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ABSTRACT

We investigated the instability of advective accretion flow as a consequence of angular momentum transfer in
one-dimensional, quasi-spherical transonic accretion flow around a non-rotating black hole. The code is designed
to include the effects of viscosity; the hydrodynamics component preserves angular momentum strictly with
Lagrangian and remap method in the absence of viscosity, while the viscosity component updates viscous angular
momentum transfer through the implicit method. We performed two tests to demonstrate the suitability of the code
for accretion study. First, we simulated the inviscid, low angular momentum, transonic accretion flow with shocks
around a black hole, and then the subsonic, self-similar ADAF solution around a Newtonian object. Both simulations
fitted the corresponding analytical curves extremely well. We then simulated a rotating, viscous, transonic fluid
with shocks. We showed that for low viscosity parameter, stable shocks at larger distance are possible. For higher
viscosity parameter, more efficient angular momentum transfer in the post-shock disk makes the shock structure
oscillatory. Moreover, as the shock drifts to larger distances, a secondary inner shock develops. We showed that the
inner shock is the direct consequence of the expansion of the outer shock, as well as the creation of regions with
∂l/∂r < 0 due to more efficient angular momentum transfer near the inner sonic point. We showed that all disk
parameters, including emissivity, oscillate with the same period as that of the shock oscillation. Our simulation may
have implications for low frequency quasi-periodic oscillations, e.g., GRO J1655−40 and XTE J1550−564.
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1. INTRODUCTION

Investigation of the flow behavior of the accreting matter in
the vicinity of a black hole is important since the spectrum
and intensity of the emitted radiation depend on the flow
structure. The event horizon presents the unique inner boundary
condition in which the infalling matter crosses the horizon
with the speed of light (c). Therefore, black hole accretion
has to be transonic, as a result of which the existence of
one sonic point or critical point is assured for black hole
accretion. General relativity also ensures that matter must
possess sub-Keplerian angular momentum closer to the horizon.
Although within the marginally stable circular orbit (rms), the
angular momentum at r � rms is definitely sub-Keplerian
(and the value l∼lms = l|r=rms ), at larger radius the angular
momentum should generally be large. Therefore, a general
accretion disk should have viscosity to remove the angular
momentum outward. The first serious model of a viscous
accretion disk was presented by Shakura & Sunyaev (1973),
in which the angular momentum distribution was Keplerian,
and the accretion disk was geometrically thin and optically
thick. In the Shakura–Sunyaev disk, the pressure and advection
terms were not properly considered and no attempt was made
to satisfy the inner boundary condition around a black hole
apart from the ad hoc termination of the disk at r � rms.
Along with this theoretical shortcoming, the Shakura–Sunyaev
disk also failed to explain the power-law high energy part of a
black hole candidate spectrum. Therefore, the search for another
component of an accretion disk, which may explain the origin
of the high energy radiations from black hole candidates, was
undertaken by various groups. One such model which got a
wide attention was ADAF (e.g., Ichimaru 1977; Narayan &
Yi 1994, hereafter NY94). This model was first constructed
around a Newtonian gravitational potential, where the viscously

dissipated energy is advected along with the mass, momentum,
and the entropy of the flow. The original ADAF solution was
self-similar and wholly subsonic, and was found to be thermally
and dynamically stable. However, the low viscosity ADAF
showed convective instability (Igumenshchev & Abramowicz
1999) that has no dynamical effect if the angular momentum is
transported outward, but it is dynamically important in case the
opposite is true. The global solution of ADAF showed that the
flow actually becomes transonic at around few Schwarzschild
radii (rg), and the self-similarity may be maintained far away
from the sonic point (Chen et al. 1997).

Simultaneous with these developments, there were some
interesting research going on regarding sub-Keplerian flows
around black holes. It has been shown that sub-Keplerian
flow does possess multiple sonic points in a significant range
of the energy–angular momentum parameter space (Liang &
Thompson 1980). One of the consequences of the existence
of multiple sonic points is that the flow accreting through the
outer sonic point can be slowed down by the centrifugal barrier.
This slowed-down matter acts as a barrier to the faster fluid
following it. If the strength of the barrier is strong enough, then
accretion shocks may form (Chakrabarti 1989). General global
solutions in the advective domain incorporating viscosity and
thermal effects were obtained by many independent researchers
(Chakrabarti 1990, 1996; Lu et al. 1999; Lanzafame et al. 1998;
Gu & Lu 2004). Furthermore, it has also been shown that
the global ADAF solution is a subset of the general advective
solutions (Lu et al. 1999). Whether a flow will follow an ADAF
solution or some kind of hybrid solution with or without shock
will depend on the outer boundary condition and the physical
processes dominant in the disk.

Although steady-state solutions are possible in a certain
range of parameter space (Chakrabarti 1989; Chakrabarti &
Das 2004; Molteni et al. 1994, 1996a), advective solutions
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with discontinuities such as shocks are generally prone to
various kinds of instabilities. Since various flow variables across
the shock surface jump abruptly, this results in a markedly
different cooling, heating, and other dissipation rates across
the shock. This may render the shock unstable. For example,
in the presence of bremsstrahlung cooling, resonance between
cooling timescales and infall timescales in the post-shock part
of the disk gives rise to oscillating shocks (Molteni et al. 1996b).
Lanzafame et al. (1998) showed that beyond a critical viscosity,
the post-shock disk may oscillate. The interaction between the
outflow and the inflow may also cause the bending instability in
the disk (Molteni et al. 2001). Molteni et al. (1999) showed that
in the presence of non-axisymmetric azimuthal perturbations the
shock initially becomes unstable, but stabilizes within a finite
radial extent into an asymmetric closed pattern. Moreover, the
post-shock region may be associated with the elusive Compton
cloud that produces the hard photons (Chakrabarti & Titarchuk
1995; Chakrabarti & Mandal 2006; Mandal & Chakarabarti
2008) and may also be the base of the jet (Das & Chakrabarti
1999; Das et al. 2001; Chattopadhyay & Das 2007; Das &
Chattopadhyay 2008; Becker et al. 2008; Das et al. 2009).
Therefore, instabilities of the post-shock region may manifest
itself as the variabilities observed in the emitted hard photons
seen in microquasars and active-galactic nuclei (Molteni et al.
1996b). To add a new twist, Fukumura & Tsuruta (2004)
conjectured the presence of multiple shocks, and Giri et al.
(2010) actually reported the presence of two oscillating shocks
giving rise to two quasi-periodic oscillations (QPOs).

