables or interfaces with initial and boundary data as in (5.4.6) and (5.4.7) to

illustrate for the necessity of updating of both physical and parallel boundaries in each sub-domain. And

in the second case, we test with three random interfaces with initial and boundary conditions (5.4.2) and

(5.4.3) aiming for the saving of computational time. The numerical results of these tests are similar to

those of the serial cases shown in Figs. 5-6, 5-9, respectively.

In Fig. 5-11, we plot the computational time (in minutes) for different numbers of processes used

in the parallel computation. The result obtained from the number of processes 1 is equivalent to that of

a serial code. We conclude that using parallel computation, we can save a considerable amount of time.

As shown in the figure, a parallel code with 8 processes is about 8 times faster than a serial code. The

increase of computational time in case of two random variables or interfaces with 12 processes can be

explained by the increase of the data transferring cost among the processes. Hence, in our problem, we

conclude that parallel codes using 8 processes are more optimal for cases of 2 random interfaces; whereas

for 3 and 5 interfaces, 16 processes yield faster computational time.

In Fig. 5-12, we further test with the case of 5 random interfaces with initial / boundary conditions
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Figure 5-11: Computational time of different number of PC modes. x-axis is the number of
processes used in the computation. Number of processes = 1 is equivalent to the serial codes.

as in (5.4.2)–(5.4.3) and other parameters are as below:





µ1 = ε1 = 1,

µ2 = ε2 = 2,

µ3 = ε3 = 3,

µ4 = ε4 = 4,

µ5 = ε5 = 1,

µ6 = ε6 = 2,

and





ξ1 ∈ (a1, b1) = (−1,−0.5),

ξ2 ∈ (a2, b2) = (−0.4,−0.1),

ξ3 ∈ (a3, b3) = (0, 0.5),

ξ4 ∈ (a4, b4) = (1, 1.4),

ξ5 ∈ (a5, b5) = (1.5, 2),

(5.5.1)

It is shown in the figure that the mean and variance of E3 behave more wildly than those of lesser

numbers of random interfaces. It is because with the introduction of 5 random interfaces, their fluctua-

tions occur in most of the computational domain Ω.”
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6

Semi-analytical Time Differencing

Methods for Dispersive PDEs

6.1 Introduction

In this chapter, we investigate the following Korteweg de Vries (KdV) equation, which belongs to the

class of hyperbolic PDEs,





ut + uux + uxxx = f, in Ω = (0, 2π),

u(x, 0) = u0(x),

(6.1.1)

where u = u(x, t), f = f(x, t), the initial and boundary conditions are 2π-periodic.

By a spectral method (see [139], [32], [20]), Eq. (6.1.1) is transformed into a finite system of ODEs

whose unknowns are the modes of a truncated Fourier series, and this system is complex due to the

dispersive term uxxx. Hence, the waves do not decay in time but rapidly oscillate as the wavenumber

k is large. Moreover, all Fourier modes interact with each other in a convolution form by the nonlinear

quadratic term uux.

To illustrate, we first discretize the spatial domain using an equidistant grid 0 = x0 < x1 < . . . <

xj < . . . < xN−1 = 2π −∆x, where the grid size ∆x = xj+1 − xj = 2π/N , j = 0, . . . , N − 2. That is,

xj = 2πj/N . Let uj = unj be an approximation of the exact solution u(xj , tn). By a discrete Fourier

transform, we write

uj =
1

N

N/2−1∑

k=−N/2

û(k)ei
2π
N jk, j = 0, . . . , N − 1, (6.1.2)
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where

û(k) =

N−1∑

j=0

uje
−i 2πN jk, k = −N/2, . . . ,−1, 0, 1, . . . , N/2− 1, (6.1.3)

are the Fourier modes. Here, i2 = −1 is the imaginary number. For simplicity, we omit the time

dependence of û(k) and we assume that N is even.

Taking the discrete Fourier transform of Eq. (6.1.1) with a note that ûxxx = −ik3û, and ûux =
1

2
(̂u2)x =

ik

2
û2 =

ik

2
û ∗ û. Invoking transforms (6.1.2) and (6.1.3), the discrete convolution ∗ is derived

as

ûv(k) =

N−1∑

j=0

(uv)je
−i 2πN kj =

N−1∑

j=0


 1

N

N/2−1∑

l=−N/2

û(l)ei
2π
N lj


 vje−i 2πN lj

=
1

N

N/2−1∑

l=−N/2

û(l)

N−1∑

j=0

vje
−i 2πN (k−l)j =

1

N

N/2−1∑

l=−N/2

û(l)v̂(k − l)

=: (û ∗ v̂)(k).

(6.1.4)

For k 6= 0, let

ε(k) =
i

k3
, (6.1.5)

by Fourier transform, we obtain Eq. (6.1.1) as follows,





ût(k) +
1

ε(k)
û(k) = F̂ (û, t),

û(k) = û0(k) at t = 0,

(6.1.6)

where

F̂ (û, t) = − ik
2
(û ∗ û)(k) + f̂(k). (6.1.7)

We note that the system is complex since ε(k) is pure imaginary as indicated above. This results

from the dispersive term. In case of a dissipative PDE, e.g. the Kuramoto-Sivashinsky (KS) equation

([90], [75]), the system is real. For the former, the solutions experience oscillations; whereas for the

latter, they decay in time. The wave frequencies and rates of decay are proportional to the wavenumbers

k’s.

When k is large, 0 < |ε(k)| ≪ 1, where | · | is the modulus. Due to this smallness, the solutions of

Eq. (6.1.6) exhibit stiff layers (see the thin layers (6.2.32), (6.2.35) below). This causes difficulties in

the implementation of numerical methods to approximate the solutions. A very small time step should

be chosen for the treatment of the sharp transition in the stiff layers. Here, we use the term “stiff”

loosely to indicate both rapidly decaying layers if system (6.1.6) is real (for dissipative PDEs) or rapidly
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oscillatory waves if it is complex for dispersive PDEs as in our case.

In order to overcome this difficulty, a good numerical time-stepping method for Eq. (6.1.6) has to

handle the stiffness without requiring a fine time step. A conventional approach is the integrating factor

(IF) (see Sec. 6.2.1.1 below and [20], [6], [32], etc.) Here, one multiplies both sides of Eq. (6.1.6) by

the integrating factor et/ε, where we have omitted k; and applies a time integrating method, e.g. the

Runge-Kutta type, to the new function y = uet/ε with yt = et/εF̂ where the stiff term et/ε is absorbed

into the y. Implementations and applications of the IF methods can be found in, for instances, [22], [90],

[4], or [5]. An alternative approach is the so-called Exponential time differencing (ETD) methods, which

are constructed by Cox and Matthews ([22]) (see Sec. 6.2.1.2 below). Their idea is that, after multiplying

with the integrating factor, unlike the IF methods, the authors approximate the nonlinear term under

the integral sign; then apply some standard method for the time advancing. Numerical applications show

that the ETD methods outperform the other comparing ones (see, e.g. [22], [1]). Unfortunately, the ETD

methods suffer from the instability caused by the presence of exponential terms in their formulas. This

drawback is tackled by Kassam and Trefethen with the application of an integral over a closed contour

in a complex plane (see [90]). Since their introduction, ETD methods have been successfully applied in

a variety of PDEs, including the nonlinear Schrödinger equation ([62]), the KdV and the KS equations

([22], [90]), or recently, to model the particle dynamics of low Reynolds number incompressible flows

(see [104]), etc. Besides the IFs and ETDs, we would also like to mention the Implicit-Explicit (IMEX)

methods, which are developed based on the idea to use an implicit scheme to approximate the stiff linear

term; while an explicit one for the mild nonlinear one. Interested readers can refer to [4] or [3] and the

references therein.

