
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/79705686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

Master's Thesis 

 

 
Production of Hexanoic Acid from Long Chain 

Fatty Acid in Escherichia coli 

 

 

 

 

 

 

 

Tae-hwan Ham 

 

Department of Biomedical Engineering 

 

 
 

 

Graduate School of UNIST 

 

2015 
 

 



I 

 

 

Production of Hexanoic Acid from Long Chain 
Fatty Acid in Escherichia coli 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tae-hwan Ham 

 

 

 

 

 

 

 

Department of Biomedical Engineering 

 

 
 

Graduate School of UNIST 







IV 

 

Abstract 

 

All over the world, the efforts are under way to find the petroleum replacement resources in order to 

overcome fossil fuel depletion and to reduce greenhouse-gas emissions. In this respect, replacing 

petrochemicals with renewable alternatives is one of the principal challenges of our day. Hexanoic acid 

could be widely used as a precursor to biofuels and for the production of chain based chemicals such as 

adipic acid, hexane, amino-caproic acid and so on. In order to produce specific carbon chain fatty acid, 

Escherichia coli β-oxidation pathway was engineered. First, fadE and fadR genes were deleted. And 

then, E. coli acyl-CoA dehydrogenase (FadE) was replaced with acyl-CoA oxidase 2 encoded by POX2 

gene from Yarrowia lipolytica, which has substrate specificity towards medium to long chain fatty acyl-

CoA. Finally the thioesteraseⅡ (TesB) was overexpressed in the cell. In this study, a maximum of 

210mg/L of hexanoic acid was produced by the engineered strain (MGREBA2) from 1g/L of oleic acid 

in 48hours of biotransformation. Based on these results, it is suggested that various oil as feedstock will 

be directly applied for the production of short chain fatty acids, especially hexanoic acid. 
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1. Introduction 

 

All over the world, the efforts are under way to find the petroleum displacement resource in order to 

overcome fossil fuel depletion and to reduce greenhouse-gas emissions. In economic and environmental 

sustainability terms, the renewable sources based on fatty acid rich feed stocks such as waste vegetable 

oil are attractive alternative feedstock for the production of industrial chemicals2. Various technology 

as homogeneous, heterogeneous and enzymatic catalysis for transesterification is being applied in order 

to directly use biodiesel from waste oil3. This waste vegetable oil is attractive feedstock for producing 

industrial chemicals or biofuel using microorganism because it has sufficient fatty acids as carbon 

source. However, a few researches have been reported at least for now3.  

 

 

1.1 Hexanoic acid 

 

Hexanoic acid (caproic acid) is the carboxylic acid containing six-carbon chain. This short chain fatty 

acid (SCFA) can be directly applied to perfumes, medicine, food additives, polymer backbone and 

various industrial materials production4. In addition, it could be a precursor for fuel and various 

chemicals based on six carbon chain such as adipic acid, hexane, hexanol, amino-caproic acid and so 

on5. Most studies of fatty acid production in Escherichia coli (E. coli) have been focused on production 

of medium chain fatty acids (MCFAs) including its increase of yield, because the chief ingredients of 

biodiesel are derived from MCFA6. These MCFAs from microorganism could be directly applied for 

biodiesel production after esterification6c. In addition, the short chain fatty acids (SCFAs) containing 

hexanoic acid have advantage for precursor of polymer because it have shorter chain length than MCFA7.  

 

 

1.2 Fatty acids metabolism in E. coli 

 

The fatty acid metabolism in E. coli is largely divided into two different pathway either synthetic or 

degradation pathway. The synthetic pathway of fatty acids signify generative processes to acyl-acyl 

carrier protein (acyl-ACP) from acetyl-CoA through 3ketoacyl-ACP, 3-hydroxy acyl-ACP and enoyl-

ACP. Two carbon chain from acetyl-CoA is added to previous acyl-ACP in each cycle. Synthesized 

acyl-ACP through this pathway is converted to free fatty acid form, which reaction is mediated by 

thioestreaseⅠ (TesA). Although native E. coli thioesteraseⅠis generally located on periplasm8, 

cytosolic thioesteaseⅠ without leader sequence has been utilized to increase the fatty acid production6c, 
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9. In addition, several studies reported that the production of specific carbon chain fatty acid in 

microorganism is achieved by heterologous expression of plants originated thioesterase6c, 10. Owing to 

dissimilar substrate specificity of each species derived thioesterase, the specific carbon chain length 

fatty acid can be produced in the pathway of synthetic fatty acid.  

Most researches on producing fatty acid have been focused on engineering fatty acid synthetic pathway 

because carbohydrates served as a major carbon source. In this case, fadD gene encoding acyl-CoA 

synthetase or fadE gene encoding acyl-CoA dehydrogenase is deleted for inactivation of β-oxidation, 

because free fatty acids from synthetic pathway can be degraded by β-oxidation pathway6c, 6d, 11. In 

contrast, few studies have been conducted to produce fatty acid by β-oxidation engineering. β-oxidation 

engineering is material to using fatty acid for carbon source, because it is sole fatty acid metabolism 

pathway for formation of acetyl-CoA, which is used for energy source on TCA cycle, from fatty acids 

in E. coli12.  