In this paper, we concentrate on the study of instabilities of
rotating fluid around black holes, generated by the angular mo-
mentum transport by viscosity. Since the temperature, density,
etc. are higher and the velocity is lower in the post-shock re-
gion compared to the pre-shock region, the angular momentum
transport rate should be different in the two regions of the disk.
In other words, in this paper we simulate transonic, viscous,
rotating fluid around black holes. We employ a new code to
study the effect of angular momentum transport in the accretion
disk. Unlike other purely Eulerian codes, this new code is espe-
cially developed to strictly conserve angular momentum in the
absence of viscosity. In Section 2, the governing equations and
assumptions are presented. In Section 3, the code which was
built to calculate the evolution of angular momentum as accu-
rately as possible is described, along with tests for a rotating
transonic flow and a viscous flow. In Section 4, the structure and
the instability shown in simulations are presented, along with
descriptions on the nature of the instability. The summary and
discussion are presented in Section 5.

2. BASIC EQUATIONS

The one-dimensional time-dependent equations for quasi-
spherical accretion of viscous flows are given by
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where ρ, vr , l, Φi , and e are the gas density, radial velocity,
specific angular momentum, gravitational potential, and specific
internal energy, respectively. The angular velocity is defined
as Ω = l/r2. The suffix i in Equation (2) denotes N or
PN, corresponding to Newtonian or pseudo-Newtonian gravity
(Paczyński & Wiita 1980), respectively, and are given by

ΦN = −GMBH

r
(5)

and

ΦPN = −GMBH

r − rg

, (6)

where MBH is the black hole mass and the Schwarzschild radius
is rg = 2GMBH/c2. The pseudo-Newtonian potential is widely
used to mimic the Schwarzschild geometry. For the gas pressure,
the equation of state for ideal gas is assumed, i.e.,

p = (γ − 1)ρe, (7)

where γ is the ratio of specific heats. For viscosity, the α
prescription (Shakura & Sunyaev 1973) can be assumed, i.e.,
the dynamical viscosity coefficient is described by

μ = αρ
c2
s

ΩK

, (8)

where
c2
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ρ
(9)

is the square of the adiabatic sound speed, and
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is the Keplerian angular velocity, and the viscosity parameter α
is a constant which is generally less than 1. Note that the actual
expression of ΩK depends on the gravitational potential used.
Finally, following NY94, the parameter f measures the fraction
of the viscously generated energy that is stored as entropy and
advected along with flows. The value f = 1 corresponds to the
limit of full advection and has been used in this paper.

In the following, we use c and rg as the units of velocity
and length, respectively, unless otherwise stated. In geometrical
units, the unit of time is τg = rg/c.

3. CODE AND TESTS

One of the most demanding tasks in carrying out numerical
simulations of Equations (1)–(4) is to calculate the evolution
of the angular momentum as accurately as possible. Capturing
shocks sharply should also be important in resolving structures
with clarity, if shocks are involved. It has been known that the
latter can be achieved by using codes based on modern, upwind
finite-difference schemes on an Eulerian grid. However, without
viscosity in such Eulerian codes, it is normally the azimuthal
momentum (ρvφ) and not the angular momentum that is treated
as a conserved quantity. On the other hand, codes based on the
Lagrangian concept, such as the SPH code, can be designed to
preserve the angular momentum strictly. Although it has been
successfully applied to many studies of accretion flows, the SPH
code is known to be unduly dissipative (see, e.g., Molteni et al.
1996a for discussions).
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Here, we describe an Eulerian code that was generated to
accurately calculate the evolution of the angular momentum
including its transport due to viscosity, and at the same time
to capture discontinuities (shocks and contact discontinuities)
sharply with minimum numerical dissipation. The code is
composed of two parts: hydrodynamic and viscosity parts. The
hydrodynamic part is based on the Lagrangian Total Variation
Diminishing (TVD) plus remap approach. The Lagrangian/
remap approach is not new in numerical hydrodynamics and
was employed previously (Colella & Woodward 1984), but
here we show that in this approach the equation for angular
momentum conservation can be directly solved, and so the
hydrodynamics part can be designed to preserve the angular
momentum strictly in the absence of viscosity. At the same
time, the TVD scheme (Harten 1983; Ryu et al. 1993) guarantees
sharp reproductions of discontinuities and minimum numerical
dissipation. In the viscosity part, the viscous angular momentum
transfer is updated through an implicit method, assuring that it
is free from numerical instabilities related to it. The viscous
heating is updated with a second-order explicit method, since it
is less subjected to numerical instabilities.

3.1. Hydrodynamic Part

The hydrodynamic part consists of the Lagrangian step and
the remap step. First, in the Lagrangian step, the equations for
Lagrangian hydrodynamics are solved. On the Lagrangian grid
defined with mass coordinate, Equations (1)–(4), except for the
centrifugal force, gravity, and viscosity terms which are treated
separately (see below), can be written in a conservative form as

dτ

dt
− ∂(r2vr )
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= 0, (11)
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+ r2 ∂p

∂m
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where τ and E are the specific volume and the specific total
energy, respectively, that are related to the quantities used in
Equations (1)–(4) as

τ = 1

ρ
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v2
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2
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The mass coordinate is related to the spatial coordinate via

dm = ρ(r)r2dr, (16)

and its position can be followed with

dr

dt
= vr (m, t). (17)

Equations (11), (12), and (14) form a hyperbolic system of con-
servation equations, and upwind schemes can be applied to build
codes that advance the Lagrangian step using Harten’s TVD
scheme, which is an explicit, second-order, finite-difference
scheme to solve a hyperbolic system of conservation equations

(Harten 1983; Ryu et al. 1993). We note that the angular mo-
mentum in Equation (13) is preserved, so it need not be updated
in the Lagrangian step.