In general, there are various existing methods for stiff problems. For example, one can consider

relaxation methods if the spectrum of the dominating operator in the problems is negative, or multi-

scale methods if the spectrum is imaginary. References can be found for Jin-Xin relaxation schemes [71],

[81], heterogeneous multi-scale methods [30], [27], equation free methods [88], flow averaging integrators

[141], and WKB methods [84]. However, for our research we restrict to the case where the linear stiff

term, u/ε, is dominating as in Eq. (6.1.6).

In this chapter, we present a new semi-analytical time differencing methods for the spectral methods

(6.1.6) applying to the KdV equation (6.1.1) (see [74], [75]). For the time integrator, we restrict our scope

to the Runge-Kutta (RK) methods, both the 2nd- and 4th-order ones. The idea is to invoke the singular

perturbation analysis to analytically approximate the stiff part of the solution, whereas the non-stiff ones

are obtained numerically. Notice that if we fix the wavenumber k, the system (6.1.6) is merely an ODE.

Hence, it is natural to investigate the new scheme in case of ODEs first. The development to a PDE

case, i.e., the KdV equation will then follow. For the latter stage, it is important to how one treats the

coupling of all Fourier modes in (6.1.6) due to the nonlinear convective term. We organize the chapter

following this structure.
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6.2 New Semi-analytical Time Differencing Methods for Stiff

ODEs

For simplicity, we rewrite the system (6.1.6) in terms of a single equation as follows,





ut +
1

ε
u = F (u, t),

u(0) = u0,

(6.2.1)

where u = u(t), 0 < |ε| ≪ 1, and F (u(t), t) and u0 are given data. Here, ε is real and positive or

pure imaginary, and |ε| is its modulus. However, in the analysis below, ε may be considered a complex

number.

6.2.1 Classical IF and ETD Methods

In order to resolve the stiff linear term u/ε in Eq. (6.2.1), multiplying both sides by an integrating factor

et/ε, we obtain that

d

dt

(
uet/ε

)
= et/εF (u, t). (6.2.2)

Notice that the stiff term u/ε has been absorbed by the integrating factor, leaving the right-hand

side of Eq. (6.2.2) with only the nonlinear term F , which is considered milder than the u/ε. How one

treats this right-hand side determines the numerical method to use. Below, we present the two classical

methods which are mostly used in dealing with this type of problems. For deeper discussions and stability

issues, readers can refer to [22], [90].

First of all, let us define a discrete time grid. We denote 0 and T the initial and final time, respectively;

and discretize the time into M equal intervals 0 = t0 < t1 < . . . < tn < . . . < tM−1 < tM = T . Let

h = tn+1 − tn, n = 0, . . . ,M − 1, be the time step. We denote u(tn) the exact solution of Eq. (6.2.1)

at time tn, and un the corresponding approximation obtained from some numerical method. We now

proceed to the IF methods.

6.2.1.1 Integrating Factor Methods

Let

y(t) = u(t)et/ε, (6.2.3)

Eq. (6.2.2) is rewritten in term of y(t) as follows,

yt = et/εF (ye−t/ε, t). (6.2.4)

Applying a typical RK2 or RK4 to Eq. (6.2.4) to approximate y(t) instead of u(t), we deduce the
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following schemes which are called IFRK2 or IFRK4, depending on which RK method to be applied.

Writing Fn = F (un, tn) we have:

• IFRK2 method:





k1 = e−h/εFn,

k2 = F (une
−h/ε + hk1, tn + h),

un+1 = une
−h/ε +

h

2
(k1 + k2) .

(6.2.5)

• IFRK4 method (see [1]):





k1 = Fn,

k2 = F ((un + hk1/2)e
−h/(2ε), tn + h/2),

k3 = F (une
−h/(2ε) + hk2/2, tn + h/2),

k4 = F (une
−h/ε + hk3e

−h/(2ε), tn + h),

un+1 = une
−h/ε +

h

6

(
k1e

−h/ε + 2(k2 + k3)e
−h/(2ε) + k4

)
.

(6.2.6)

6.2.1.2 Exponential Time Differencing Methods

Instead of directly applying the RK time integration as in the IF methods, in their paper, Cox and

Matthews ([22]) suggest an alternative by interpolating the nonlinear term F . Integrating both sides of

Eq. (6.2.2) with respect to time, we obtain

u(tn+1) = u(tn)e
−h/ε + e−h/ε

∫ h

0

es/εF (u(tn + s), tn + s)ds. (6.2.7)

As a simple approximation to the integration, we take F = Fn and we then obtain the scheme ETD1,

un+1 = une
−h/ε + (e−h/ε−1)Fn

−1/ε . We denote this by an. Interpolating the nonlinear term F linearly as

F = Fn +
F (an, tn + h)− Fn

h
(t− tn) + O(h2), (6.2.8)

and substituting into Eq. (6.2.7) gives the ETDRK2 method. The ETDRK4 method is derived in a

similar way, but using an RK4 method. The schemes are as follows:

• ETDRK2 method:





an = une
−h/ε +

(e−h/ε − 1)Fn

−1/ε
,

un+1 = an + (F (an, tn + h)− Fn)
e−h/ε − 1 + h/ε

h/ε2
,

(6.2.9)
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• ETDRK4 method:





an = une
−h/(2ε) +

(e−h/(2ε) − 1)Fn

−1/ε
,

bn = une
−h/(2ε) +

(e−h/(2ε) − 1)F (an, tn + h/2)

−1/ε
,

cn = ane
−h/(2ε) +

(e−h/(2ε) − 1)(2F (bn, tn + h/2)− Fn)

−1/ε
,

t1 =
−4 + h/ε+ e−h/ε(4 + 3h/ε+ h2/ε2)

−h2/ε3 ,

t2 =
2− h/ε+ e−h/ε(−2− h/ε)

−h2/ε3 ,

t3 =
−4 + 3h/ε− h2/ε2 + e−h/ε(4 + h/ε)

−h2/ε3 ,

un+1 = une
−h/ε + Fnt1

+2(F (an, tn + h/2) + F (bn, tn + h/2))t2 + F (cn, tn + h)t3.

(6.2.10)

In [90], the authors point out that the ETDRK methods are not numerically stable, due to the

presence of the term

g(z) =
ez − 1

z
, (6.2.11)

or its higher-order variants. When z is small, these terms induce large cancellation errors.