 

 

1.3 Beta(β)-oxidation pathway 

 

The initial stage of β-oxidation is mediated by acyl-CoA synthetase (FadD) encoded by fadD gene. 

Prior to catabolism, fatty acids must be converted to an acyl-CoA form. This step is mediated by FadD 

with energy from ATP 13. And then this acyl-CoA convert to enoyl-CoA, which oxidation is mediated 

by acyl-CoA dehydrogenase (FadE) encoded by fadE gene. This reaction involves the transfer of two 

electrons from the substrate to a flavin adenine dinucleotide (FAD) cofactor that must be reoxidized in 

order for the dehydrogenase to have catalytic function14. Unlike other species, E. coli has sole acyl-CoA 

dehydrogenase15. Therefore, the strain of deleted fadE gene has growth deficiency on sole carbon source 

of all chain fatty acids, because its substrate specificity is broad chain length. Hence, the β-oxidation 

engineering is important part for producing specific chain fatty acids, if acyl-CoA dehydrogenase 

substrate specificity is modulated16. The next step is conversion of enoyl-CoA to 3-keto acyl-CoA via 

3-hydroxyacyl-CoA mediated by FadB. Finally, the 3-keto acyl-CoA convert to acyl-CoA with cutting 

out acetyl-CoA and replacing new coenzyme A mediated by FadA (Fig. 1) 17. 

In contrast to E. coli metabolism of fatty acids, the β-oxidation of mammalian cells occur in both 

mitochondria and peroxisome separately18. Although concrete evidence why they are separated has not 

yet been identified, a clear contrast is that the mitochondrial fatty acid metabolism involved in energy 

production while peroxisomal metabolism is not. the mitochondrial β-oxidation is directly connected 

with electron transport chain thus it can produce ATP for energy 18a. However, peroxisomal β-oxidation 

doesn’t produce energy directly but form hydrogen peroxide. This difference involves the redox reaction 

by the co-factor as flavin andenine dinucleotide (FAD) or nicotinamide adenine dinucleotide (NAD). 
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FAD can be reduced to FADH₂ mediated by acyl-CoA dehydrogenase and acyl-CoA oxidase in the 

mitochondria and peroxisome respectively. This FADH₂ reverts to FAD from complexⅡ in the electron 

transport chain in the mitochondria, while its reaction is mediated by the oxygen molecule in the 

peroxisome. Acyl-CoA oxidases are directly to oxygen to generate hydrogen peroxide in order to revert 

to FAD from FADH (Fig. 2) 18b .  

 

 

 

Figure 1. A schema of beta-oxidation engineering to produce hexanoic acid 

The red box represents the deleted genes; the green box represents the activation by heterologous- or 

over-expression. The fadE gene, which encodes acyl-CoA dehydrogenase, was deleted. In order to 

unblock the beta-oxidation pathway, the fadR gene, which encodes fatty acid metabolism regulator 

protein, was also deleted. And the POX2 gene from Y. lipolytica and tesB gene, which encodes acyl-

CoA oxidase2 and thioesteraseⅡ respectively, was expressed in pBbE6k plasmid1.    
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The yeast is known that the β-oxidation occur only in peroxisome whereas animal cell is taken place 

both mitochondria and peroxisome 19. The yeast saccharomyces cerevisiae (S. cerevisiae) has sole acyl-

CoA oxidase as POX1, which has substrate specificity for short to long chain substrate specificity. In 

contrast to S. cerevisiae, Yarrowia lipolytica (Y. lipolytica) and Candida sp. have several acyl-CoA 

oxidases with different chain length specificities. Therefore, each of acyl-CoA oxidases reacts following 

each chain length fatty acyl-CoA. The β-oxidation of Y. lipolytica is involving by five acyl-CoA oxidase 

as AOX1 to 5, which is encoded by POX1 to 5 genes. From among these AOXs, AOX2 has specificity 

for long-chain length fatty acyl-CoA20. In recent study, MCFA production was conducted in S. 

cerevisiae. The AOX1 deleted S. cerevisiae was not able to grow on sole carbon source of oleic acid. 

And then, although AOX2 from Y. lipolytica was expressed in this strain, its growth defect was shown 

Figure 2. Difference between acyl-CoA dehydrogenase and acyl-CoA oxidase 

FADH₂, which mediated by acyl-CoA dehydrogenase with conversion to enoyl-CoA form, reverts to

FAD from complexⅡ in the electron transport chain, Acyl-CoA oxidases are directly to oxygen to

generate hydrogen peroxide in order to revert to FAD from FADH. 
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because of the restriction of the carbon flow toward the TCA cycle. In order to solve this problem, the 

Mus musculus’s CROT gene, which encodes carnitine O-octanoyltransferase was introduced to transport 

the accumulated medium chain acyl-CoAs out of the peroxisome. Therefore, CoA concentration in 

peroxisome was balanced, then the growth of strain was restored16.  