In the remap step, the quantities evolved in the Lagrangian
grid are redistributed to the Eulerian grid to preserve the
spatially fixed grid structure. Before the Lagrangian step, the
Lagrangian and Eulerian grid zones coincide. But after the step,
the Lagrangian grid zone moves to the updated position

rnew = rold + v̄Δt, (18)

where v̄ is the time-averaged velocity, and so it no longer
coincides with the Eulerian grid zone. Not only are the quantities
of the density, radial momentum, and total energy conserved in
the Eulerian grid, but the angular momentum is also remapped.
For the remap, we employ the third-order accurate scheme used
in the PPM code (see Colella & Woodward 1984 for details).

With the Lagrangian and remap steps, Equations (1)–(4)
are updated in the Eulerian grid, except for the centrifugal
force, gravity, and viscosity terms on the right-hand side. The
centrifugal force and gravity terms are calculated separately
after the Lagrangian and remap steps such that

v
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Then, the viscosity terms are calculated, as discussed in the
following subsection.

Non-uniform Eulerian grids can be employed in the code. For
the problem in this paper, we use a grid, where the size of cells
increases exponentially as

Δri = Δr1 × δi−1 (20)

to achieve higher resolution at the origin. Here, Δr1 is the size
of the first grid cell and δ is the increment factor.

3.2. Viscosity Part

Viscosity has two effects on accretion flows. First, it transfers
the angular momentum outward, allowing the matter to accrete
inward. At the same time, it acts as friction, which results in
viscous heating.

Since the term for the angular momentum transfer in
Equation (3) is linear in l, it can be solved implicitly. Substi-
tuting (lnew + lremap)/2 for l, Equation (3) without the advection
term becomes

ail
new
i−1 + bil

new
i + ci l

new
i+1 = −ail

remap
i−1 − (bi − 2)lremap

i − ci l
remap
i+1 ,

(21)
forming a tridiagonal matrix. Here, ai, bi, and ci are given
with ρ, μ, and r as well as Δr and Δt . The tridiagonal matrix
can be solved easily for lnew with an appropriate boundary
condition (Press et al. 1992). The term for the viscous heating
in Equation (4) is also linear in e (note that μ ∝ e), so it can
be solved implicitly, too. However, combining the two linear
equations for l and e becomes complicated. Through numerical
experiments, we found that the explicit treatment for the viscous
heating does not cause any numerical problem. So, instead of
implementing a complicated scheme to solve simultaneously
l and e implicitly, we solve the angular momentum transfer
implicitly, while solving the viscous heating explicitly.
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3.3. Tests

Two tests are presented to demonstrate that the code can
handle transonic flow as well as viscous flow, both of which are
involved in our problem. The capability of the code to capture
shocks sharply and resolve structures clearly is tested with a
transonic accretion flow. In these tests we reproduce well-known
results.

The evolution of an inviscid flow, which enters the outer
boundary with a small amount of angular momentum and
approaches a black hole described by Paczyński & Wiita
potential (Paczyński & Wiita 1980), is calculated in cylindrical
geometry. We note that previous subsections describe the code
only in spherical geometry, but the code is actually written in
arbitrary geometries. For this test, the version in the cylindrical
geometry is used. Without viscosity, the angular momentum
is preserved. A shock can form, if the rotating flow through
the outer sonic point approaches the centrifugal barrier and
decelerates discontinuously, due to the twin effect of centrifugal
force and pressure. In the test, l = 1.8crg , a value slightly
below the marginally stable value (lms = (3/2)3/2crg), is used.
The values of the flow quantities in geometrical units are
(ρ, p, vr ) = (0.71809, 0.007604,−0.083566) at the injection
radius rinj = 50rg . The sound speed at rinj is cs = 0.1188c;
hence, the fluid is subsonically injected. The fluid becomes
supersonic after crossing the outer sonic point at rco = 27.9rg ,
becomes subsonic at the shock rsh = 7.89rg , and enters the
black hole supersonically after crossing the inner sonic point at
rci = 2.563rg . For the ratio of specific heats, γ = 4/3 is used.
This is the case of a stable standing shock considered in Molteni
et al. (1996a). In Figure 1, the numerical solutions (open circles)
of density ρ (top) and radial Mach number Mr = vr/cs (bottom)
using 2048 uniform grid cells are compared with the analytical
solution (solid line). The flow in smooth regions coincides with
the analytical solution very well and the shock position matches
the analytical value very well. The agreement of the analytical
result with the current code is better than those with the purely
Eulerian TVD code and the SPH code presented in Molteni et al.
(1996a).

Next, the performance of the code for a subsonic viscous flow
is tested with a self-similar ADAF solution. Matter is steadily
injected with Keplerian angular velocity into the computational
domain at rinj, and the simulation lasts until the steady state is
reached. Figure 2 presents the flow quantities after the steady
state is reached and compares them with the analytic solution.
The Newtonian potential is used, and the ADAF is described
with a self-similar solution (NY94). The values of the physical
parameters used in this test are γ = 4/3, and α = 0.3. The
simulation was performed on an exponentially increasing grid
of 780 cells with Δr1 = 0.4972rs and δ = 1.01. Here, rs is
the sink size. The injection position is rinj ∼ 3.6915 × 104rs .
The quantities are drawn in units of the Keplerian velocity and
the Keplerian angular momentum at the sink, vK (rs) and lK (rs),
and the density is in an arbitrary unit. The figure shows that
the analytic solution is reproduced very closely in the region
between r ∼ 10rs and r ∼ 104rs in a box of size 1.1611×105rs .
The error in the specific angular momentum is less than a few
percent at most.

