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A direct numerical simulation of a turbulent pipe flow at a high Reynolds number
of Reτ = 3008 over a long axial domain length (30R) was performed. The stream-
wise mean velocity followed the power law in the overlap region (y+ = 90–300;
y/R = 0.03–0.1) based on the power law indicator function. The scale separation of
the Reynolds shear stresses into two components of small- and large-scale motions
(LSMs) revealed that the LSMs in the outer region played an important role in
constructing the constant-stress layer and the mean velocity. In the pre-multiplied
energy spectra of the streamwise velocity fluctuations, the bimodal distribution was
observed at both short and long wavelengths. The kx

−1 region associated with the
attached eddies appeared in λx/R = 2–5 and λx/y = 18–160 at y+ = 90–300, where
the power law was established in the same region. The kz−1 region also appeared in
λz/R = 0.3–0.6 at y+ = 3 and 150. Linear growth of small-scale energy to large-scale
energy induced the kx

−1 region at high Reynolds numbers, resulting in a large pop-
ulation of the LSMs. This result supported the origin of very-large-scale motions in
the pseudo-streamwise alignment of the LSMs. In the pre-multiplied energy spectra
of the Reynolds shear stress, the bimodal distribution was observed without the kx

−1

region. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922612]

I. INTRODUCTION

Scientific technical advancements have enabled us to reliably measure flow velocity profiles
at high Reynolds numbers of up to Reτ ≈ 105 in experimental turbulent pipe flows.1 Many direct
numerical simulations (DNSs) of turbulent pipe flows have been performed, although the Reynolds
numbers in these simulations have been limited to Reτ = O (103) due to the massive computational
power and cost. Wu and Moin2 performed a DNS of turbulent pipe flows at Reτ = 1142 with a
streamwise domain length of 15R, where R is the pipe radius. Chin et al.3 performed a DNS at
Reτ = 2003 with 3πR. Hoyas and Jiménez4 carried out a DNS of turbulent channel flows at the
same Reynolds number (Reτ = 2003) with 8πh, where h is the half-channel height. Recently, Lee
and Moser5 performed a DNS of turbulent channel flows (Reτ = 5186) with the same domain length
(8πh). Since Monty et al.6 and Lee and Sung7 described the existence of very long meandering
structures up to O (30R), domains at least 8πR in length are required to capture the large- and
very-large-scale motions (LSMs and VLSMs).

The streamwise mean velocity profile has been found to scale with the inner variables in the
inner region and with the outer variables in the outer region. The validation of the mean velocity

a)Author to whom correspondence should be addressed. Electronic mail: hjsung@kaist.ac.kr. Tel.: 82-42-350-3027. Fax:
82-42-350-5027.
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was limited to the spatial resolutions of flow field, because the indicators of the mean velocity were
determined by the spatial derivatives along the wall-normal direction. The inner scaling variables
are the friction velocity (uτ) and the viscous length scale (ν/uτ), where ν is the fluid kinematic
viscosity. The outer scaling variables are the flow thickness (R, h, or δ), but the appropriate ve-
locity scale is the same as that used in the inner region. These two scales led to the most famous
logarithmic law (log law) in the overlap region, U+ = κ−1 log(y+) + B, where κ is the von Kármán
constant, B is the additive constant, y is the wall-normal distance, and the superscript + indicates
the inner scaling. Most experimental and numerical studies of wall-bounded turbulent flows have
documented a log law over a wide range of Reynolds numbers;8,9 however, turbulent pipe flows do
not always follow the log law in the mean velocity. Wu and Moin2 showed a power law in the mean
velocity (Reτ = 1142), defined as U+ = C y+γ, where C is the proportionality constant and γ is the
power constant. Chin et al.3 reported that the log law did not apply up to Reτ = 2003. In experiments
(Reτ > 5000), McKeon et al.10 observed both power and log laws, depending on y+: the power
law was observed over 50 < y+ < 300 and the log law was observed over 600 < y+ < 0.12Reτ.
At extremely high Reynolds numbers, however, turbulent pipe flows were found to converge to
the log law.1,9 Experimental studies have revealed that the log law applies in pipe flow as well as
channel flow at Reτ = 1000–3000.11,12 Nagib and Chauhan8 found that the constants in the log law
changed, depending on the flow geometry, i.e., the log law applied but it was not universal. These
distinct laws that conflicted in the overlap region motivated us to simulate a high-Reynolds-number
turbulent pipe flow in the present study.