To remedy this, they propose a stabilizing mechanism using a so-called contour integral in a complex

plane. That is, instead of a direct calculation of g(z) in Eq. (6.2.11), one can evaluate the function via

an integral over a contour Γ as follows

g(z) =
1

2πi

∫

Γ

g(s)

s− z
ds, (6.2.12)

where z ∈ C, i =
√
−1, and Γ encloses z. For simplicity, Γ is chosen to be a circle centered at z. Then, a

typical quadrature method, e.g., the trapezoidal rule, can be applied to evaluate the integral numerically.

In case z is real, by choosing Γ as a circle centered at z on the real axis, the computational cost can be

reduced by approximating Eq. (6.2.12) using m equally-spaced points on the upper half of the contour

Γ.

Applying the complex integral (6.2.12) to recompute the unstable terms in (6.2.9) and (6.2.10) with

z = −h/ε, we obtain a stabilized version of the ETDRK methods. From herein, whenever we refer to an

ETDRK method, we mean the one using this stability mechanism.

6.2.2 The Schemes with Correctors

In this section, we first investigate the behavior of the solution of Eq. (6.2.1) by invoking the singular

perturbation analysis (see e.g., [48], [150], [132], [66]). By this, we can decompose the solution into a

fast and slow part, in which both are analytically approximated by an asymptotic expansion. For our

numerical treatments, we call the asymptotic expansion for the fast part uf a corrector θ. The slow
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part us is then numerically approximated by the IFRK and ETDRK methods discussed in the previous

section. Since the conventional numerical schemes are now applied for the non-stiff part v = u− θ ≈ us,

it is expected that the results are much improved compared with the same schemes applied directly to

the solution u. Hence, our approach is semi-analytical. Semi-analytical schemes are widely developed

for problems exhibiting boundary layers or interior layers. Here, we name some relevant works, both

analytically (see [52], [87], [108]) and numerically (see [79], [67], [80], [73], [134], etc.)

6.2.2.1 Asymptotic Expansions

We decompose the solution of (6.2.1) as

u = us + uf , (6.2.13)

where us(t) is the slow part of u for which us = O(1) and dus/dt = O(1); and the fast part uf (t) exhibits

a sharp transition in the solution with uf = O(1) and duf/dt = O(1/ε). In [22] (see also [101]), it is

pointed out that for a dissipative equation (i.e. ε is real and positive), the solution u is attracted to the

slow part us, and this can be expressed as an asymptotic expansion of ε as follows

u ∼ εF − ε2
dF

dt
+ ε3

d2F

dt2
+ O(ε4). (6.2.14)

To justify this, we formally approximate the slow part us. Using singular perturbation technique, we

approximate it by an asymptotic expansion, which is a power series of the small parameter ε,

us(t) ∼
∞∑

j=0

εjuj . (6.2.15)

Substituting into Eq. (6.2.1), we obtain that

∞∑

j=0

εjujt +

∞∑

j=0

εj−1uj = F




∞∑

j=0

εjuj, t


 . (6.2.16)

Assuming that F = O(1), at order O(ε−1), u0 = 0, and at order O(ε0), u1 = −u0t + F = F . At order

O(εj−1), j ≥ 2, uj = −uj−1
t . Hence, us ∼ εu1 + ε2u2 + ε3u3 + O(ε4) which implies (6.2.14).

Expanding the nonlinear term F we obtain more precise asymptotic expansion for the us. We first

formally write

F (u, t) =

∞∑

j=0

εjF j(u, t). (6.2.17)
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We then find that

F




∞∑

j=0

εjuj, t


 = F 0(u0 + εu1 + O(ε2), t) + εF 1(u0 + O(ε), t) + O(ε2)

= (using the formal Taylor expansion for F j(u, t) w.r.t. u at u0)

= F 0(u0, t) + ε
∂F 0

∂u
(u0, t)u1 + εF 1(u0, t) + O(ε2).

(6.2.18)

Hence, balancing terms at each order of ε in (6.2.16), at O(ε−1), we have:

u0 = 0, (6.2.19)

at order O(ε0),

u1 = −u0t + F 0(u0, t) = F 0(0, t), (6.2.20)

and at order O(ε),

u2 = −u1t +
∂F 0

∂u
(u0, t)u1 + F 1(u0, t) (6.2.21)

= −∂F
0

∂t
(0, t) +

∂F 0

∂u
(0, t)F 0(0, t) + F 1(0, t).

In this way, at each order O(εj−1), we can recursively define uj , j = 3, 4, · · · .
For the stiff or fast part uf with u = us + uf , we formally write

uf (t) ∼ θ =

∞∑

j=0

εjθj , (6.2.22)

u(t) ∼
∞∑

j=0

εj(uj + θj). (6.2.23)

Substituting (6.2.23) into Eq. (6.2.1) we formally obtain that

∞∑

j=0

εj(uj + θj)t +

∞∑

j=0

εj−1(uj + θj) = F




∞∑

j=0

εj(uj + θj), t


 . (6.2.24)

In order to capture the sharp transitions, using a stretched time variable,

t̄ =
t

ε
, (6.2.25)

thanks to (6.2.16), from (6.2.24) we formally obtain that

∞∑

j=0

εj−1 d

dt̄
θj +

∞∑

j=0

εj−1θj = F




∞∑

j=0

εj(uj + θj), t


− F




∞∑

j=0

εjuj, t


 . (6.2.26)
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As before, using the formal Taylor expansion with respect to u at u0 + θ0, we find that

F




∞∑

j=0

εj(uj + θj), t




= F 0(u0 + θ0, t) + ε
∂F 0

∂u
(u0 + θ0, t)(u1 + θ1) + εF 1(u0 + θ0, t) + O(ε2).

(6.2.27)

We here supplement with the initial condition (6.2.1)2 so that

∞∑

j=0

εj(uj + θj) = u0 at t = 0. (6.2.28)

In particular, from (6.2.19) and (6.2.20), we have





θ0 = −u0 + u0 = u0 at t = 0,

θ1 = −u1 = −F 0(0, 0) at t = 0.

(6.2.29)

Balancing terms at each order of ε in (6.2.26), we obtain the corrector equations as below for θj . At

O(ε−1), we thus have:




θ0t̄ + θ0 = 0,

θ0 = u0 at t = 0;

(6.2.30)

changing back to the variable t gives




θ0t +

1

ε
θ0 = 0,

θ0 = u0 at t = 0,

(6.2.31)

whose solution is

θ0(t) = u0 exp

(
− t

ε

)
. (6.2.32)

We note that if ε > 0, θ0 rapidly changes in the thickness of O(ε), then decays to zero.

At order O(ε0), we have




θ1t̄ + θ1 = F 0(u0 + θ0, t)− F 0(u0, t),

θ1 = −F 0(0, 0) at t = 0.

(6.2.33)
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Since u0 = 0, we may write that




θ1t +

1

ε
θ1 =

1

ε
(F 0(θ0, t)− F 0(0, t)),

θ1 = −F 0(0, 0) at t = 0.