4. RESULTS OF SIMULATIONS

In previous numerical works, oscillation phenomena in ac-
cretion flows around black holes related to the QPO were re-
ported. The study of inviscid supersonic accretion flows around

Figure 1. Comparison of numerical solution with analytic solution for a one-
dimensional accretion flow in cylindrical geometry that allows a standing shock.
The plots show the density (ρ) and the radial Mach number (Mr). The solid
curves represent the analytical solution and the open circles represent the
numerical solution with 2048 uniform grid cells.

a Newtonian central object showed the accretion disk with shock
structure to be dynamically unstable (Ryu et al. 1995). Global
transonic accretion flows around black holes have been known
to exhibit stationary shocks for inviscid (Chakrabarti 1989;
Molteni et al. 1996a; Das et al. 2001) as well as dissipative
flows (Chakrabarti 1996; Lu et al. 1999; Lanzafame et al. 1998;
Becker et al. 2008). However, since the post-shock flow is hot-
ter, denser, and slower, the dissipation rate in the post-shock
flow is shorter than that of the pre-shock flow, which may make
the post-shock flow unstable. Indeed, it has been shown that the
energy–angular momentum parameter space for standing shock
decreases with the increase of viscosity parameter (Chakrabarti
& Das 2004; Gu & Lu 2004; Das et al. 2009). Lanzafame et al.
(1998) simulated viscous transonic flow and showed that steady
shocks exist for low viscosity, while for higher viscosity the
shock becomes unstable. However, Lanzafame et al. (1998) re-
stricted their investigations for a hot flow (Tinj ∼ 1011 K at the
injection radius), and very low viscosity parameter (α � few ×
10−3). Since the pre-shock flow was chosen to be hot (post-
shock disk was obviously even hotter), the angular momentum
removal was very efficient in both the pre-shock and post-shock
disks, even when the viscosity parameter was low. The length
scale of the computation box was only about a few tens of rg.
In this paper, we simulate viscous transonic flow which is cold
to begin with, and investigate the instability arising from rea-
sonably higher viscosity of the flow. The reason to choose cold
flow at the injection is to have a very different angular momen-
tum transport rate in the post-shock and pre-shock disks, and
thereby to maximize the effect of shock instability. Moreover,
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Figure 2. Test of ADAF with γ = 4/3 and α = 0.3 under the Newtonian potential. The solid lines represent the analytical self-similar solution, while the dots represent
the numerical solution. The density ρ (a), radial velocity vr (lower curve of (b)) and adiabatic sound speed cs (upper curve of (b)), specific angular momentum l (c),
and pressure p (d) are shown clockwise.

we keep the length scale of the computation box fairly large so
as to study large amplitude and low frequency shock instability.

4.1. Shock Formation in Inviscid Rotating Flow

We start our set of simulations with a low energy, rotating,
transonic, inviscid flow around a black hole (described by ΦPN).
The steady-state, inviscid, transonic solution corresponds to a
flow characterized by the Bernoulli parameter or specific en-
ergy (which in our unit system is E = 0.5v2

r + c2
s /(γ − 1) +

l2/(2r2) − 1/{2(r − 1)}) and specific angular momentum (l).
Parameters E, l for the inviscid flow are 1.25 × 10−6c2 and
1.8crg , respectively. The ratio of specific heat is given by
γ = 1.4. The Bondi radius (the length scale within which
gravity becomes important) is defined as rB = GMBH/c2

s,∞,
where c2

s,∞ = E(γ − 1) for an inviscid flow. In this particular
case, rB = 106rg and cs,∞ = 7.071 × 10−4c. The analytical,
steady-state solution of flows for these parameters gives two
physical sonic points, the inner one is at rci = 2.394rg and the
outer one at rco = 199991.04rg ≈ 0.2rB . The analytical solu-
tion also predicts a shock at rsh = 22.2rg . It has been shown
in connection to Figure 1 that it is possible to simulate tran-
sonic flow quite accurately with subsonic injection, i.e., when
rinj > rco. However, in the present scenario, rsh � rco. There-
fore, if rinj > rco, then a large amount of computation time
will be wasted in simulating the uninteresting region of the

disk. Hence, without any loss of generality, we choose the in-
jection parameters from the supersonic portion of the analytical
curve in order to reduce computation time. To further reduce the
computation time and also to achieve higher resolution close to
the center, we use exponentially increasing grids, which have
3553 cells with Δr1 = 0.0296 and δ = 1.001, and the length of
the computation box corresponds to 1000rg = 0.001rB . The in-
jection radius is hence rinj = 1000rg = 0.001rB , and the flow ra-
dial velocity (vr (inj) = 2.970×10−2c), specific angular momen-
tum (linj = 1.8crg) and sound speed (cs(inj) = 4.827×10−3c) at
rinj is taken from the analytical solution. In Figure 3, we compare
the steady-state analytical solution (solid line) with the simu-
lation result (open circles) when the steady state is reached.
Various flow variables such as ρ (a), vr (b), cs (c), and p (d)
are plotted with log(r). Figure 3 shows excellent agreement of
the simulation result with the analytical curve and the shock
captured within two to three cells.

4.2. Shock Oscillation of Viscous Flow

Time-dependent solutions of viscous transonic accretion flow
are obtained by starting with the inviscid flow described in
Section 4.1 as the initial condition, and then increasing the
viscosity parameter α. The action of the viscosity can be
understood from Equations (3) and (4). For accretion (i.e., when
vr < 0), if the right-hand side of Equation (3) is negative,
then the angular momentum will be transported outward. In
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Figure 3. Comparison of the analytical (solid line) with the numerical solution
(open circles) of hydrodynamical accretion shock for transonic flow with
γ = 1.4 and l = 1.8crg . The injection radius rinj = 1000rg , and at rinj the radial
velocity vr (inj) = 2.970 × 10−2c and sound speed cs (inj) = 4.827 × 10−3c.

the presence of Shakura–Sunyaev-type viscosity, the angular
momentum transport in the post-shock subsonic flow is much
more efficient than the pre-shock supersonic flow. As a result
of which, angular momentum starts to pile up in the immediate
post-shock fluid, resulting in a jump in the angular momentum
distribution across the shock. Similarly, Equation (4) tells us
that the viscous heat dissipation in the post-shock disk will also
be higher compared to the pre-shock disk.