As the Reynolds number was increased up to Reτ ≈ 2000, the outer regions of the pre-
multiplied streamwise energy spectra of the streamwise velocity fluctuations became prominent.13

Long-wavelength outer-scaled energy at long wavelength was created by contributions from the
VLSMs, which modulated the near-wall small-scale motions (SSMs).14,15 Kim and Adrian16 first
observed the existence of VLSMs based on the bimodal distribution in the energy spectra. Rosen-
berg et al.17 observed traces of short and long wavelength peaks in turbulent pipe flows over a
range of Reynolds numbers. Note that the presence of the long wavelength peak in the experi-
mental studies was suspected to correspond to an artifact of Taylor’s hypothesis.18 Recent DNSs
of turbulent channel flows at Reτ = 5186 revealed a clear outer region with λx/δ = 2π,5 similar
to the regions observed in the turbulent boundary layer (TBL).13 This finding contradicted the
previous findings, which revealed that the long wavelength peaks in the pipe and channel flows were
much longer than those present in the TBL.11 A plateau, called the kx

−1 region, was observed in
the pre-multiplied energy spectra and was attributed to the attached eddy hypothesis.19,20 Nickels
et al.21 observed the kx

−1 region in TBL at Reτ = 14 380. Rosenberg et al.17 found the kx
−1 region

at Reτ = 3334 in an experiment involving turbulent pipe flows. Lee and Moser5 and del Álamo and
Jiménez18 revealed the kx

−1 region in the turbulent channel flow at Reτ = 2003 and Reτ = 5186,
respectively; however, Morrison et al.22 could not identify the kx

−1 region in the turbulent pipe flows
at other Reynolds numbers (Reτ = 1500 and 100 000). Unlike the energy spectra corresponding to
the streamwise velocity fluctuations, the energy spectra of the Reynolds shear stresses have not been
extensively studied. The only attached variables (e.g., the streamwise velocity fluctuations) had the
kx
−1 region in the energy spectra, but the detached ones (e.g., the Reynolds shear stress) did not

have the kx
−1 region.23

The present study examined a DNS of a turbulent pipe flow at Reτ = 3008 to explore the
issues raised among high Reynolds number flows. The axial domain length was 30R, long enough
to capture the LSMs and VLSMs. The DNS data were compared with previous experimental and
numerical data for validation. The power law of the streamwise mean velocity in the overlap re-
gion was evaluated based on the indicator function. The contributions of the LSMs and SSMs
to the mean velocity and the Reynolds shear stress were measured. The pre-multiplied energy
spectra of the streamwise velocity fluctuations and the Reynolds shear stress were analyzed. The
presence of the bi-modal distribution and the kx

−1 and kz−1 regions were examined and the scale
growth of the LSMs and VLSMs was discussed. The quadrant analysis of the Reynolds shear
stress was performed from the energy spectra to explain the statistical behavior of the turbulence
structures.
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II. NUMERICAL DETAILS

The Navier-Stokes and continuity equations in cylindrical coordinates were employed to
describe an incompressible and fully developed turbulent pipe flow 30R in length. Here, r , z,
and θ denote the radial, axial, and azimuthal directions, and ur , uz, and uθ denote the corre-
sponding velocity components. The centerline velocity (Uc) and the pipe radius (R) were used
to non-dimensionalize the equations. The governing equations were temporally discretized using
the Crank-Nicolson scheme and were spatially resolved using the second-order central difference
scheme with a staggered grid. The velocity and pressure were decoupled using the fully implicit
fractional step method.24 No-slip conditions at the wall and periodic boundary conditions along
the streamwise and azimuthal directions were employed. For convenience and for comparison with
other geometries, the cylindrical coordinates were transformed to Cartesian coordinates: the stream-
wise direction, x = z; the wall-normal direction, y = 1 − r; the spanwise direction, z = rθ, and the
corresponding velocity components were u = uz, v = −ur , and w = uθ.7,25 The velocity fluctuations
were denoted using the prime symbol (e.g., u′), and the time- and spatial-averaged quantities of the
mean velocity and the velocity fluctuations were expressed using a capital letter or bracket (e.g., U
or ⟨u′u′⟩). A detailed description of the numerical simulation method may be found in Lee and
Sung7 and Ahn et al.15

The Reynolds number, calculated based on the pipe diameter (D) and the bulk velocity (Ub),
was ReD (≡DUb/ν) = 133 000, and the Kármán number was Reτ = 3008, the highest Reynolds
number used in a DNS of a turbulent pipe flow. The statistics were averaged over sampling times
of 600R/Uc, which allowed a particle to travel 10 times down the length of the axial domain
with the bulk velocity flow. The numbers of the grids and the spatial and temporal resolutions
are summarized in Table I. The total number of grid points exceeded 30 × 109, and the raw data
obtained from the three-direction velocities and pressures at each step used around 1 TB storage.
We introduced a hybrid technique, which was a combination of OpenMP (Open Multi-Processing)
and MPI (Message Passing Interface), to enhance the computational performance and to handle the
massive memory. The simulations were performed using 4906 parallel cores (Intel Xeon X5570
2.93 GHz) in the KISTI Supercomputing Center.