 

 

1.4 Thioesterase specificity in E. coli 

In E. coli, three types of thioesterase are reported; ThioesteraseⅠ, Ⅱ and III21. Even though the 

accurately physiological role of thioesterase is not identified yet, several studies reported that these 

enzymes play a vital role in catalyst the hydrolytic cleavage of fatty acyl-CoA thioesters8, 22. 

ThioesteraseⅠ, encoded by tesA gene, cleaves fatty acyl-acyl carrier protein (ACP), whereas 

ThioesteraseⅡ(TesB), encoded by tesB gene, has specificity for acyl-CoA form23. ThioesteraseIII, 

which was identified at comparatively recent, was shown to have the substrate specificity for long chain 

acyl-CoA derived unsaturated fatty acid24. Among these three thioesterase, ThioesteraseⅡ has the most 

broad substrate specificity of acyl-CoA chain length. ThioesteraseⅠ has specificity for C12 to 18 chain 

length of acyl-CoA ester, while ThioesteraseⅡ has C6 to C18 chain length specificity as broad chain 

length23. Therefore, in the present study, we selected TesB for hexanoic acid production because it has 

C6-acyl-CoA specificity. 

 

 

1.5 Modification of β-oxidation in E. coli 

In this study, we focused on AOX2 derived from Y. lipolytica and ThioesteraseⅡ (TesB) and a novel 

β-oxidation pathway was constructed in E. coli. In order to produce hexanoic acid in E. coli, fadE gene 

was deleted for inactivation of acyl-CoA dehydrogenase in wild type strain primarily. In addition, fadR 

gene, which encodes fatty acid metabolism regulator protein (FadR), was also deleted because FadR 

acts as a repressor of fad genes concerned β-oxidation cycle in the presence of long chain fatty acids25. 

Therefore basis in this fadR and fadE double knockout strain, POX2 gene from Y. lipolytica was the 

heterologous expressed as Aox2 has substrate specificity towards medium to long chain fatty acids. 

Therefore it could produce specific chain length acyl-CoA by discontinuing the β-oxidation cycle. In 

order to increase the product concentration, tesB gene was overexpressed. The modification of β-

oxidation pathway is described in Figure 1. Through those processes, we constructed novel β-oxidation 

in E. coli. The formation of hexanoic acid was confirmed in engineered E. coli. 
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2. Materials and Methods 

 

2.1 E.coli strains and growth condition 

 

Deletion of the fadE and fadR genes from MG1655 strain was performed using a one-step inactivation 

method26. MG1655ΔfadEΔfadR, a β-oxidation disrupted strain derived from E.coli strain MG1655, was 

used for the expression of the Y.Lipolytica POX2 gene. All E. coli strains used in this study are listed in 

Table 1. In addition, the used primer of deletion for fadE and fadR is listed in Table 2. The initial culture 

of strain from colony was performed with 5ml Luria-Bertani (LB) broth (BD, USA) at 37 ℃, which 

contain appropriate antibiotic as 50 μg/mL of kanamycin or 30 μg/mL chloramphenicol. M9 minimal 

medium was composed of 1X M9 salts (Bioshop, Canada), 1mM MgSO₄, 1M CaCl₂, 0.1% carbon 

source.  

 

 

2.2 Construction of plasmids and strains 

 

Cloning was conducted through restriction enzyme digestion and ligation method using pBbE6k and 

pBbB6c as BglBrick vector1, 27. In order to amplify target genes as POX2 from Y.Lipolytica, 

polymerase chain reaction (PCR) (Swift Max Pro, Esco, Singapore) was performed on the 

condition (95 ℃ - 2 min, (95 ℃ - 40 sec, 55 ℃ - 40 sec, 72 ℃ - 45 sec)	ൈ	30 cycle, 72 ℃

-5 sec) The PCR product were digested with NdeⅠ and NotⅠ and then ligated into the same 

restriction site of pBbE6k vector which has been digested with NdeⅠ and NotⅠ. Based on the plasmid 

of pBbE6k-Aox2, the tesB gene, which is amplied from MG1655 strain, was inserted in front of POX2 

gene through restriction site of EcoRⅠ and BglⅡ. This PCR product was digested EcoRⅠ and BamH

Ⅰ because tesB gene has BglⅡ sequence. tesA and tesB genes was inserted to pBbB6c vector 

respectively. The used cloning primer is listed in Table 2.  

Based on fadE and fadR knockout strain, each cloned plasmid was transformed using electroporation 

method. Basic vector, which is pBbE6k-RFP as Bglbrick vector, was transformed into the fadE and 

fadR knockout strain for control cell (Table 1).  
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Strains Genotypes Ref. 

MG1655 F- λ- ilvG- rfb-50 rph-1 Blattner, et al. 