It is well known that a standing shock forms if the to-
tal pressure (ram+gas pressure) is conserved across the shock
(Chakrabarti 1989). In Figure 4(a), the inviscid solution pro-
duces a stationary shock at location rsh = 22.2rg , as is shown
in Figure 3. In Figure 4(b), the shock location as a function
of t is plotted for α = 0.003. The excess gas pressure due to
viscous heat dissipation and the increased centrifugal force due
to the piled-up angular momentum in the post-shock disk push
the shock front outward. For low α, the shock front moves to a
larger location (rsh ∼ 31rg as in Figure 4(b)) where the balance
between the total outward push and the total inward pressure
from the pre-shock flow is restored. However, for higher vis-
cosity parameter α = 0.006 (Figure 4(c)), the enhanced angular
momentum transport creates an even stronger outward push and
the shock front overshoots a possible equilibrium position and
the shock starts to oscillate. Interestingly, when the shock moves
to around ∼70rg and beyond, a second shock tends to emerge,
which expands and collides with the outer shock. The com-
bined shock then drifts outward, the inner shock re-emerges,
and the cycle continues. In the following, let us perform a de-
tailed investigation on transonic flow with higher viscosity and
the emergence of two shocks.

Figure 4. Comparison of the shock location rsh for α = 0.0 (a), α = 0.003 (b)
and α = 0.006 (c). The injection radius is rinj = 1000rg , the injected radial
velocity vr (inj) = 2.970 × 10−2c, sound speed cs (inj) = 4.827 × 10−3c, and
angular momentum linj = 1.8crg . The adiabatic index is γ = 1.4.

In Figures 5(a)–(d), we have plotted the radial velocity
vr (dashed-dot) and the sound speed cs (solid) at four time
steps: (a) t = 2.9 × 105rg/c, (b) t = 3.165 × 105rg/c, (c)
t = 3.4 × 105rg/c, and (d) t = 3.615 × 105rg/c, where
the outer boundary conditions are same as in Figure 3, and
α = 0.01. In Figures 6(a)–(d), the specific angular momentum
distribution l(r) is plotted for the same simulation and for the
same time steps as in Figures 5(a)–(d). The corresponding
panels of Figures 5 and 6 are to be considered in tandem
to understand this complicated phenomenon. The different
snapshots in Figures 5(a)–6(d), correspond to (1) the maxima
in outer shock (Figures 5(a) and 6(a)), (2) the expansion stage
of the combined shock just after the minima in the next cycle
(Figures 5(b) and 6(b)), (3) just before the maxima of the outer
shock (Figures 5(c) and 6(c)), and (4) just after the maxima of
the outer shock (Figures 5(d) and 6(d)). In Figure 5(a), there
are two shock structures, the inner shock is at rsh(in) ∼ 130rg

and the outer shock is at rsh(out) ∼ 500rg . The corresponding
angular momentum distribution in Figure 6(a) shows that the
dl/dr > 0 in the range r < 20rg and rsh(in) < r < rsh(out),
while dl/dr < 0 is in the range 20rg < r < rsh(in). In
Figure 5(b), the two shocks merge and the combined shock
is at rsh(in) = rsh(out) = rsh ∼ 100rg . Figure 6(b) shows that
dl/dr > 0 in a region where r < 20rg , and dl/dr < 0 for
20rg < r � rsh, with a smaller hump in angular momentum
distribution around rsh. The angular momentum distribution
attains a tall peak, and the enhanced centrifugal pressure almost
stalls the infall (Figure 5(b)) in that region. However, due to the
extra pressure from the piled-up l the combined shock moves
outward, while the contact discontinuity wave resulting from
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Figure 5. Four snapshots of radial velocity (dashed-dot) and sound speed (solid) of a viscous fluid of α = 0.01 and γ = 1.4. The injection parameters are rinj = 1000rg ,
linj = 1.8crg , vr (inj) = 2.970 × 10−2c, and cs (inj) = 4.827 × 10−3c. The time sequence goes as (a) → (b) → (c) → (d).

the collision of shocks moves toward the black hole. As a
result, the sound speed (i.e., temperature) in the immediate
post-shock flow drops (Figure 5(c)), and the angular momentum
distribution becomes dl/dr > 0 (Figure 6(c)). This allows for
a freer infall and vr in the immediate post-shock disk increases
considerably (Figure 5(c)). As the contact discontinuity wave
is absorbed by the black hole, the angular momentum in the
immediate post-shock region gets reduced considerably, and vr

becomes supersonic in the region. However, the flow again hits
the centrifugal barrier closer to the black hole and the inner
shock re-emerges (Figures 5(d) and 6(d)). We note that the
regions of dl/dr < 0 are subject to rotational instability. The
non-steady behavior shown here should be partly attributed to
the instability.

4.2.1. On Emergence of the Inner Shock, Shock Collision, and the
Angular Momentum Transfer

In the top panel of Figure 7, the shock oscillation is plotted
for α = 0.01. Therefore, each panel of Figures 5(a)–(d)
and 6(a)–(d) corresponds to the various snapshots of flow
variables taken from the top panel of Figure 7 (time sequences
(a)–(d) are marked in the figure). Similar to Figure 4(c), rsh in
the top panel of Figure 7 starts to oscillate as the viscosity is
turned on. A transient inner shock, i.e., rsh(in), develops when
rsh(out) � 80rg . Initially, the dynamics of the two shocks are
similar to that of Figure 4(c), i.e., the inner shock forms when
rsh(out) is at the maxima, and then rsh(in) collides with the
contracting outer shock, and the merged shock then expands.
However, for t > 0.2 × 105τg , the shock dynamics slowly
change; both shocks expand and then contract, and the shocks
collide while contracting. The merged shock then reaches a

minimum and then expands, and this cycle continues. The query
about the formation of the inner shock can be understood as
follows: as the original shock expands to a distance �80rg ,
the sound speed in the immediate post-shock region and close
to the black hole differs by almost an order of magnitude.
Hence, the rate of angular momentum transport in a region
closer to the inner sonic point is much higher than the region
closer to the shock. Hence, the angular momentum transport
rate is not only markedly different between the post-shock and
pre-shock regions, but also within the post-shock flow when
the shock expands to a very large distance. Hence, the angular
momentum piles up in between the inner sonic point (rci) and
the shock (e.g., Figure 6(b)), which enhances the centrifugal
barrier and impedes the accretion. Continued shock expansion
reduces the post-shock sound speed (i.e., temperature) and
creates a mild but positive angular momentum gradient, which
increases the infall velocity in the immediate post-shock flow.
This can continue up to the extent that the post-shock fluid once
again becomes supersonic in the immediate post-shock domain;
however, further downstream the piled-up angular momentum
virtually stops the supersonic inflow causing the formation of the
inner shock. The inner shock again increases the temperature,
which causes the inner shock to expand, too. If the outer shock is
contracting then the two shocks may collide, or both shocks may
expand in phase and collide during the contraction phase. The
combined shock then expands and the whole cycle is repeated.
It may be noted that the inner shock emerges halfway into each
of the cycles and hence it is a persistent feature.