(6.2.34)

The exact solution is available,

θ1(t) =
1

ε

∫ t

0

exp

(
− t− s

ε

)
G0(θ0(s), s)ds− F 0(0, 0) exp

(
− t

ε

)
. (6.2.35)

where

G0(θ0(s), s) = F 0(θ0(s), s)− F 0(0, s). (6.2.36)

At O(εj−1), j ≥ 2, we have that




θjt̄ + θj = F̃ (θ0, . . . , θj−1, t),

θj = −uj + uj0 at t = 0,

(6.2.37)

in which F̃ keeps only the O(εj−1) terms from F
(∑∞

j=0 ε
j(uj + θj), t

)
−F

(∑∞
j=0 ε

juj , t
)
. It turns out

that only θ0 and θ1 are sufficient for our numerical treatments.

6.2.2.2 The IFRK and ETDRK Schemes with Correctors

Taking θ0 and θ1 into account, the solution of Eq. (6.2.1) is decomposed as

u = us + uf = v + θ, (6.2.38)

where θ is called the corrector, which approximates the fast part uf , and v is then close to the slow part

us. Here, we use numerically the corrector θ in two cases, with only θ = θ0 and with both θ = θ0 + εθ1,

and v is defined accordingly as below. We denote the first case by Cor1 and the second by Cor2.

For the numerical implementation purpose, since in the combination θ0+εθ1 the last term in (6.2.35)

which is multiplied by ε is milder than θ0, dropping the mild term we define the correctors, θ0, θ1,

θ0(t) = u0 exp

(
− t

ε

)
, θ1(t) =

1

ε

∫ t

0

exp

(
− t− s

ε

)
G0(θ0(s), s)ds. (6.2.39)

Here, G0 is defined in (6.2.36). We now numerically solve Eq. (6.2.1) incorporating the correctors

(6.2.39).

• New scheme with Cor1: θ = θ0: Substituting

v = u− θ0, (6.2.40)
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into Eq. (6.2.1), thanks to Eq. (6.2.31), we obtain





vt +
1

ε
v = F (v + θ0, t),

v(0) = 0.

(6.2.41)

• New scheme with Cor2: θ = θ0 + εθ1: Substituting

v = u− θ0 − εθ1, (6.2.42)

into Eq. (6.2.1) with (6.2.31), (6.2.34) and (6.2.39) gives us





vt +
1

ε
v = F (v + θ0 + εθ1, t)−G0(θ0, t),

v(0) = 0.

(6.2.43)

We now apply the conventional IFRK and ETDRK schemes to v, which is considered slower than u

because the fast part is subtracted by the correctors. Then u is recovered from u = v+θ0, u = v+θ0+εθ1,

respectively.

To justify the scheme (6.2.43), we compare the schemes (6.2.41) and (6.2.43). Expanding F 0(u, t)

w.r.t. u at θ0, the right-hand sides are estimated respectively,

F (v + θ0, t) = F 0(θ0, t) +
∂F 0

∂u
(θ0, t)v + O(v2) + O(ε), (6.2.44)

F (v + θ0 + εθ1, t)−G0(θ0, t) = F 0(0, t) +
∂F 0

∂u
(θ0, t)v + O(v2) + O(ε). (6.2.45)

Obviously, the term F 0(θ0, t) is faster than F 0(0, t) and we expect that the solution v in Eq. (6.2.43) is

milder and better approximated than in (6.2.41).

6.3 Application to Spectral Methods for the Dispersive KdV

Equation

We now apply the analysis given above to the system (6.1.6). We rewrite it as follows, for k 6= 0,





Lεû := ût(k) +
1

ε(k)
û(k) = − ik

2
(û ∗ û)(k) + f̂(k),

û(k) = û0(k) at t = 0,

(6.3.1)

where

ε(k) =
i

k3
, (6.3.2)

We remind that the discrete convolution is given in Eq. (6.1.4).
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For k = 0, since ût(0) = f̂(0), we can set

v̂(0) = û(0) = û0(0) +

∫ t

0

f̂(k)(s)ds, θ̂(0) = 0. (6.3.3)

The main issue in the section is how to handle effectively the nonlinear convective term uux repre-

sented by the convolution û ∗ û in the Fourier space.

6.3.1 Derivation of the Correctors

Using the correctors θ̂ = θ̂(k), we decompose the solution û(k) as

û(k) = v̂(k) + θ̂(k). (6.3.4)

Here, θ̂ is derived as below and it turns out that θ̂ captures the stiffness of û and thus v̂ becomes mild

and slow.

Substituting the decomposition (6.3.4) into Eq. (6.3.1) and utilizing the convolution (6.1.4), we

obtain that, for k = −N/2, . . . ,−1, 1, . . . , N/2− 1,

Lε(û) = Lε(v̂ + θ̂) = (v̂t + θ̂t)(k) +
1

ε(k)
(v̂ + θ̂)(k) (6.3.5)

= − ik
2
(v̂ ∗ v̂ + 2v̂ ∗ θ̂ + θ̂ ∗ θ̂)(k) + f̂(k)

= − ik

2N

N/2−1∑

l=−N/2

[
v̂(l)v̂(k − l) + 2v̂(l)θ̂(k − l) + θ̂(l)θ̂(k − l)

]
+ f̂(k).

Since v̂(k) is considered slow, we first formally seek for the correctors θ̂(k) satisfying the equation

Lε(θ̂) = θ̂t(k) +
1

ε(k)
θ̂(k) = − ik

2N

N/2−1∑

l=−N/2

θ̂(l)θ̂(k − l); (6.3.6)

then Eq. (6.3.5) is formally reduced to

Lε(v̂) = Lε(û)− Lε(θ̂) (6.3.7)

= − ik

2N

N/2−1∑

l=−N/2

[
v̂(l)v̂(k − l) + 2v̂(l)θ̂(k − l)

]
+ f̂(k).

Since the corrector θ̂(k) analytically absorbs the stiff part of the solution of each mode, we expect

that v̂(k) is slow. Comparing the convolution terms on the right-hand side of Eqs. (6.3.5) and (6.3.7), it

is observed that the one of the latter is much milder than that of the former. Hence, applying the IFRK

and ETDRK to v̂ is expected to produce better accuracies for v̂ than for û, and by adding θ̂ to v̂, we

then recover û.

From (6.3.6), using the singular perturbation analysis, we approximate θ̂ to capture the stiffness.
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For this, for each mode k, we use the stretched time variable,

t̄ =
t

ε
=

t

ε(k)
. (6.3.8)

Using the following asymptotic expansion,

θ̂(k) = θ̂0(k) + ε(k)θ̂1(k) + O(ε(k)2), (6.3.9)

and substituting in (6.3.6) with the initial condition (6.3.1)2, we write





1

ε
(θ̂0 + εθ̂1)t̄ +

1

ε
(θ̂0 + εθ̂1) = − ik

2N

∑N/2−1
l=−N/2(θ̂

0 + εθ̂1)(l)(θ̂0 + εθ̂1)(k − l),

θ̂0 = û0, θ̂1 = 0 at t = 0.