199728 

MGE MG1655 ΔfadE::FRT with pBbE6k-RFP This study 

MGEA2 MG1655 ΔfadE::FRT with pBbE6k-Aox2 This study 

MGEBA2 MG1655 ΔfadE::FRT with pBbE6k-TesB/Aox2 This study 

MGECA2 MG1655 ΔfadE::FRT with pBbE6k-Aox2 pBbB6c-ChfatB2 This study 

MGR MG1655 ΔfadR::FRT with pBbE6k-RFP This study 

MGRA2 MG1655 ΔfadR::FRT with pBbE6k-Aox2 This study 

MGRBA2 MG1655 ΔfadR::FRT with pBbE6k-TesB/Aox2 This study 

MGRCA2 MG1655 ΔfadR::FRT with pBbE6k-Aox2 pBbB6c-ChfatB2 This study 

MGRE MG1655 ΔfadE::FRT ΔfadR::FRT with pBbE6k-RFP This study 

MGREA2 MG1655 ΔfadE::FRT ΔfadR::FRT with pBbE6k-Aox2 This study 

MGREBA2 MG1655 ΔfadE::FRT ΔfadR::FRT with pBbE6k-TesB/Aox2 This study 

MGRECA2 MG1655 ΔfadE::FRT ΔfadR::FRT with pBbE6k-Aox2 

pBbB6c-ChfatB2 

This study 

Plasmids Description Ref. 

pBbE6k-RFP ColE1 ori, PLacO1 Promoter, Km resistant Lee, et al. 20111 

pBbB6c-GFP BBR1 ori, PLacO1 Promoter, Cm resistant Lee, et al. 20111 

pBbE6k-Aox2 pBbE6k harbouring POX2 gene derived Y.Lipolytica This study 

pBbE6k-TesB/Aox2 pBbE6k harbouring tesB gene with POX2 gene This study 

pBbB6c-ChfatB2 pBbB6c harbouring fatB2 gene derived Cuphea hookeriana This study 

 

 

 

Table 1. E. coli strains and plasmids used in this study 
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Table 2. List of used primer in this study 

Primer Sequence Ref. 

FadE_del_F 
CCATATCATCACAAGTGGTCAGACCTCCTACAAGTAAGGGG

CTTTTCGTTGTGTAGGCTGGAGCTGCTTC 

Baba, et al. 

200629 

FadE_del_R 
TTACGCGGCTTCAACTTTCCGCACTTTCTCCGGCAACTTTAC

CGGCTTCGATTCCGGGGATCCGTCGACC 

Baba, et al. 

200629 

FadR_del_F 
TCTGGTATGATGAGTCCAACTTTGTTTTGCTGTGTTATGGAA

ATCTCACTGTGTAGGCTGGAGCTGCTTC 

Baba, et al. 

200629 

FadR_del_R 
AACAACAAAAAACCCCTCGTTTGAGGGGTTTGCTCTTTAAA

CGGAAGGGAATTCCGGGGATCCGTCGACC 

Baba, et al. 

200629 

Aox2-F CCGCATATGAACCCCAACAACACTGGCACC This study 

Aox2-R CCGTAGCGGCCGCCTATTCCTCATCAAGCTCGCAAAT This study 

TesB-F 
ATCGAGAATTCTTTAAGAAGGAGATATACATATGAGTCAGG

CGCTAAAAAA 
This study 

TesB-R TCGGGATCCTTAATTGTGATTACGCATCA This study

TesA-F 
AAAGAATTCAAAAGATCTTTTAAGAAGGAGATATACATATG

GCGGACACGTTATTGAT 
This study 

TesA-R TTACTCGAGTTATGAGTCATGATTTACTA This study 

ChfatB2-F 
AAAGAATTCAAAAGATCTTTTAAGAAGGAGATATACATATG

GTCGCAGCAGCAGCCT 
This study 

ChfatB2-R TTACTCGAGTCATTACGACACGCTATTGCCGTTTG This study 
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2.3 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis 

The expression of genes was identified by SDS-PAGE analysis. Overnight culture medium as LB broth 

at 37 ℃ was inoculated to 50ml fresh LB broth by 1/100 diluted ratio with suitable antibiotics. After 

0.5 mM IPTG induction was conducted at OD 0.7, this culture medium was incubated at 30 ℃ during 

16 hours. Whole cell was harvested by centrifugation at 3500 rpm during 10min. And then the harvested 

cell was resuspended in lysis buffer (50 Mm Tris-HCl pH 8.0) and sonicated using Vitra Cell Sonicator 

(SONICS, USA). After separation of supernatant and pellet by centrifugation at 13000 rpm of 

centrifugation, and mixed with loading buffer. And then this total protein was denaturated at 80 ℃ for 

10 min. Prepared protein was separated on a 10 % SDS-PAGE (Bio-Rad, USA). 

 

 

2.4 Growth study 

Overnight culture medium as LB broth on 37 ℃ was separately inoculated to 50 ml fresh LB broth 

and M9 medium with 0.1 % oleic acid, 0.5 % TWEEN80 and 100 mM potassium phosphate buffer by 

1/100 diluted ratio with suitable antibiotics. After 0.1 mM IPTG induction was conducted at OD 0.7, 

this culture medium was incubated at 30 ℃ for 48 hours. The absorbance for growth of cell was 

checked by Libra S22 Spectrophotometer (Biochrom, UK) at 600 nm. 