It is interesting to seek the radiative property of such oscilla-
tory dynamics of the disk. We estimate the bremsstrahlung loss
a posteriori from the disk as representative of the radiative loss.
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Figure 6. Specific angular momentum at the four different snapshots in the same simulation as in Figure 5. The time sequence goes as (a) → (b) → (c) → (d).

It is well known that the bremsstrahlung emission ∝ ρ2cs . In
Figure 7(b), we plot ETotal Br/ρ

2
injcs(inj) as a function of time,

where

ETotal Br =
∫ rinj

rsink

ρ2csr
2dr, (22)

ρinj and cs(inj) are the density and sound speed of the flow
at the outer boundary of rinj. Hence, the bottom panel of
Figure 7 represents the total bremsstrahlung emission from the
computational box compared to the bremsstrahlung emission at
rinj. Interestingly, bremsstrahlung emission also has a periodic
behavior, whose period is similar to the period of the shock
oscillation. However, the shock maxima/minima may or may
not coincide with either emission maxima or minima. In this
particular case, there is initially no distinct correlation, but as the
oscillation approaches quasi-saturation, the emission maxima
coincide with the combined shock minima, and the emission
minima coincide with the rising phase of the combined shock
and when the inner shock has not been formed. As the combined
shock contracts it pushes the post-shock matter inward just like
a “bellow” in a blacksmith’s shop. This increases the ρ, cs,
and vr . The enhanced ρ and cs contribute to form the emission
maxima. As the combined shock expands, the flow variables
like ρ, cs in the immediate post-shock region decreases, and the
emission starts to decrease until it reaches the minima. Since
the wide difference of cs also triggers the differential l transfer
in the inner regions and outer regions of the post-shock disk,
the angular momentum again starts to pile up and starts the
formation of the inner shock described above. There exists a
secondary peak in the bremsstrahlung emission as well which
appears to be related to the dynamics of the inner shock. The

time lag between the shock maxima and the emission maxima is
δt ∼ 2×104τg . Initially, the oscillation period of the shock was
T ′

osc ∼ 5 × 103τg . The oscillation period gradually increases to
a quasi-saturation value of Tosc ∼ 8 × 104τg . Since

τg = 2GM

c3
∼ 10−5 MBH

M

s, (23)

therefore,

Tosc ∼ 8 × 104τg ∼ 8 × 10−1 MBH

M

s. (24)

This would correspond to the frequency of ∼0.125 Hz for a
stellar mass black hole i.e., MBH ∼ 10 M
. In the case of a super-
massive black hole (MBH ∼ 108 M
), these timescales will
correspond to 2.5 yr variabilities. However, since there are two
shocks, we are interested to see the influence of the dynamics
of the two shocks on emission. In the left panel of Figure 8, we
plot the outer shock (top), inner shock (middle), and the relative
bremsstrahlung emission (bottom) for reference, and in the right
panels we plot the power density spectra for the outer shock
(top), inner shock (middle), and the bremsstrahlung emission
(bottom) for a stellar mass black hole (MBH = 10 M
). The
power density spectrum of the outer shock shows a frequency
of ∼0.125 Hz. The power density spectrum of the inner shock
has a prominent peak at the frequency ∼0.25 Hz and a weaker
peak around ∼0.125 Hz, the secondary peak suggests that the
oscillation of the outer shock forces a weak periodicity on the
inner shock as well. The power density spectrum of the inner
shock is a bit noisy, since the time variation of the inner shock,
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although persistent, is not continuous. Interestingly, Figure 8,
shows that the bremsstrahlung emission also peaks at around the
same frequencies as that of the two shocks, confirming that the
quasi-periodicity in the emission is due to the quasi-periodicity
of the two shocks.

In the presence of such a dynamical disk, it is intriguing to
investigate the time variation of the amount of matter and angular
momentum consumed by the black hole. Let us define the mass-
loss parameter, or the ratio of the rate of mass cannibalized
by the black hole to the rate of mass injected, as Ṁ/Ṁinj,
where Ṁ = (ρvrr

2)|sink and Ṁinj = (ρvrr
2)|rinj . The angular

momentum loss rate is defined as L̇/L̇inj, where L̇ = Ṁlsink and
L̇inj = Ṁinjlinj. The average specific angular momentum of the
disk is defined as

〈l〉 =
∫

ldr∫
dr

. (25)

In Figure 9, we plot the mass-loss parameter (top panel), angular
momentum loss rate (middle), and the average angular momen-
tum of the disk (bottom) as a function of time. The profiles of
the mass-loss parameter and the angular momentum loss rate
are similar to that of the bremsstrahlung emission rate. Since
the distribution of ρ peaks when the shock is at the minima, the
peaks of the mass-loss parameter and the angular momentum
loss rate coincide with the peak of the bremsstrahlung emis-
sion. As the shock recedes, vr and ρ decrease, resulting in
matter accumulating in the disk i.e., Ṁ/Ṁinj < 1. As the shock
contracts, it squeezes more matter into the black hole (accumu-
lated in the expansion phase) than it is being supplied; therefore

Figure 7. Shock position (top) and bremsstrahlung emission (bottom) as a
function of time in the same simulation as in Figure 5. The upper curve in the
top panel is the outer shock and the lower curve is the inner shock. The snapshots
of time in Figures 5(a)–(d) are marked on the top panel as (a)–(d).

Figure 8. Left panels: outer shock (top), inner shock (middle), and the bremsstrahlung emission (bottom) as a function on of time. Right panels: the power density
spectra of the outer shock (top), inner shock (middle), and the bremsstrahlung emission (bottom). Same simulation as in Figure 5.
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Figure 9. Mass accretion rate (top), angular momentum loss rate (middle), and
averaged specific angular momentum (bottom) in the post-shock region of the
outer shock as a function of time in the same simulation as in Figure 5.