A. Validation

The temporal history of the streamwise velocity fluctuations is displayed in Fig. 1(a). Two
specific wall-normal positions of y+ = 15 and 214 (=3.9(Reτ)1/2) were chosen as representative
points in the near-wall and overlap regions in which the maximum turbulent production and the
log layer were found, respectively.14 The profiles revealed turbulent velocity signals, and the inter-
action between the inner and outer regions was displayed. Fig. 1(b) presents the averaged stream-
wise Reynolds stress for the sampling time tavg, ⟨•⟩ =

 tref+tavg
tref

•dt. Similarly, Fig. 1(c) presents
the averaged streamwise energy spectra (Φ) of the streamwise and spanwise velocity fluctuations
at y+ = 15. The reference time tref was determined after the transient state. Since the statistics
collapsed well after tavg

+ = 8164, the present averaging time 600R/Uc (tavg
+ = 40 820) was enough

for convergence.
Fig. 2(a) shows the profiles of the streamwise mean velocities in the turbulent pipe flows.

The DNS data2 obtained at Reτ = 1142 and the experimental data1,11,12 obtained at Reτ ≈ 3000 are
included for comparison. The general trend of our profile was similar to that observed in other
data. The profiles of the Reynolds stresses are shown in Fig. 2(b), based on the same previous
data. The profiles agreed well with those reported by Wu and Moin2 near the wall. The magnitude
of the near-wall peak in the streamwise component exceeded that reported by Wu and Moin2 as

TABLE I. Numerical parameters used in the present simulation.

ReD Reτ (Nx,Nr,Nz) ∆x+ ∆r+min ∆r+max ∆(Rθ)+ ∆tUc/R

133 000 3008 (12 289, 901, 3073) 7.34 0.36 9.91 6.15 0.003
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FIG. 1. (a) Temporal history of the streamwise velocity fluctuations at y+= 15 and 214, (b) streamwise Reynolds stress, and
(c) streamwise energy spectra of the streamwise and spanwise velocity fluctuations at y+= 15.

resulting from the effects of a high Reynolds number. The experimental data were collected using
different spatial resolutions of hot-wires (l+ = luτ/ν, where l is the hot-wire length): l+ = 3011 and
2212. These parameters nearly satisfied the criteria for an inner-scaled hot-wire spatial resolution.26

Although these parameters satisfied the criteria, hot-wires with l+ = 22 produced an attenuation in
the streamwise Reynolds stress.27 Although Hultmark et al.1 employed a sufficient spatial resolution
(l+ = 3.1), the near-wall behaviors were slightly overestimated, possibly because of l/d < 200,
where d is the diameter of a hot-wire,26 or due to the insufficient temporal resolution.1

III. RESULTS

A. Mean velocity

1. Power law

A magnified view of the streamwise mean velocity through the buffer and overlap regions
y+ = 10–1000 is shown in Fig. 3 with the power and log laws,

FIG. 2. (a) Profiles of the streamwise mean velocity and (b) profiles of the Reynolds stresses.
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FIG. 3. Scaling of the mean streamwise velocity by the power and log laws in the overlap region.

U+ = C y+γ : power law, (1)
U+ = (1/κ) log(y+) + B : log law. (2)

The power law followed the mean velocity in the range y+ = 60–600 (y/R = 0.02–0.2), whereas
the profile matched the log law only over the range y+ = 40–150 (y/R = 0.013–0.05), both within
a 0.5% tolerance. Note that the log law region proposed by Marusic et al.9 was 164 (=3(Reτ)1/2) <
y+ < 451 (=0.15Reτ) at 1.8 × 104 < Reτ < 6.3 × 105, slightly higher than ours due to the different
Reynolds numbers. The power law coefficients (C = 8.46, γ = 0.145) were almost the same as
reported values (C = 8.48, γ = 0.142 at Reτ > 5000),10 indicating that the coefficients were inde-
pendent of the Reynolds numbers. The power law in the present pipe flow at Reτ = 3008 indicated
that the viscous effects of the wall remained in the overlap region.

The power and log laws were evaluated by each indicator function according to

Γ =
y+

U+
∂U+

∂ y+
= γ : power law indicator function, (3)

Ξ = y+
∂U+

∂ y+
=

1
κ

: log law indicator function. (4)

Fig. 4 shows the profiles of the indicator functions, including the DNS data obtained at Reτ = 934,15

for comparison. Fig. 4(a) shows that the profiles obtained at two Reynolds numbers were similar
up to y+ ≈ 100. The profile corresponding to Reτ = 3008 reached a plateau (γ = 0.145) over
the range y+ ≈ 90–300 (y/R = 0.1). The profiles of the log law indicator function shown in
Fig. 4(b) exhibited qualitatively consistent behaviors up to y+ ≈ 60 with a local minimum of
2.387 (=1/κ, κ = 0.419).10 Unlike the power law indicator function, no flat regions were observed
within the overlap region for the log law indicator function, as shown in Fig. 4(b). The absence