(6.3.10)

At the leading order of ε, i.e. O(ε−1), we obtain that

θ̂0t̄ + θ̂0 = 0, (6.3.11)

or





θ̂0t + θ̂0 = 0,

θ̂0 = u0, at t = 0;

(6.3.12)

and thus, for k 6= 0,

θ̂0(k) = û0(k)e
−t̄ = û0(k)e

−t/ε(k). (6.3.13)

We now seek for θ̂1(k) at the next order, i.e. O(ε0). Changing the time back to t, and dropping the

small nonlinear terms of order O(ε(l)ε(k − l)) in the right-hand side of Eq. (6.3.10), it is simplified as





ε(k)θ̂1t (k) + θ̂1(k) = − ik

2N

∑N/2−1
l=−N/2

(
θ̂0(l) + 2ε(l)θ̂1(l)

)
θ̂0(k − l)

= − ik
2

(
(θ̂0 + 2εθ̂1) ∗ θ̂0

)
(k),

θ̂1(k) = 0 at t = 0.

(6.3.14)

Due to the convolution on the right-hand side of Eq. (6.3.14), observing that θ̂0(0) = 0, Eq. (6.3.14) for

mode k is coupled with Eqs. (6.3.14) for all Fourier modes l 6= k.

For numerical purpose, it is sufficient to set a cut-off tolerance H > 0 so that

θ̂0(k) = θ̂1(k) = 0, ∀ |k| > H. (6.3.15)
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The
∑N/2−1

l=−N/2 in Eq. (6.3.14), thanks to the tolerance H , can be reduced to

∑

l

:=

H+min(0,k)∑

l=−H+max(0,k)

(6.3.16)

by excluding all zero combinations of θ̂0(l)θ̂0(k− l) and θ̂1(l)θ̂0(k− l). Then, Eq. (6.3.14) is rewritten as

ε(k)θ̂1t (k) + θ̂1(k) = − ik

2N

∑

l

(
θ̂0(l) + 2ε(l)θ̂1(l)

)
θ̂0(k − l). (6.3.17)

These equations are not closed and difficult to get explicit solutions. However, the correctors can be

recursively approximated as presented below.

6.3.2 Approximating θ̂1

To approximate θ̂1(k), i.e. solutions of Eq. (6.3.17), we let θ̂1,0 be the solution of Eq.





ε(k)θ̂1,0t (k) + θ̂1,0(k) = − ik

2N

∑
l θ̂

0(l)θ̂0(k − l),

θ̂1,0(k) = 0 at t = 0.

(6.3.18)

For n ≥ 1, we define:





ε(k)θ̂1,nt (k) + θ̂1,n(k) = − ik

2N

∑
l

(
θ̂0(l) + 2ε(l)θ̂1,n−1(l)

)
θ̂0(k − l),

θ̂1,n(k) = 0 at t = 0.

(6.3.19)

We then find recursively θ̂1,n by e.g. Maple. Iterating a few times gives very accurate approximations

for θ̂1 as indicated in the convergence analysis below.

To understand the convergence errors, we define the norm:

‖û‖ = max
k

|û(k)|. (6.3.20)

Lemma 6.3.1. Let t > 0, |k| ≤ H, and n ≥ 0. Suppose that θ̂0(l0) 6= 0 or θ̂0(−l0) 6= 0, and θ̂0(l) = 0

for all |l| < l0 with l0 ≥ 1. Then, we have

∥∥∥ε(k)
(
θ̂1,n − θ̂1

)
(k)(t)

∥∥∥ ≤ C(n), (6.3.21)

where

C(n) =

[
2H2ε(l0)‖û0‖

N

(
1− exp

(
− t

ε(l0)

))]n ∥∥∥ε(k)
(
θ̂1,0 − θ̂1

)
(k)(t)

∥∥∥ . (6.3.22)

Proof. Let wn(k) = θ̂1,n − θ̂1. We first prove (6.3.21) by induction on n. For n = 0, it obviously follows.
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Assume that it holds at order n− 1 with n ≥ 1. That is, we have

∥∥ε(k)wn−1(k)(t)
∥∥ ≤ C(n− 1). (6.3.23)

Subtracting Eqs. (6.3.17) from Eq. (6.3.19) we find that

ε(k)wn
t (k) + wn(k) = − ik

N

∑

l

ε(l)wn−1(l)θ̂0(k − l). (6.3.24)

At order n, using an integrating factor we obtain

ε(k)wn(k) = −ike−
t

ε(k)

∫ t

0

e
s

ε(k)
1

N

∑

l

ε(l)wn−1(l)θ̂0(k − l)ds. (6.3.25)

Hence, since e
s−t
ε(k) ≤ 1 and ‖θ̂0(k − l)‖ ≤ ‖û0‖e−

s
ε(l0) , using (6.3.23) applied to ε(l)wn−1(l) and noting

that θ̂0(0) = 0 with (6.3.15) we find that

|ε(k)wn(k)| ≤ C(n− 1)‖û0‖
2H2

N

∣∣∣∣
∫ t

0

e
− s

ε(l0) ds

∣∣∣∣ . (6.3.26)

This proves (6.3.21).

6.3.3 New Schemes with Correctors

Utilizing the correctors θ̂0(k), θ̂1(k), we now consider equations for v̂(k). Eq. (6.3.1) is modified as

follows. Since Lε(v̂) = Lε(û)− Lε(θ̂) and Lε(θ̂
0) = 0,

• With Cor 1: θ̂(k) = θ̂0(k).

Let

û(k) = v̂(k) + θ̂0(k). (6.3.27)





v̂t(k) +
1

ε(k)
v̂(k) = Lε(û) = − ik

2
(û ∗ û)(k) + f̂(k),

v̂(k) = 0, at t = 0.

(6.3.28)

• With Cor 2: θ̂(k) = θ̂0(k) + ε(k)θ̂1(k).

Let

û(k) = v̂(k) + θ̂0(k) + ε(k)θ̂1(k). (6.3.29)
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From (6.3.14) we have





v̂t(k) +
1

ε(k)
v̂(k) = −ε(k)Lε(θ̂

1(k)) + Lε(û)

=
ik

2

(
(θ̂0 + 2εθ̂1) ∗ θ̂0

)
(k)− ik

2
(û ∗ û)(k) + f̂(k),

v̂(k) = 0, at t = 0.

(6.3.30)

Applying the IFRK and ETDRK methods to Eqs. (6.3.28) and (6.3.30) to approximate v̂(k), and

adding to θ̂0, û(k) is obtained from Eqs. (6.3.27) and (6.3.29), respectively.

Remark 6.3.1.

Since the stiff linear terms in Eqs. (6.3.28) and (6.3.30) will be absorbed by the integrating factor used

in the IFRK and ETDRK methods, as indicated in [22], [74], the accuracy of the schemes depends on

the nonlinear terms, i.e. the right-hand sides of (6.3.28) and (6.3.30), respectively,

F (û, t) = − ik
2
(û ∗ û)(k) + f̂(k), (6.3.31)

and, after some elementary calculations,

F (û, t) = (R.H.S. of (6.3.30)) = − ik
2

(
(2û− v̂) ∗ v̂ + (εθ̂1) ∗ (εθ̂1)

)
(k) + f̂(k). (6.3.32)

We observe that the former one is similar to that in Eq. (6.3.1), which shows no benefits of the correctors;

while in the latter case, with the presence of the correctors, the nonlinear term F (t, û) is much milder,

yielding much better numerical errors compared with those of the classical schemes (see the numerical

evidences in Sec. 6.4).