Ṁ/Ṁinj > 1. It is to be noted that in this particular case, the
disk prefers to stay in the state where Ṁ/Ṁinj � 1. The an-
gular momentum loss rate follows Ṁ/Ṁinj. Interestingly, the
maxima of the average angular momentum of the disk coin-
cide with the minima of the emission, mass-loss rate, and the
angular momentum loss rate. The bottom panel of Figure 9
suggests that if the average angular momentum of the disk in-
creases, then vrshould decrease in a large region of the disk,
which should reduce the rate of matter actually accreted onto
the black hole. The average angular momentum (〈l〉) of the
disk increases with the increase of the peak and the width of
the angular momentum distribution of the disk, which corre-
sponds to the dips in the emission, mass-loss parameter, and
angular momentum loss rate. Although 〈l〉 oscillates with the
same period as that of the shock, the disk surprisingly prefers to
stay in state 〈l〉, which is greater than linj. Since the disk itself
is oscillating, all these flow parameters should oscillate with
the same period. And indeed, the bremsstrahlung emission, the
mass-loss rate, the angular momentum loss rate, etc. all oscillate
with the same period of shock oscillation.

4.2.2. Shock Oscillation for Higher Viscosity

The dynamics of the disk with a higher viscosity parameter is
different from that due to the lower one. For the higher viscosity
parameter, the difference in the disk dynamics will arise from
more efficient angular momentum transfer as well as higher
viscous dissipation of heat, even if the outer boundary condition
remains the same. In Figure 10, we have plotted the shock
location with time (top) and the bremsstrahlung emission with
time (bottom) for a fluid with the same injection parameters as

Figure 10. Shock position (top) and bremsstrahlung emission (bottom) as a
function of time. The upper curve in the top panel is the outer shock and the
lower curve is the inner shock. The simulation is for α = 0.1 and γ = 1.4, and
injection parameters rinj = 1000rg , linj = 1.8crg , vr (inj) = 2.970 × 10−2c, and
cs (inj) = 4.827 × 10−3c.

the inviscid flow described in Section 4.1, i.e., rinj = 1000rg ,
vr (inj) = 2.970 × 10−2c, and cs(inj) = 4.827 × 10−3c, and
the viscosity parameter is α = 0.1. The time variation of the
shock for α = 0.1 (Figure 10) is distinctly different from that
of the shock for α = 0.01 (i.e., Figure 7). The inner shock
forms, expands, and at some epoch collides with the contracting
outer shock, while at some other epoch it disappears before
colliding with the outer shock. The inner shock is weaker
compared to the disk with lower α. The time evolution of the
two shocks is somewhat similar to the initial phases of the
shock variation for α = 0.01. Comparison of the time variation
of the bremsstrahlung emission with the time variation of the
shock shows no correlation between shock minima and emission
maxima unlike the case for α = 0.01. In Figures 11(a)–(b),
vr (dashed-dot) and cs (solid) are plotted corresponding to
the emission maxima (Figure 11(a)) and emission minima
(Figure 11(b)). Similarly, the corresponding specific angular
momentum distributions are plotted for the emission maxima
(Figure 11(c)) and minima (Figure 11(d)), and the densities too
are plotted for the emission maxima (Figure 11(e)) and minima
(Figure 11(f)). The maxima of the bremsstrahlung emission
occur when the inner shock is tending to form, while the minima
occur when the inner shock has not been formed (also refer to
Figure 10). This change in the behavior of the shock and the
emission properties compared to that of the α = 0.01 actually
depends on the different rates of angular momentum transfer.
Since the viscosity in the present case is tenfold higher than
α = 0.01, the outward angular momentum transport is very
efficient. So, close to the black hole, the angular momentum
rises steeply outward unlike the flow with lower viscosity (e.g.,
Figures 11(c)–(d) may be compared with Figures 6(a)–(d)).
If the shock is closer to the black hole, then the peak of
the angular momentum distribution is very close to the outer
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Figure 11. Radial velocity (dashed-dot) and sound speed (solid) of viscous fluid for time t = 2.65 × 105τg (a) and t = 2.87 × 105τg (b). Specific angular momentum
is plotted for time t = 2.65×105τg (c) and t = 2.87×105τg (d). Density in arbitrary units is plotted for t = 2.65×105τg (e) and t = 2.87×105τg (f). The simulation
is for α = 0.1 and γ = 1.4. The injection parameters are rinj = 1000rg , linj = 1.8crg , vr (inj) = 2.970 × 10−2c, and cs (inj) = 4.827 × 10−3c.

shock (Figure 11(d)); this causes matter to accrete more freely
between the horizon and the peak of the angular momentum
distribution, and hence the density is lower (Figures 11(b),
(d), and (f)). This causes the emission to dip. As the shock
moves out, the angular momentum peak is situated farther inside
(Figure 11(c)). This causes the matter to madly fall inward
between the outer shock and the inner l peak. As the infalling
matter encounters the angular momentum pile-up, it decelerates
drastically, increasing the density considerably; and hence, the
bremsstrahlung emission is enhanced (Figures 11(a), (c), and
(e)). Eventually, it forms an inner shock, but the enhanced
energy deposition in the post-inner shock region causes the inner
shock to expand, thereby reducing density and emission. In this
connection, one may point out that the immediate post-shock
(for both inner and outer shocks) region may be decelerating
or accelerating (e.g., Figures 5(a)–(d), 11(a)–(b)). However, it
was predicted by Nakayama (1992) and Nobuta & Hanawa
(1994) that post-shock acceleration and deceleration correspond
to unstable and stable shocks, respectively. The reason for this
is that no standing shock can exist in the viscous flow for the
corresponding initial conditions.

In the top panel of Figure 12, we plot Ṁ/Ṁinj, and like
the lower viscosity case, its peak and trough coincide with
that of the bremsstrahlung emission. The angular momentum
loss rate L̇/L̇inj (middle) also follows the pattern of Ṁ/Ṁinj.
Since the angular momentum distribution is higher during the

peak emission, the average angular momentum of the disk’s
〈l〉 (bottom) peak coincides with the emission peak. Moreover,
Ṁ/Ṁinj < 1 most of the time, which means that because of
higher angular momentum most of the matter being injected
into the disk is not being consumed by the black hole, which is
indicated by the fact that 〈l〉 is significantly higher than linj.