FIG. 4. Wall-normal distributions of the (a) power law and (b) log law indicator functions.
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of a flat region has been observed in previous DNS studies.2,3 The power law was located at
y+ ≈ 90–300 (y/R = 0.03–0.1) in the inertial layer, which was similar to the experimental data
of McKeon et al.10 at similar Reynolds numbers. However, the present power law in the inertial
layer was different from the previous sequential alignment of the power and log laws.10 The pre-
vious power law was located at y+ = 50–300, which was no longer in the inertial layer at higher
Reynolds numbers (Reτ ≥ 5000).10 The power law indicator function provided clear evidence that
the present mean velocity followed a power law in the overlap region at the present Reynolds
number (Reτ = 3008). Note that previous numerical and experimental studies of turbulent channel
flows at Reτ ≈ 900–3000 reported the presence of a log law in the mean velocity, although a clear
plateau was not observed in the log law indicator function.4,11,12 A recent DNS of turbulent channel
flows revealed a plateau (κ = 0.384) over the range y+ = 300–780, in supportive of the log law at
Reτ = 5186.5

2. Constant-stress layer

The constant-stress layer indicated that the Reynolds shear stress was independent of the dis-
tance from the wall.19 The scale separation of the Reynolds shear stress was made to see the
contribution of the two components of SSMs and LSMs to the constant-stress layer. Chin et al.28

proposed a cut-off wavelength λx
+ = 3000 to demarcate the LSMs from the SSMs, and they showed

that the contributions of the SSMs to the Reynolds shear stress were independent of the Reynolds
number. Here, the LSMs encompassed the VLSMs, i.e., LSMs = LSMs + VLSMs. We found that
the variation of the scale-separated Reynolds shear stress against the Reynolds numbers was small
when the cut-off wavelength was larger than 3000 (λx

+ ≥ 3000). We applied the same procedure
as Chin et al.28 to the DNS data of pipe flow (Reτ = 934 and 3008),15 as shown in Fig. 5(a). The
SSMs were similar, regardless of the Reynolds numbers, whereas the LSMs increased in the outer
region along with the Reynolds number. This implied that the LSMs were more responsible for the
maintenance of the constant-stress layer than the SSMs. The Reynolds shear stress was distributed
across y+ = 50–140 within a 1% tolerance of the maximum (0.941 65), similar to the log law region
described in Sec. III A 1. If the Reynolds number was increased further, the LSMs became more
active and the constant-stress layer followed a log law.

The scale separation of the Reynolds shear stress in a pipe flow at Reτ = 93415 was compared
with that in a channel flow at Reτ = 930 (Ref. 29) in Fig. 5(b). The contribution of the LSMs to
the Reynolds shear stress was larger in the channel flow than in the pipe flow, even though the
total Reynolds shear stresses were nearly equivalent. Note that the contributions of the SSMs in the
outer region differed from the contributions of the LSMs toward the total Reynolds shear stresses
in both flows. As shown in Fig. 5(b), the magnitude of the Reynolds shear stress associated with
the LSMs in the core region of the pipe flow was smaller than the magnitude in the channel flow
(y+ = 50–930).

FIG. 5. Scale separation of the Reynolds shear stress. (a) Turbulent pipe flows at Reτ = 3008 and 934. (b) Turbulent pipe and
channel flows at Reτ ≈ 930. The white and grey circle symbols indicate the profiles of, respectively, the SSMs and LSMs.28
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FIG. 6. Scale separation of the streamwise mean velocity. (a) Turbulent pipe flows at Reτ = 3008 and 934, (b) turbulent pipe
and channel flows at Reτ ≈ 930.

The scale separation of the streamwise mean velocity at Reτ = 934 and 3008 is shown in Fig. 6.
The fractions of the LSMs and the SSMs in the streamwise Reynolds stress were employed to
obtain the scale separation of the mean velocity,

U = ULSM +USSM =
⟨u′u′⟩LSM

⟨u′u′⟩ U +
⟨u′u′⟩SSM

⟨u′u′⟩ U, (5)

where ⟨u′u′⟩LSM =
 ∞
λ+x=3000Φuu(λx)dλx and ⟨u′u′⟩SSM =

 λ+x=3000
0 Φuu(λx)dλx. For Reτ = 934, the

contribution of the LSMs was smaller than that of the SSMs in the entire wall-normal region. For
Reτ = 3008, the contribution of the LSMs was larger than that of the SSMs at y+ > 70. Fig. 6(b)
showed different behaviors between pipe and channel flows even at the same Reynolds numbers. In
the channel flow, the contribution of the SSMs was larger than that of the LSMs at y+ < 160, and
vice versa at y+ > 160. This implied that the LSMs were more responsible for the growth of the
mean velocity in the overlap region than the SSMs. In sum, since the LSMs in the pipe flow decayed
more rapidly than in the channel flow due to space limitations in the core region, the LSMs in the
pipe flow were more restricted than those in the channel flow. Lee et al.30 found that the survival
time of the LSMs was shorter in the pipe flow than in the channel flow. The different behaviors
resulted from different geometries, i.e., different contributions of the LSMs in the pipe and channel
flows. The structural differences between the pipe and channel flows probably resulted in different
power and log laws that applied in the overlap region. These results supported the hypothesis31 that
LSMs were important contributions to a universal scaling law applicable in the overlap region if
the volume fraction of large-scale structures was significant. Because the LSMs were more highly
populated in the channel flow than in the pipe flow,30 the highly active LSMs in the channel flow
contributed to the mean velocity log law to a greater extent than they did in the pipe flow.