6.4 Numerical Results

In this section, we show the numerical simulations for cases discussed in the previous sections. We test

our new schemes for some ODEs with a rapid decay and a rapid oscillation, the dispersive KdV equation

for the PDE case.

For notations, hereafter, we use IFRK2, IFRK4 for the classical 2nd- and 4th-order IF schemes without

using any correctors; IFRK2 Cor1, IFRK4 Cor2 indicate the schemes incorporating the correctors θ0 and

θ0 + εθ1, respectively. We follow similar notations for the ETDRK and the classical Runge-Kutta (RK)

schemes. We remind that for the ETDRK schemes, we will use the complex contour integral for stability

purposes (see Section 6.2.1.2).

For all below numerical tests, we measure the relative errors. For ODEs, we use

Erel =

∣∣∣∣
uN(T )− uEX(T )

uEX(T )

∣∣∣∣ . (6.4.1)

Here, uN is the numerical solution obtained from some schemes, and uEX is the exact one. For PDEs,
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using a discrete L2 norm in space, we use

Erel =

(∑N−1
j=0 (uN (xj , T )− uEX(xj , T ))

2

∑N−1
j=0 (uEX(xj , T ))2

)1/2

. (6.4.2)
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Figure 6-1: Relative numerical errors of 2nd-order schemes for Eq. (6.4.3) at time t = 1. Initial
condition u0 = 1 + ε, ε = 0.25.

6.4.1 Stiff ODEs

We consider: for ε > 0,





ut +
1

ε
u = F (u, t) := u2 + et + ε(1− 2u)et + ε2e2t,

u(0) = u0 = a+ ε.

(6.4.3)

The exact solution of Eq. (6.4.3) is then available

u(t) =
ae−t/ε

1− εa(1− e−t/ε)
+ εet. (6.4.4)

From Eqs. (6.2.39) with F 0(u, t) = u2+et, thus G0(θ0(s), s) = (θ0(s))2, and from (6.2.39) we obtain

θ0(t) = u0e
−t/ε, (6.4.5)

θ1(t) = (u0)
2(e−t/ε − e−2t/ε). (6.4.6)
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Figure 6-2: Relative numerical errors of 4th-order schemes for Eq. (6.4.3) at time t = 1. Initial
condition u0 = 1 + ε, ε = 0.25.

The schemes with Cor1 (6.2.41) and Cor2 (6.2.43) are then written as follows, respectively,





vt +
1

ε
v = F (v + θ0, t),

v(0) = 0,

(6.4.7)

and





vt +
1

ε
v = F (v + θ0 + εθ1, t)− (θ0)2,

v(0) = 0.

(6.4.8)

Applying the IFRK and ETDRK methods discussed in the previous section, we numerically approx-

imate v. The solution u is retrieved from Eq. (6.2.38). That is, u = v + θ0 or u = v + θ0 + εθ1.

The relative numerical errors of this case are plotted in log-log scales in Fig. 6-1 for 2nd-order

methods, and in Fig. 6-2 for 4th-order schemes. Here, we have chosen u0 = 1 + ε, ε = 0.25, 0.05, and

run the simulations up to time t = 1. In the numerical simulations, if we only use θ0 as the corrector,

the new schemes are similar to the classical IFRK and ETDRK, i.e., the ones without correctors. This

implies that classical IFRK and ETDRK absorb the singularities corresponding to θ0. On the contrary,

when εθ1 is added, the new schemes show better results than all the others. The difference in errors of

the schemes are listed in Table 6-1 for the 2nd- and 4th-order schemes, respectively. Among all schemes,

the ETDRK2 and ETDRK4 give the best results.
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Figure 6-3: Relative numerical errors of 2nd-order schemes for Eq. (6.4.3) at time t = 0.2(left),
t = 1(right). Initial condition u0 = 1+ ε, ε = 0.05.

Table 6-1: Relative numerical errors of 2nd and 4th-order schemes for Eq. (6.4.3) at time t = 1.
Initial condition u0 = 1 + ε, ε = 0.25.

h RK2 RK2
Cor1

RK2
Cor2

IFRK2 IFRK2
Cor2

ETDRK2 ETDRK2
Cor2

10−1 6.68E-03 2.16E-03 1.27E-03 1.94E-02 1.91E-02 1.11E-03 1.48E-04
10−2 5.17E-05 2.01E-05 1.13E-05 1.87E-04 1.84E-04 1.05E-05 1.19E-07
10−3 5.06E-07 1.99E-07 1.11E-07 1.87E-06 1.84E-06 1.05E-07 1.35E-10
10−4 5.05E-09 1.99E-09 1.11E-09 1.87E-08 1.84E-08 1.05E-09 2.66E-12

h RK4 RK4
Cor1

RK4
Cor2

IFRK4 IFRK4
Cor2

ETDRK4 ETDRK4
Cor2

10−1 4.51E-05 1.27E-05 8.10E-06 7.74E-05 7.71E-05 1.74E-06 2.15E-06
10−2 3.61E-09 1.19E-09 7.52E-10 9.22E-09 9.19E-09 2.18E-10 2.71E-10
10−3 3.54E-13 1.17E-13 7.46E-14 9.42E-13 9.38E-13 2.56E-14 2.92E-14
10−4 3.31E-15 9.46E-16 1.58E-16 5.46E-14 4.57E-14 6.58E-14 4.15E-14

As indicated in the correctors (6.4.5), (6.4.6), if ε is very small, with Cor2, i.e. θ = θ0 + εθ1, the

term εθ1 is not effective. Hence, we demonstrate our correctors for relatively small ε’s. For ε = 0.25

with time t = 1, in the 2nd-order schemes ETDRK2 with Cor2 outperforms the others as in Fig. 6-1. In

the 4th- order schemes as in Fig. 6-2, the schemes with Cor1 and Cor2 similarly behave in this example.

This indicates that the 4th- order schemes capture the stiffness corresponding to εθ1. However, when

the step size is close to 10−4, the error plots for all schemes get flattened. This is because the relative

errors are close to the machine precision which is also observed in e.g. [22].

Figs. 6-3 and 6-4 demonstrate that the corrector methods are effective near the thickness of the

transition layers O(ε) = O(0.05) which are captured by the correctors. See the left figures there for

t = 0.2. However, for large time (away from the layers), e.g. t = 1 in this example, the schemes without

and with correctors all similarly behave. As indicated in (6.2.14), for large time, we also note that the

solutions are close to the slow part which can be well approximated by all the schemes.
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Figure 6-4: Relative numerical errors of 4th-order schemes for Eq. (6.4.3) at time t = 0.2(left),
t = 1(right). Initial condition u0 = 1+ ε, ε = 0.05.