 

 

2.5 Biotransformation in LB broth 

After preparation of initial culture, each engineered strain and control cell was inoculated to 50 ml 

fresh LB broth in 250 ml flask. After 0.1 mM IPTG induction at OD 0.7, this culture medium was 

incubated during 4 hour on 30 ℃. Shortly before stationary phase, 0.1 % oleic acid with 0.5 % 

TWEEN80 was injected to culture medium. This biotransformation medium was conducted at 30 ℃ 

with a rotation of 200 rpm for 72 hours. One milliliter samples were collected at different time points 

(0, 6, 12, 24, 48 and 72 hour after oleic acid injection) for GC/FID analysis. 

 

 

2.6 Whole cell biotransformation in M9 broth 

After preparation of initial culture, each engineered strain and control cell was inoculated to 50 ml 

fresh LB broth in 250 ml flask. When an OD600 of 0.7 was approached, 0.1 mM IPTG was added for 

induction of protein expression. This culture medium was incubated at 30 ℃, 200 rpm for 20 hours. 

Whole cell was harvested on 3500 rpm at 4 ℃ for 10 min, and then its pellet was washed by 100 mM 
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potassium phosphate buffer (pH 7.0). After washing steps, this cells were injected to transformation 

medium which is M9 medium containing 0.1 % oleic acid, 0.5 % TWEEN80, 100 mM potassium 

phosphate buffer and suitable antibiotic as 50 μg/mL of kanamycin or 30 μg/mL chloramphenicol. 

Biotransformation was conducted at 30 ℃ with rotation of 200 rpm for 72 hours. 1 ml samples were 

collected at different time points (0, 6, 12, 24, 48 and 72 hour after oleic acid injection) for GC/FID 

analysis. 

 

 

2.7 Analysis of biotransformation products 

One milliliter sample was centrifuged at 13000 rpm, 500 μL supernatant was transferred to a 2 ml 

Eppendorf tube. After 50 μL pure hydrochloric acid (HCl) was added for acidification, 500 μL ethyl 

acetate (EtAc), which can dissolve fatty acids, was added with internal standard and vortex well for 30 

sec. this solution was performed spin down at 13000 rpm during 2 min, and recovered EtAc as top layer 

was transferred to a new 2 ml Eppendorf tube. This extraction was repeated one more with another 

added 500 μL EtAc. Collected solution was mixed with vortexing for 10 sec, and 500 μL was transferred 

to a labeled glass gas-chromatography (GC) vial. For methylation, 50 μL of methanol:HCl (ratio 9:1) 

was mixed to the extracted EtAc in vial. And then 50 μL of Trimethylsilyl(TMS)-diazomethane solution 

in 2.0 M hexanes was injected. This vial was taken to GC analysis.  

GC analysis was performed on Agilent 7890A GC-FID through DB-WAX column ( 30	m ൈ

0.320	mm ൈ 0.50	μm, Agilent, USA). The oven temperature was that initial temperature hold 120 ℃ 

for 2 min, ramp 1 run 150 ℃ for 4 min and ramp 2 run 220 ℃ for 15 min. Fatty acid methyl esters 

mix (GLC-20, GLC-70, GLC-80, GLC-90, SUPELCO, USA) and hexanoic acid (Sigma-Aldrich, USA) 

were used as standards. 
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3. Results 

 

 

3.1 Expression of acyl-CoA oxidase2 and thioesterases 

In order to observe expression of protein, SDS-PAGE was performed on 10 % acrylamide gel. Acyl-

CoA oxidase2 and thioesteraseⅡ (TesB) was expressed in pBbE6k vector, and ChfatB2 was expressed 

in pBbB6c vector. The expression of MGREA2, MGREBA2 and MGRECA2 strain was performed 

with control as MGRE strain. The SDS-PAGE results are shown in Figure 3. The size of Aox2 is 78.7 

kDa, ’TesA is 20.5 kDa, TesB is 32.0 kDa and ChfatB2 is 45.7 kDa. 

 

 

 

 

Figure 3. SDS-PAGE of total proteins of engineered E. coli  

 CTR indicates RFP expression as control, AOX2 indicates Aox2 expression, AOX2+TesB indicates

Aox2 and TesB expression and AOX2+ChfatB2 indicates Aox2 and ChfatB2 expression. Red arrow 

indicates protein 
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3.2 Growth of the engineered strains 

 

Growth of the engineered strain was to confirm growth effect by genetic modification. These tests was 

performed in M9 medium and LB broth medium respectively. The M9 medium contain 0.1 % oleic acid 

and 0.05 % glucose. The reason of glucose addition is that fadE knockout strain has defective growth 

on the condition of fatty acids, thus it difficult to induction of expression protein. Except for MGR strain 

as control, all strains showed growth deficiency in M9 medium with oleic acid (Fig.4A). In the LB broth 

condition, all strains showed fine growth. However, it was observed that the growth of MGRECA2 

strain is slower than other strains. This strain has two kinds of plasmids. Therefore, two kinds of 

antibiotics (50 μg/mL of kanamycin and 30 μg/mL chloramphenicol) was injected in the medium. This 

result is decided from effect of antibiotics30. After 48 hours, all strain showed similar growth peaks.  
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Figure 4. Cell growth in M9 medium with 0.1 % oleic acid and 0.05 % glucose (A) and in LB 

broth (B) 