B. Energy spectra

1. Energy spectra of the streamwise velocity fluctuations

The one-dimensional (1-D) pre-multiplied streamwise energy spectra of the streamwise veloc-
ity fluctuations (kxΦuu

+) for y/R < 0.1 (y+ = 300) and y/R ≥ 0.1 are shown in Figs. 7(a) and
7(b), respectively, along with previously reported experimental data collected at similar Reynolds
numbers. The intensities of the energy spectra near the wall (y+ = 15) exceeded those obtained
from the experimental data over the range λx/R < 1. The differences were negligible at long wave-
lengths. Large discrepancies at short wavelengths may have arisen from the resolution of hot-wires
(l+ = 22–30), i.e., an underestimate of the small-scale energy.26,27 Away from the wall (y+ = 70),
the experimental data began to show the bimodal distribution, even though the magnitude of the
distribution was small for λx/R < 0.2 and large for λx/R > 1, as compared with the magnitude
of the distribution obtained in the present DNS. The present profile obtained at y+ = 213 agreed
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FIG. 7. 1-D pre-multiplied streamwise energy spectra of the streamwise velocity fluctuations at (a) y/R < 0.1 and (b)
y/R ≥ 0.1. The grey band represents the wavelength range 10 < λx/R < 15.

well with the experimental data over short wavelengths, λx/R < 1, but trailed off at long wave-
lengths, λx/R > 2. In the outer region (y/R ≥ 0.1) shown in Fig. 7(b), the spectra obtained here at
wavelengths of λx/R < 3 resembled those obtained from the experimental data; however, the long
wavelength energy intensities at wavelengths of λx/R > 3 were smaller than those obtained experi-
mentally. The energy difference at long wavelengths decreased as y/R increased, e.g., y/R = 0.67.

Del Álamo and Jiménez18 demonstrated that the energy spectra obtained using Taylor’s hypoth-
esis represent an artificially amplified long wavelength peak. The convection velocity was required
to employ Taylor’s hypothesis; however, the mean velocity was typically used for convenience.
The difference between the convection velocity and the mean velocity became significant near
the wall.32 Because the large-scale structures were less energetic near the wall, the energy of the
large-scale structures was not overestimated near the wall. At y+ = 70, the influence of the spatial
resolution was limited to the region associated with the small-scale structures. The large-scale struc-
tures became significant as the wall-normal distance increased,13 i.e., the direct effects of Taylor’s
hypothesis were limited to wavelengths of λx/R > 1.25 Away from the wall (y/R = 0.67), the over-
estimates of the large-scale structures diminished because the population of large-scale structures
decreased due to spatial limitations in the core region of the pipe flow.30 It is worth mentioning
that although the exact convection velocity was applied to Taylor’s hypothesis, it was difficult to
describe both the spatial and temporal variations of the turbulent flows.25,33

Fig. 8 shows the 1-D kxΦuu
+ in y/R ≤ 0.1 along the outer and inner coordinates (λx/R and

λx/y). For comparison, the DNS channel data (Reτ = 2003 and 5186) of Hoyas and Jiménez4 and
Lee and Moser5 were included. Fig. 8(a) shows that the profiles at y+ = 90–300 agreed well over
the wavelengths λx/R = 2–5, creating a plateau. Each profile along the inner coordinate shown in
Fig. 8(b) also formed a plateau at λx/y = 18–160, even though the profiles did not overlap across

FIG. 8. 1-D pre-multiplied streamwise spectra of the streamwise velocity fluctuations at y/R ≤ 0.1 along the (a) outer
and (b) inner coordinates. y+ increased with the interval of ∆y+= 30. The grey band represents the wavelength range
10 < λx/R < 15.
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the wavelength domain. For example, the curve at y+ = 90 induced a plateau for λx/y = 70–160,
and the curve at y+ = 300 induced a plateau for λx/y = 18–50, indicating that the energy plateau
formed as a result of the structures with a streamwise size of λx/R ≈ 2–5 at y+ = 90 and 300.
These flat regions correspond to the kx

−1 region.17,20,21 Nickels et al.21 observed the kx
−1 region

for λx/δ ≤ 0.1π and λx/y ≥ 5π at y+ ≥ 100 in the TBL (Reτ = 14 380). Rosenberg et al.17 found
the kx