Table 6-2: Relative numerical errors of 2nd and 4th-order schemes for Eq. (6.4.9) at time t = 1.
Initial condition u0 = 1, ε = 0.01.

h RK2 RK2
Cor1

RK2
Cor2

IFRK2 IFRK2
Cor2

ETDRK2 ETDRK2
Cor2

10−1 NaN NaN NaN 1.29E-02 1.96E-03 1.09E-02 7.25E-05
10−2 NaN 3.94E+01 1.23E+01 4.49E-04 2.83E-05 1.68E-03 4.31E-05
10−3 1.66E-01 1.68E-03 1.71E-05 4.38E-06 2.57E-07 1.76E-05 4.35E-07
10−4 1.65E-03 1.67E-05 1.69E-07 4.38E-08 2.57E-09 1.76E-07 4.34E-09

h RK4 RK4
Cor1

RK4
Cor2

IFRK4 IFRK4
Cor2

ETDRK4 ETDRK4
Cor2

10−1 NaN NaN NaN 2.59E-02 4.65E-04 8.96E-03 7.30E-05
10−2 6.10E-01 6.13E-03 6.03E-05 1.92E-06 6.30E-07 6.10E-05 3.11E-07
10−3 8.26E-05 8.41E-07 8.33E-09 1.84E-10 5.47E-11 2.78E-09 3.85E-11
10−4 8.26E-09 8.41E-11 8.33E-13 1.47E-13 5.45E-15 3.42E-13 3.72E-15

If the thickness of the layers is longer, e.g. O(ε) = O(0.25) in Fig. 6-1, the correctors are effective

for larger times, e.g. t = 1.

For models with a rapid oscillation, our corrector methods turn out to be outstandingly effective.

In this case, the oscillatory sharp transitions appear periodically, and so do the correctors in this case

(see (6.4.11), (6.4.12) below). For large time, still the correctors are much effective unlike the dissipative

case, i.e. (6.4.3).

For this, we now test the following oscillatory problem: for ε > 0,





ut −
i

ε
u = F (u) := −iu2,

u(0) = u0 = a.

(6.4.9)
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6.4 Numerical Results

Then the exact solution is known,

u(t) =
aeit/ε

1− εa(1− eit/ε)
. (6.4.10)

Replacing ε by iε in Section 6.2.2.2 and (6.2.39) with F 0(u, t) = −iu2, we obtain the correctors,

θ0(t) = u0e
it/ε, (6.4.11)

θ1(t) = −i(u0)2(eit/ε − e2it/ε), (6.4.12)

and with conventional schemes, we numerically solve the following problems with Cor1 (6.2.41) and Cor2

(6.2.43),





vt −
i

ε
v = F (v + θ0),

v(0) = 0,

(6.4.13)





vt −
i

ε
v = F (v + θ0 + iεθ1) + i(θ0)2,

v(0) = 0.

(6.4.14)

and then obtain u = v + θ0, u = v + θ0 + iεθ1, respectively.

Relative numerical errors of all schemes are plotted in Figs. 6-5 - 6-6, and the errors for this case are

listed in Table 6-2. The schemes with Cor2 outperform the ones without correctors or with only Cor1,

and the IFRK Cor2 and ETDRK Cor2 show the best results.

6.4.2 The KdV Equation

For the KdV equation, due to the dispersive property, the Fourier modes of the solution do not decay

with time, but oscillate rapidly as the wave number k increases. In the below results, we demonstrate

numerically that the corrector (6.3.14) is able to absorb these oscillations analytically. For the first test,

we try the following initial conditions.

• Initial condition 1:

u0(x) = sin(x), (6.4.15)

whose discrete Fourier transform gives

û0(k) =





−N
2
i, for k = 1,

N

2
i, for k = −1,

0, otherwise;

(6.4.16)
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Figure 6-5: Relative numerical errors of 2nd-order schemes for Eq. (6.4.9) at time t = 1; Initial
condition u0 = 1, ε = 0.01.

thus the correctors θ̂0(k)’s are





θ̂0(k) = û0(k)e
ikt, k = ±1,

θ̂0(k) = 0, otherwise k’s;

(6.4.17)

where û0(k)’s follow those given in Eq. (6.4.16), and θ̂1(k), k = 1, . . . , 4 are computed with n = 4

iterations as follows

θ̂1(1) =
283

432
ieitt− 53

486
e7it +

1

36
eitt2 − 1

31104
e25it +

377

3456
eit; (6.4.18)

θ̂1(2) =
2831

270
ie2it − 206138

19683
ie8it +

47

54
te2it − 2

729
e8itt (6.4.19)

− 1

27
it2e2it − 215

17496
ie26it − 1

787320
ie62it;

θ̂1(3) =
1413

640
e3it − 319

108
e9it − 3

16
ite3it +

1

4320
e63it +

859

1152
e27it; (6.4.20)

θ̂1(4) = − 353

2025
ie4it +

10784

41553
ie10it − 2

135
te4it − 1147

11664
ie28it (6.4.21)

+
1

615600
ie124it +

718

54675
ie64it;
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Figure 6-6: Relative numerical errors of 4th-order schemes for Eq. (6.4.9) at time t = 1; Initial
condition u0 = 1, ε = 0.01.

θ̂1(k), k = −2,−4 are the corresponding complex conjugates, and θ̂1(k) = 0 for other k’s.

The numerical relative errors of this case are shown in Fig. 6-7 for both 2nd- and 4th-order schemes,

and the correctors are plotted together with the reference solution in Fig. 6-8. We observe that the

schemes with Cor 2 are better than the conventional ones, especially for the 2nd-order schemes. This

results from the well approximation of the corrector 2 to the oscillations. In fact, up to k = 3, the

reference solution and the corrector 2 at each mode are almost indistinguishable.

• Initial condition 2:

u0(x) = sin(x) + sin(2x), (6.4.22)

whose discrete Fourier transform gives

û0(k) =





−N
2
i, for k = 2,

−N
2
i, for k = 1,

N

2
i, for k = −1,

N

2
i, for k = −2,

0, otherwise.

(6.4.23)

The correctors θ̂0(k) and θ̂1(k) can be obtained following a similar process. We omit presenting them

here due to the complexity.
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6.4 Numerical Results

The numerical results at time t = 2 with n = 32 are plotted in Fig. 6-9, and the correctors are shown

in Fig. 6-10. We note a better performance of the new schemes. In Fig. 6-10, for k = 4, we emphasize

the well approximation of the corrector 2 to the exact solution, even though the oscillations are quite

rapid.
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Figure 6-7: Relative numerical errors for Eq. (6.1.1) with the initial condition (6.4.15) at time
t = 1. Left: 2nd-order; Right: 4th-order schemes.

Finally, we test the inhomogeneous cases where the forcing term f in Eq. (6.1.1) is non-zero. We

choose the following initial condition u0(x) as follows,

u0(x) = sin(x), (6.4.24)

whose DFT modes follow Eq. (6.4.16) above.

Proceeding as the homogeneous case, we obtain the correctors θ̂0(k)’s and θ̂1(k)’s as in Eqs. (6.4.17),

(6.4.18) - (6.4.21), respectively.

The relative numerical errors of these cases at time t = 1 with a grid of N = 32 are plotted in Fig.

6-11. Here, the reference solutions are obtained from an RK4 method with a fine time step h = 10−7.