MGR (square, sky blue), MGRE (diamond, orange), MGREA2 (triangle, grey), MGREBA2 (circle, 

yellow), MGRECA2 (+, green) was measured. Red arrow indicates addition IPTG for expression 

induction. Grey box signify at 30 ℃ incubation. Error bars indicate the standard deviation of 

experiments performed in triplicate. 
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3.3 Comparison between fadE knockout and fadR/fadE double knockout strain 

 

In order to form hexanoic acid from long chain fatty acids, biotransformation on LB broth with 0.1% 

oleic acid was performed, because all strain of fadE knockout has growth deficiency on sole carbon 

source of fatty acids. Before the biotransformation, because the composition of product as hexanoic 

acid could be affected by the growth on LB medium, pure LB as not adding any carbon source was used 

for culture during 48 hour about all strain in this study. This results is no detection of product as hexanoic 

acid. In the LB medium condition, whole strain was grown well, 0.1 % oleic acid was injected shortly 

before stationary phase. Zero time point for measurement of titer hexanoic acid is injection time. In 

order to confirm the influence from fadR deletion, MGE and MGREBA2 strain was selected with 

control strains. Generally, FadR work on repressor fad genes as related β-oxidation25.  

MGR strain, which is fadR gene deleted, showed fine growth on oleic acid as sole carbon source. In 

comparison with MG1655 strain as wild type, a considerable difference was observed (Fig. 5A). Wild 

type strain showed beginning growth after 48 hours, because it does take time to adaptation for 

regulation of β-oxidation while inactivated FadR is not.  

 In order to confirm the effect of fadR deletion for Aox2 activity, MGEA2, which is acyl-CoA 

dehydrogenase removed, and MGREA2, which is also FadR removed from MGEA2, strains was used 

for biotransformation in LB broth with 0.1 % oleic acid. The results showed that MGREA2 was 

produced more hexanoic acid than MGEA2 after 48 hours reaction (Fig. 5B). MGREA2 was converted 

to approximately 110 mg/L of hexanoic acid from 1 g/L of oleic acid, whereas MGEBA2 showed 

approximately 80 mg/L of hexanoic acid converted during 72 hours. Moreover, MGREA2 strain formed 

hexanoic acid faster than MGEA2. This results supported that hexanoic acid production strain based on 

fadR deletion. 
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Figure 5. Growth curve between wild type strain and fadR knockout strain (A), biotransformation 

to hexanoic acid from oleic acid in LB broth (B) 

Growth curve was measured in OD600 nm. MG1655 strain (circle, sky blue) and MGR strain (square,

orange) was cultured on M9 medium with fatty acid with 0.5 % oleic acid (A). Biotransformation was 

performed in LB medium with 0.1 % oleic acid. Error bars indicate the standard deviation of

experiments performed in triplicate. X-axis indicates used strains and reaction time of each strain. Y-

axis indicates titer (mg/L) of hexanoic acid (B).  
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3.4 Biotransformation to hexanoic acid 

 

Before biotransformation, the hexanoic acid titer between supernatant and whole medium was checked 

for measurement of product secretion out of cell. This experiment was conducted through whole cell 

biotransformation using MGREA2 strain on M9 medium with 0.1 % oleic acid. In order to measure the 

secretion of hexanoic acid to medium from cell, identical sample, which is reacted during 48 hours by 

biotransformation, was prepared, and then it was divide into supernatant and whole culture medium. 

Both of each sample were analyzed through GC/FID. The GC/FID results showed similar titer of 

hexanoic acid (Fig. 6A). This result supposed that hexanoic acid is diffused out cell through cell wall.  

 In order to compare effect of hexanoic acid production by thioesterase, MGREBA2 was used. 

Biotransformation in LB broth with 0.1 % oleic acid was performed for formation of hexanoic acid. 

MGE and MGRE as control strain hardly formed hexanoic acid (Fig. 6B). After 48 hours, MGREA2 

and MGREBA2 strains showed the highest production of hexanoic acid. However, MGREBA2 strain 

produced hexanoic acid earlier than MGREA2 strain. Non-fadR knockout strain (MGEA2 and 

MGEBA2) also showed similar tendency (Fig. 6B).  

Based on these results, whole cell biotransformation in M9 medium with 0.1% oleic acid as feedstock 

was conducted using MGREA2, MGREBA2 and MGRECA2 containing ChfatB2 derived Cuphea 

hookeriana with control strain of MGRE and MGR. ChfatB2 as plant thioesterase has substrate 

specificity for C8 to C10 acyl-CoA31. After 48 hours reaction, the control cells as MGR and MGRE 

were observed to no-production of hexanoic acid. MGREA2 containing sole of Aox2 showed 

approximately 75mg/L hexanoic acid production (Fig. 7A), and it also approximately 45 mg/L titer of 

octanoic acid production (Fig. 7B). However, this strain showed decrease titer of hexanoic acid after 

24hours (Fig 7A). MGRECA2 produced approximately 140mg/L of hexanoic acid and it also formed 

approximately 30 mg/L of octanoic acid. In the case of MGREBA2, the hexanoic acid was produced to 

the highest titer (Fig. 7A). From this results, suitable strain for production of hexanoic acid was selected.  