−1 region for λx/R ≤ 1π and λx/y ≥ 5π at y+ ≥ 100 in a turbulent pipe flow (Reτ = 3334).
The present inner coordinate range (λx/y) of the kx

−1 region (λx/y = 18–160) was similar to
those observed in experiments, but the outer coordinate values (λx/R) of the region (λx/R = 2–5)
slightly exceeded those obtained experimentally due to an overestimate of the peak intensities in
their studies. At higher Reynolds numbers for a turbulent pipe flow (Reτ > 20 000), however, the
kx
−1 region was not observed at y+ ≈ 400; instead, it appeared at y+ ≈ 100.17 The kx

−1 region is
the evidence of the attached eddy hypothesis.19,20 Attached eddies are energy-containing motions
and are proportional in size to the distance between their centers and the wall, i.e., attached to the
wall. Nickels et al.34 revealed that the log law does not readily describe the mean velocity without
employing the attached eddy hypothesis. However, the beginning and ending locations of the kx

−1

region, y+ = 90 and 300, were similar to those obtained in the power law region in Fig. 3(a). A
state in which both the kx

−1 region in the wavenumber space and the log law in the physical space
were satisfied was termed the complete similarity.19 Incomplete similarity,22 on the other hand, was
observed in the present turbulent pipe flow by demonstrating the applicability of a power law in the
mean velocity at y+ ≤ 300. Because the mean velocity followed a power law, the viscous effects
persisted in the physical overlap region, although the kx

−1 region appeared in the spectra.
The bimodal distributions are shown in Figs. 7 and 8. The short wavelength spectral peak grew

with increasing y+ to λx/R = 3. A long wavelength spectral peak was observed for λx/R = 10–15
in Fig. 6, corresponding to the VLSMs colored by the grey band. Because the grid system em-
ployed here permitted streamwise wavelengths up to 30/n (n is an integer between 1 and Nx/2), the
wavelengths of the VLSMs were only 15R, 10R, and so on, creating large variations in the long
wavelengths shown in Fig. 7(b). Even though there were discrete gaps in the long wavelengths, the
overall spectral shapes were not changed.25 The bimodal distribution appeared in both the short and
long wavelength spectral peaks. The peak at long wavelengths did not surpass the peak at short
wavelengths. The long wavelength energy at λx/R = 10–15 increased as the wall-normal distance
increased. A deep valley at λx/R = 7.5 in Fig. 8(a) was observed due to the sudden increase in
the energy spectrum. The sudden increase was associated with VLSMs and was amplified at high
Reynolds numbers. Note that this sudden increase was not observed in the low-Reynolds-number
flows.15,25 Although the Reynolds number (Reτ = 2003) employed in Chin et al.3 was high enough
to produce active VLSMs, the computational domain length was limited to 3πR, and a long wave-
length spectral peak may not have been observed.

Fig. 9 shows a two-dimensional (2-D) contour map of kxΦuu
+. The inner and outer sites

were located, respectively, at y+ = 13 (λx
+ = 800) and y/R = 0.087 (λx/R = 10). The inner site

was created by the self-sustaining near-wall cycle.13 Note that the wavelength of the outer site
(λx/R = 10) exceeded λx/δ = 6 in the TBLs.13 The presence of an outer site has been reported
in many experiments as resulting from the activation of VLSMs.11–13,17 This outer site was not
identical to the outer peak in the streamwise turbulence intensity. The short wavelength spectral
peaks along the wall-normal location were detected in the 1-D energy profile. The small-scale
energy near the wall grew into the outer-layer large-scale energy in a linear fashion according to
λx/R = 20y/R (white dashed line). The linear growth of the structures was closely associated with
the kx

−1 region denoted by the black solid box (λx/R = 2 ∼ 5 and y+ = 90 ∼ 300). At low Reynolds
numbers, the kx

−1 region did not exist.3,15,25 As the Reynolds number increased, the linear growth
of energy between the inner and outer regions became active and helped to form the kx

−1 region
with λx/R = 2–5 (Fig. 9). On the other hand, the outer regions of the VLSMs were isolated from
the energy of the SSMs and LSMs. As shown in Figs. 7(b) and 8(a), the energy of the VLSMs was
shown at λx/R = 10–15 regardless of the wall-normal locations. This indicated that the VLSMs
did not grow linearly with the wall-normal distance but existed with the fixed wavelengths, i.e., the
VLSMs were not the attached eddies. In the energy sense, the SSMs and LSMs did not contribute
to the formation of the VLSMs, and the VLSMs were autonomously generated.35 Since the energy
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FIG. 9. 2-D contour of the pre-multiplied streamwise energy spectra corresponding to the streamwise velocity fluctuations.
The black solid box indicates the kx−1 region. The white dashed line indicates the linear growth of λx/R= 20y/R. The cross
symbols represent the inner and outer sites at y+= 13 (λx

+= 800) and y/R= 0.087 (λx/R= 10), respectively.

growth from the SSMs to the LSMs became populated with increasing the Reynolds number, this
energy transfer produced a large population of the LSMs, and the generated adjacent LSMs resulted
in the continuous concatenation along the streamwise direction, i.e., the VLSMs.16,29,32,36 The high
Reynolds number flow produced the isolated energy peak of the VLSMs at long wavelengths. As
the Reynolds number increased further, the energy associated with the VLSMs increased even more
significantly. The deep valley shown in Fig. 8 would be filled with the big VLSM energy at high
Reynolds numbers. Note that the energy spectrum in a turbulent channel flow5 was similar in shape
to the spectrum suggested in our studies.