We observe that the schemes with Cor2 give better results than the other comparing methods. We also

notice that the ETDRK, both 2nd- and 4th-order, give the best results.
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Figure 6-8: Correctors at each mode of Eq. (6.1.1) with the initial condition (6.4.15) at time t = 1.

Solid: reference solution, dashed: corrector 1: θ̂(k) = θ̂0, dash-dot: corrector 2: θ̂(k) = θ̂0+ iε(k)θ̂1.
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Figure 6-9: Relative numerical errors for Eq. (6.1.1) with the initial condition (6.4.22) at time
t = 2. Left: 2nd-order; Right: 4th-order schemes.
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Figure 6-10: Correctors at each mode of Eq. (6.1.1) with the initial condition (6.4.22) at time t = 2.

Solid: reference solution, dashed: corrector 1: θ̂(k) = θ̂0, dash-dot: corrector 2: θ̂(k) = θ̂0+ iε(k)θ̂1.
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Figure 6-11: Relative numerical errors for KdV Eq. (6.1.1) at time t = 1 for the inhomogeneous
case with initial condition (6.4.24), forcing term f(x, t) = t cos(x). Left: 2nd-order; Right: 4th-order
schemes.
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7

Conclusion

In this dissertation, we have presented our new numerical methods for different important partial dif-

ferential equations which belong to the class of hyperbolic problems. These include conservation laws in

gas dynamics, the 2D transverse Maxwell equations with uncertainties, and the dispersive KdV equa-

tion for waves. For all cases, our new methods improved the comparing conventional ones in terms of

computational cost, accuracy, resolution, as well as robustness.

For the first part of the dissertation, we have constructed a new WENO-θ scheme for conservation

laws. The new scheme adaptively switches between a 5th-order upwind and 6th-order central scheme,

depending on the smoothness of not only the sub-stencils but also the large one. Unlike the other 6th-

order WENO schemes in which this switch depends solely on the smoothness of the most downwind

sub-stencils, it is that of the large stencil which decides this mechanism in our new scheme. The main

features of the new scheme are that a sixth order is achieved in smooth regions and it overcomes the loss

of accuracy which is detected for the WENO-NW6 and WENO-CU6 ones. We have also developed the

new smoothness indicators of the sub-stencils β̃k’s which are symmetric in terms of Taylor expansions

around point xj and a new τθ for the large stencil. The latter is chosen as the smoother one among

two candidates which are computed based on the possible highest-order variations of the reconstruction

polynomials in L2-sense. From then, value of the parameter θ is determined to decide if the scheme is

5th-order upwind or 6th-order central.

A number of numerical tests for both scalar cases, linear and nonlinear, and system cases with

the Euler equations of gas dynamics were carried out to check the accuracy, resolution, efficiency, and

robustness of our new scheme. It has been shown that our new method is more accurate than WENO-

JS, WENO-Z, and WENO-CU6; more efficient that WENO-NW6; more robust than WENO-CU6 and

WENO-NW6; and outperforms comparing schemes in capturing small-scaled structures, and around

critical regions.

In the second part, we then extended our scope by studying the uncertainty propagation from pa-

rameters pertaining to certain random media for which multiple media randomly interface, and proposed

new semi-analytical IF and ETD methods for spectral methods applying to the KdV equation. For the
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former, multiple random parameters are present in the system considered here, and then the computa-

tional cost via the PC expansions grows exponentially with the dimensionality, i.e., the number of random

parameters. To overcome such dimensionality issues, rather than the tensor products of one-dimensional

nodal sets, the stochastic collocation on a sparse grid by, e.g. the Smolyak algorithm can be considered

(see [153], [143]). However, this collocation method is for approximating the multi-dimensional integra-

tions involved in the coefficients. To avoid the dimensionality problem, we computed the PC modes

in each interval of a level set function z which makes the computational cost grow linearly with the

dimensionality. Furthermore, evaluating the integrations via the explicit formula given in [68], we also

avoided the integration errors with low computational cost. For numerical evidence, we considered up

to five random parameters or interfaces, which showed promising results.

As mentioned above, in the last chapter we improved the well-known IF and ETD time integrators

by incorporating the analytical approximations of the stiff parts in the solutions, which we named as

correctors, and applied these to spectral methods for the KdV equation for waves propagation. The

correctors are derived by invoking the singular perturbation analysis. By this, the stiffness of the problem

is then resolved or captured by the correctors. Embedding these into the original IF and ETD methods,

we further resolved the stiffness in the nonlinear term, which resulted in much better schemes comparing

with the ones without correctors. We applied the correctors to improve the IFRK and ETDRK methods,

both for 2nd- and 4th-order schemes. The application of the new methods to spectral methods for

PDEs. Incorporating the correctors into the classical IF and ETD methods, we resolved the stiffness due

to the stiffness linear term, i.e. 1
ε(k) û(k), in each Fourier mode k and this resulted in better accuracy

of the schemes presented in the text. Here, a careful treatment of the correctors is required due to the

interactions of all Fourier modes resulting from the quadratic nonlinear term uux. A variety on numerical

evidence showed that our new semi-analytical methods a great deal outperformed the conventional ones

in terms of accuracy, for ODEs of either rapid oscillations or rapid decay in time, as well as the KdV

equation for the PDE case.

Finally, we discuss our relevant future works on these topics. For the WENO schemes, we will

investigate problems of higher dimensions, say in 3D. Moreover, since the new smoothness indicators are

constructed in a systematic manner, it is expected that the development of the scheme to higher orders

would be feasible. On the other hand, thanks to the capability to capture small-scaled structures, we

expect to apply WENO-θ in, e.g., the Navier-Stokes equations ([29]), or in direct numerical simulations

([102]), etc. For the PCE methods, with our new approach, increasing the number of random parameters

only increases the computational time linearly, with a linear growth cost, more random parameters can

be taken into account with the aid of parallel computations. We believe that our approach can be easily

and efficiently applied to wave-typed equations or conservation laws with multiple random parameters.

For the new semi-analytical methods, we aim to handle more complicated problems, for example, the

one supplemented with a pulse-like initial condition. Here, due to the stiffness of the initial data, they

need many Fourier modes in the spectral representations, i.e. H is large in Eq. (6.3.15). This causes

considerable computational cost to obtain the explicit forms of the correctors θ̂1(k) due to the modal
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interactions via the nonlinear term. This issue will be addressed elsewhere. If H is not large, as in the

text, the solutions of the KdV equation involving a quadratic nonlinear term are well approximated by

out methods. Other than quadratic nonlinear terms, we will approximate some polynomials or other

types of nonlinear terms by mimicking the correctors θ̂0(k) and θ̂1(k). See also [75] for the our first

attempt to the dissipative Kuramoto-Sivashinsky (KS) equation (see [89], [126], [133], [15], [105], or

[58]) which have applications in flame-front propagation in laminar flames, phase dynamics in reaction-

diffusion systems, etc. The interesting issue of this equation is the balance between the dissipative and

anti-dissipative terms. In [75], we have tried with the case where the former term is dominant, whereas

the other cases need some assumptions.
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