 The MGREBA2 sample as the highest titer was measured for production of hexanoic acid for time 

unit. In this result, hexanoic acid production had been on the increase gradually for 48hours (Fig 7A). 

Finally, over the 200 mg/L of hexanoic acid with some of the octanoic acid was produced after 48hours 

reaction in E. coli (Fig 7B).  
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Figure 6. Hexanoic acid titer of supernatant and culture medium (A), production of hexanoic acid by

biotransformation in LB broth (B)  

On the condition of biotransformation in LB, supernatant and whole culture medium was measured to titer of

hexanoic acid using MGEA2 strain (A). The titer of hexanoic acid from biotransformation in LB with 0.1% 

oleic acid was measured for time unit. Error bars indicate the standard deviation of experiments performed in 

triplicate. X-axis indicates reaction time of each strain. Y-axis indicates titer (mg/L) of hexanoic acid (B). 
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Figure 7. Production of hexanoic acid by biotransformation in M9 medium 

The titer of hexanoic acid from biotransformation in M9 with sole carbon source of 0.1 % oleic acid

was measured for time unit. Error bars indicate the standard deviation of experiments performed in

triplicate. X-axis indicates reaction time of each strain. Y-axis indicates titer (mg/L) of hexanoic acid

(A). Total production of hexanoic acid and octanoic acid was measured at 48 hour. Error bars indicate 

the standard deviation of experiments performed in triplicate. X-axis indicates titer (mg/L) of hexanoic

acid and octanoic acid. Y-axis indicates strain name (B).  
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4. Discussion  

 

In this study, we engineered β-oxidation pathway in order to specifically produce hexanoic acid. Many 

of existing studies about fatty acids production have been focused on engineering of the fatty acid 

synthetic pathway using feedstock derived carbohydrate 6c, 6d, 11. However, SCFAs production through 

this pathway engineering has limitation as control of fatty acid chain length under 8. Because it is 

regulated depending on acyl-ACP thioesterase specificity6c. Therefore, we targeted to the production of 

hexanoic acid from long chain fatty acid. In order to fortify the foundation that various chemical derived 

fatty acid will be produced using waste oil in the future study, this study was began. 

 In order to produce hexnoic acid, heterologous expression of Aox2 from Y.Lipolytica in E. coli firstly. 

Then thioesteraseⅡ was overexpressed in engineered E. coli, that hexanoyl-CoA from shortening limit 

product of Aox2 convert to hexanoic acid23. Unfortunately, whole fadE knockout strains showed growth 

deficiency on the sole carbon source of fatty acid (Fig. 4A). Therefore, biotransformation was 

performed in order to confirm the enzyme activity. Biotransformation was progressed on LB broth 

condition and M9 medium condition separately with 0.1 % oleic acid. In case of biotransformation in 

LB broth, the reaction was started shortly before stationary phase after expression induction. Because 

sufficient amount of the cell is required for in vivo reaction using exogenous fatty acid. Through 

biotransformation in LB broth, the formation of hexanoic acid was confirmed from oleic acid (Fig. 5B). 

In addition, the result in pure LB cultivation showed no-hexanoic acid production, it could support 

hexanoic acid formation from oleic acid. From biotransformation LB, it was confirmed also that Aox2 

has limitated substrate specificity for hexanoyl-CoA. Finally, we produced over the 200 mg/L of 

hexanoic acid from oleic acid by biotransformation method in M9 medium (Fig 7A, B). 

 

 

4.1 Effect of hexanoic acid production for growth 

  

SCFAs such as hexanoic acid have been reported that it diffused out of the cell not accumulated on the 

inside of the cell4. In the result of comparison between supernatant and whole culture medium, mostly 

hexanoic acid was detected on the supernatant part (Fig. 6A). This result could support to reported 

theory, which short. In contrast with yeast species, SCFAs have higher toxicity because of its membrane 

leakage. Therefore, E. coli is negatively affected on SCFA condition, it is caused to cell death 

consequently. This problem is critical for produce hexanoic acid. It is considered that growth deficiency 

on sole carbon source of fatty acids is caused by SCFA toxicity (Fig 4A). Therefore, adaptation will be 

performed on SCFA condition in further study, thereby this problem will overcome by modification of 

the lipid composition on the cell membrane4. 
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4.2 Effect of fadR knockout on hexanoic acid production 

  

Through biotransformation through LB broth, the titer of hexanoic acid was measured between 

MGREA2 and MGEA2 strain. Resultingly, MGREA2 strain, which is fadR deleted, showed higher titer 

of hexanoic acid (Fig. 5B), and it is considered to cause by major repressor removal of β-oxidation. Due 

to fadR deletion, fatty acid transporter (FadL) has no effect by FadR protein. Therefore, higher amount 

hexanoic acid was produced through enzyme reaction within cell because fadR knockout strain could 

take more oleic acid than non-fadR deleted strain32. However, final titer was limitation because cell 

death was caused (Fig. 6B). 