The pre-multiplied spanwise energy spectra of the streamwise velocity fluctuations (kzΦuu
+)

are shown in Fig. 10. The bimodal distribution is shown in the 1-D plot. The short wavelength
spectral peak grew up to λz/R = 0.6 with increasing the wall-normal location, and the long wave-
length spectral peak arose at λz/R = 1.4–2. Two kz−1 regions were observed at y+ = 3 and 150
(y/R = 0.05).19,20 The spanwise energy with λz/R = 0.3–0.6 in the overlap region (y+ = 150)
penetrated into the viscous sublayer (y+ ≈ 3). The existence of the kz−1 region was consistent
with the previous DNS studies of TBLs37 and turbulent channel flow,5,38 although the wall-normal
locations were slightly different. In the 2-D contour map, the inner and outer sites were located
at y+ = 12 (λz

+ = 113)39 and y/R = 0.189 (λz/R = 1.3), respectively. The spanwise outer site
(y/R = 0.189) was located further away than the streamwise outer site (y/R = 0.087), implying

FIG. 10. The pre-multiplied spanwise energy spectra of the streamwise velocity fluctuations. (a) 1-D plots and (b) 2-D
contour. The grey band represents the wavelength range 1.4 < λz/R < 2. The cross symbols represent the inner and outer
sites at y+= 12 (λz

+= 113) and y/R= 0.189 (λz/R= 1.3), respectively. The white dashed line indicates the linear growth
of λz/R= 7y/R.
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that the VLSMs in the outer region maintained their energy along the spanwise direction stron-
ger than the streamwise direction.15,25 The small-scale energy near the wall developed into the
large-scale energy in the outer region through a linear fashion λz/R = 7y/R (white dashed line).

2. Energy spectra of the Reynolds shear stress

The pre-multiplied energy spectra of the Reynolds shear stresses (kxΦ−uv
+) are plotted at

y/R ≤ 0.1 along the outer and inner coordinates in Figs. 11(a) and 11(b), respectively. In Fig. 11(b),
the profiles in the region y+ = 210–300 agreed well over the wavelengths λx/R = 1–3 and λx/y =
1–3 with the logarithmic inclination, i.e., the logarithmic correction of the kx

−1 region.40 This
result indicated that the structures satisfying both the outer and inner coordinates were present
in the Reynolds shear stress. In the outer region, y/R ≥ 0.1 in Fig. 11(c), the profiles along the
outer coordinate did not overlap across the wavelengths. Long wavelength peaks were observed
at λx/R = 10–15 and y/R = 0.1–0.4, i.e., the bimodal distribution. Away from the wall, the short
wavelength peaks became saturated at λx/R = 2.

The contour map shown in Fig. 11(d) shows the inner and outer sites at y+ = 30 (λx
+ = 710)

and y/R = 0.173 (λx/R = 10), respectively. The wavelength of the inner site was shorter than that
of kxΦuu

+, and the wavelength of the outer site assumed the same value. The inner and outer
sites were located further from the wall than those of kxΦuu

+. These characteristics arose from
the wall-normal fluctuating structures, which became streamwise elongated in the outer region
and subsequently detached.25 The asymptotic line along the short wavelength peaks was linear,
λx/R = 10y/R.40 Turbulence structures grew from small- to large-scales along the line, although
the structures grew at half the speed of the kxΦuu

+ structures. After the LSMs (λx/R ≥ 1) had
emerged, the LSM sizes converged to λx/R = 2 at y/R ≥ 0.2. The size of each structure was
proportional to the distance between the center and the wall. This did not necessarily mean that
these structures were attached, however, because the kx

−1 region was not observed in the energy
spectra.23 Instead, a logarithmic inclination was observed in the overlap region in Fig. 11(b).

FIG. 11. The pre-multiplied streamwise energy spectra of the Reynolds shear stress. 1-D plots normalized by the friction
velocity along the (a) outer and (b) inner coordinates in y/R ≤ 0.1 and (c) along the outer coordinate in y/R ≥ 0.1. (d)
2-D contour. The grey bands in (a) and (c) depict the wavelength range 10 < λx/R < 15. The white dashed line indicates
the linear growth of λx/R= 10y/R. The cross symbols represent the inner and outer positions at y+= 30 (λx

+= 710) and
y/R= 0.173 (λx/R= 10).
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FIG. 12. 2-D pre-multiplied streamwise energy spectra of the quadrants. (a) Q1, (b) Q2, (c) Q3, and (d) Q4.

The Reynolds shear stress is divided into four quadrants of the energy spectrum in Fig. 12. The
quadrant spectra were obtained by the multiplication of the energy spectra with the weight values,
which were the fractions of the quadrants against the Reynolds shear stress,

kxΦ
+
�
Qi
=

⟨u′v ′|Qi⟩
⟨u′v ′⟩ kxΦ

+
uv , i = 1,2,3,4. (6)

The energy spectra of the Q2 event (⟨u′ < 0 & v ′ > 0⟩) and the Q4 event (⟨u′ > 0 & v ′ < 0⟩) created
strong inner and outer sites, whereas the energy spectra of the Q1 event (⟨u′ > 0 & v ′ > 0⟩) and the
Q3 event (⟨u′ < 0 & v ′ < 0⟩) were small. The energy spectra of the Q1 and Q3 events were spread
along the diagonal, indicating that the Q1 and Q3 events with short and long wavelengths were
locally effective near the wall and in the outer region, respectively. The relatively strong energy
of the Q1 event near the wall indicated that the small-scale structures near the wall played an
important role in generating the outward motions of the high-speed flow. The energy spectra of
the Q2 and Q4 events covered a greater area than the Q1 and Q3 events. In particular, the long
wavelength energy of the Q2 and Q4 events deeply penetrated the vicinity of the wall (y+ ≈ 10),
which was not observed in kxΦ−uv

+. These results suggested that elongated sweep and ejection
motions created a footprint near the wall, even though their energy was weak.13 The energy spectra
of the Q2 and Q4 events encompassed the outer sites located at y/R = 0.18 (λx/R = 10) and
y/R = 0.153 (λx/R = 10), respectively. The low-speed flow with an outward motion (ejection) was
further located than the high-speed flow with an inward motion (sweep) in the outer region. Both
events simultaneously affected the outer energy in the Reynolds shear stress because the outer site
of the Reynolds shear stress shown in Fig. 11(d) was located between the outer sites of the Q2 and
Q4 events. The energy of the Q4 event was stronger than that of the Q2 event very near the wall
(y+ < 15), and vice versa above y+ = 15 (y+ > 15). The Q2 event (ejection) pushed the structures
to the outer region, and the Q4 event (sweep) pulled the structures inward toward the wall.

IV. CONCLUSIONS

A DNS of turbulent pipe flows was performed at a high Reynolds number, Reτ = 3008. The
streamwise mean velocity was found to follow the power law (y+ = 90–300; y/R = 0.03–0.1) in
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the inertial layer, as validated by the indicator function. The scale separation of the Reynolds shear
stress revealed that the contributions of the SSMs were independent of the Reynolds numbers. The
LSMs were more responsible for the constant-stress layer in the Reynolds shear stress than the
SSMs. The LSMs contributed more to the growth of the mean velocity in the overlap region than
the SSMs. Because the LSMs were more populated in the channel flow than in the pipe flow, more
active LSMs in the channel flow contributed to the log law in the mean velocity more strongly than
they did in the pipe flow. The pre-multiplied streamwise spectra of the streamwise velocity fluctua-
tions revealed the kx

−1 region for λx/R = 2–5 and λx/y = 18–160 at y+ = 90–300, which was the
same wall-normal region of the power law. The existence of the kx

−1 region supported the attached
eddy hypothesis. The linear growth of λx/R = 20y/R, from small-scale energy to large-scale energy
developed attached eddies, which formed the kx

−1 region, i.e., increased the energy of the LSMs.
VLSMs were formed due to the streamwise concatenation of LSMs, and the bimodal distribution
with short and long wavelength peaks was observed. The streamwise inner and outer sites were
observed at y+ = 13 (λx

+ = 800) and y/R = 0.087 (λx/R = 10), respectively. The kz−1 region was
observed with the bimodal distribution. The kz−1 region for λz/R = 0.3–0.6 was located at y+ = 3
and 150. The spanwise inner and outer sites at y+ = 12 (λz

+ = 113) and y/R = 0.189 (λz/R = 1.3)
were connected by the linear growth λz/R = 7y/R. The bimodal distribution was also observed
in the pre-multiplied streamwise spectra of the Reynolds shear stress. Although the SSMs near
the wall grew linearly to form LSMs by λx/R = 10y/R, those structures were not attached due
to the absence of the kx

−1 region. The inner and outer sites were located at y+ = 30 (λx
+ = 710)

and y/R = 0.173 (λx/R = 10), and the locations shifted further away from the wall due to the
wall-normal fluctuating structures. The outer site was formed by the large outer structures of the
Q2 and Q4 events. The elongated structures of the Q2 and Q4 events penetrated into the near-wall
region as a footprint.
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