 

 

4.3 Effect of thioesteraseⅡ (TesB) on hexanoic acid production 

 

In order to find suitable thioesterase for producing hexanoic acid, TesB and ChfatB2 was separately 

expressed with Aox2, then hexanoic acid production titer was measured by GC/FID. As a result, the 

best strain of hexanoic acid was MGREBA2 containing Aox2 with TesB (Fig. 6, 7), it is considered that 

hexanoic acid production relate to substrate specificity of these enzymes. In case of TesB, it has been 

reported that the only thioesterase have broad chain length specificity including C6-CoA to C18-CoA 

in E. coli 22-23. Moreover, Aox2 derived Y.Lipolytica has substrate specificity, which drop down 

remarkably on hexanoyl-CoA33. Because of this, it is assumed that entered oleic acid to β-oxidation 

cycle shorten to hexanoyl-CoA after 6cycles, then this limited production by Aox2 convert to hexanoic 

acid by overexpressed TesB inside of cell. This hexanoic acid diffuse out of the cell through membrane.  

MGREBA2 strain showed the increase titer of hexanoic acid production in process of time (Fig. 6B). 

On the other hand, MGREA2 strain showed a sudden increase after 24 hours reaction (Fig. 6B). It is 

assumed that acyl-CoA accumulation is caused by Aox2. MGREBA2 strain could faster conversion to 

fatty acid from acyl-CoA, because it has overexpressed TesB. Moreover, MGREA2 strain showed 

decrease titer of hexanoic acid after 48 hours in LB result (Fig 6B), M9 result was also observed to 

decrease titer of hexanoic acid after 24 hours (Fig 7A). In this case, it is assumed that hexanoic acid 

shorten to butanoic acid and acetyl-CoA in β-oxidation without overexpressed TesB, because Aox2 has 

very little substrate specificity for C6. In the presence of overexpressed TesB, hexanoyl-CoA could 

convert to hexanoic acid better. Therefore, in the condition of C6- acyl-CoA presence inside the cell, 

this hexanoyl-CoA could react by TesB than Aox2, this supposition is supported by the results of 

MGRECA2 strain (Fig. 7A). MGRECA2 containing ChfatB2, which has substrate specificity for C8 to 

C10, slowly produced to hexanoic acid in result on M9. It is considered that octanoyl-CoA shortened 
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oleic acid in β-oxidation could catalyze by ChfatB2 to octanoic acid, it also react by Aox2 inside of the 

cell. It is assumed that the cause of slow production in MGRECA2 strain occurred at conversion from 

C8 to C6 in β-oxidation because ChfatB2 compete with Aox2 at that moment.  

 

 

4.4 Future research plan 

  

In order to apply for strain of industrial use, growing cell is necessary. In this study, all fadE knockout 

strain showed growth deficiency on sole carbon source of oleic acid. Therefore, future work will be 

focused on construction of growing cell. The growth deficiency is considered to two causes. 1) SCFAs 

has toxicity to cell, because it can membrane leakage by diffusion. Therefore, these SCFAs could 

negative effect for cell growth by damage of membrane integrity4. 2) Acyl-CoA oxidase form hydrogen 

peroxide from its output of oxidation catalysis. This has also toxicity to cell and negative effect for cell 

growth34. Therefore, future research work will be proceeded to overcome this problem. The strategy of 

overcoming SCFAs toxicity problem is that adaptation will be performed on the condition of SCFAs. 

Because adapted E. coli strain was reported that the negative effect of cell growth is decreased by their 

membrane lipid composition change. Thereby, the composition of unsaturated lipid increase and the 

average lipid length increase4. Furthermore, we will conduct adding thiourea in the culture medium for 

overcoming hydrogen peroxide toxicity. It was reported that E. coli is partially protected against the 

lethal effects of hydrogen peroxide by pretreatment with thiourea35.  
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5. Conclusions 

 

In conclusion, although wild type E. coli could not form hexanoic acid by β-oxidation, we produced 

hexanoic acid in E. coli through β-oxidation engineering. Aox2 is key enzyme for produce hexanoic 

acid, because it has substrate specificity for long chain fatty acyl-CoA as very low activity on C6. Using 

the strain containing fadR knockout with Aox2 produced approximately 75 mg/L of hexanoic acid, and 

then thioesteraseⅡ overexpression strain as fadR knockout and Aox2 contained produced increase the 

2.5 fold as over the 200 mg/L of hexanoic acid. In this study, we constructed basis strain related for 

production of chemicals derived fatty acid. However, this strain showed growth deficiency on sole 

carbon source of fatty acids. Therefore, further study focused on overcoming this growth problem. In 

order to overcome, 1) SCFAs adaptation will be performed for overcoming SCFA toxicity and 2) 

thiourea will be added to culture medium for elimination of hydrogen peroxide in the cell.   
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