The role of viscosity can be ascertained if one compares
the viscous time with the advection timescale. The viscous
timescale may be defined as

τvis =
∫ rsh

rci

r

ν
dr, (26)

where ν = μ/ρ and the advection timescale

τad =
∫ rsh

rci

dr

|vr | . (27)

The time variation of τvis closely follows the corresponding
variation of the shock location, with minima and maxima
of each, coinciding with the other at exactly the same time.
When compared to the α = 0.01 case, at the shock min-
ima, τvis and τad are comparable and we see that the shock
front is pushed outward. At the shock maxima τad � τvis, i.e.,
advection dominates; consequently, the shock front hurls in-
ward contracting significantly from few ×100rg to few ×10rg .
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Figure 12. Mass accretion rate (top), angular momentum loss rate (middle), and
averaged specific angular momentum (bottom) in the post-shock region of the
outer shock as a function of time in the same simulation as in Figure 10.

Hence, the interplay between these two timescales sustains the
oscillation. The general pattern of the temporal behavior of the
timescales and the relation to the shock oscillation for the flow
with α = 0.1 is similar to that with the flow α = 0.01. However,
τad and τvis for α = 0.1 are roughly comparable and hence oscil-
lations do not saturate. Foglizzo & Tagger (2000) investigated
for Bondi flow that entropy-acoustic cycles may sustain shock
oscillation if cs(rci)/cs(rsh)  1. In the simulations we have
run, max[cs(rci)/cs(rsh)] ∼ 10, but generally the ratio is less in
most of the times. Hence, the effect of entropy-acoustic cycles
in regulating shock oscillation is probably moderate in our case.
A multi-dimensional simulation may give a more definitive an-
swer.

5. SUMMARY AND DISCUSSION

This paper intended to study the time-dependent simula-
tions of large amplitude oscillations of advective, viscous, sub-
Keplerian disks, to complement earlier works studying low am-
plitude oscillations undertaken by Molteni and his collaborators
(Lanzafame et al. 1998). As an improvement, we have employed
a new code which uses the Lagrangian TVD/remap approach.
This code strictly conserved the angular momentum without
viscosity and reduced the numerical dissipation considerably
(e.g., Section 3). Tests showed that the shock-capturing capa-
bility of this code is better than both standard Eulerian code and
Lagrangian SPH code (e.g., Figure 1), and followed the angular
momentum transfer of the viscous, subsonic, analytical solution
extremely well (e.g., Figure 2).

Oscillation of the accretion shock was borne out by the
different rates of angular momentum transfer across the shock

and the heat dissipated due to the presence of viscosity. It
has been shown that in the presence of the low viscosity
parameter (α = 0.003), the shock front of a disk, with the
same initial and boundary conditions as those of the inviscid
case, tended to expand and settled at a larger distance from the
disk (Figure 4(b)). For an even higher viscosity (α � 0.005), the
rate of angular momentum transfer was higher, which caused
a faster rate of shock front expansion. As the shock front
exceeded a possible equilibrium position, it started to oscillate
(Figure 4(c)). However, remember that the value of the critical
viscosity parameter (α ∼ 0.005 in the present case) is not
sacrosanct, but actually depends on the initial condition. For
example, it has been shown that the critical viscosity parameter
will be higher for flows with lower angular momentum, while
for a fluid with higher initial energy the critical viscosity
parameter will be lower (see Chakrabarti & Das 2004). Hence, if
the proper initial condition is used then a stable shock is expected
to form for higher viscosity parameters (i.e., α ∼ 0.1–0.2), too,
the investigation of which, however, is not the point of interest
for the present paper.

A detailed study of the disk dynamics was conducted for
reasonably high viscosity (i.e., α = 0.01 and 0.1). For α =
0.01, the shock oscillation amplitude was found to be quite high,
�100rg . This resulted in a large sound speed gradient in the
post-shock subsonic flow. In the case of large amplitude shock
oscillation, the rate of outward angular momentum transport in
a region closer to the inner sonic point was shown to be much
higher compared to the rate of angular momentum transport
near the shock. As a result, our simulation showed the angular
momentum to be piled up in an intermediate region between
the shock and the inner sonic point. The expanding shock
also increased the inflow velocity in the immediate post-shock
region, only to be decelerated by the extra centrifugal pressure
due to the piled-up angular momentum further inside the disk
(e.g., Figures 6(a)–(d)). The inflow velocity in the post-shock
disk may be increased to the extent that it may again become
supersonic, then the resistance from the excess centrifugal
pressure from the piled-up angular momentum distribution
may cause the formation of the inner shock. In the case of
moderately high α, the distance between the peak of the angular
momentum distribution and the outer shock is large enough to
allow for the vr to become supersonic again and enhanced the
possibility of forming the inner shock. Note that the amplitude of
shock oscillation will possibly be lesser for multi-dimensional
simulations. Viscosity is more active in the post-shock disk, and
hence the extra centrifugal force due to the piled-up angular
momentum and the heat dissipated by viscosity both actively
take part in shock oscillation. However, in the case of realistic
accretion flow, part of the viscous heat dissipated in the post-
shock disk will also be spent to puff it up, which would imply
less outward push on the shock surface. Hence, for a flow with
the same injection and viscosity parameters, the oscillation
amplitude for a multi-dimensional disk is expected to be less
compared to a purely conical flow. Consequently, the critical
viscosity above which the disk becomes oscillatory will also be
higher.

The time evolution for shocks of higher viscosity was shown
to be distinctly different from that of shocks with lower viscosity.
The inner shock was weaker and more sporadic for a disk with
α = 0.1. The main reason for this was the higher rate of angular
momentum transport. Even when the shock was around 100rg,
highly efficient angular momentum transport created a smooth
increase of angular momentum, which only peaked closer to
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rsh. As the shock expanded, vr increased, but the opportunity of
becoming supersonic was minimized since the peak of the l(r)
was closer to the shock. Hence, the inner shock, if it formed
at all, was weaker. However, since the shock amplitude for
α = 0.1 was much larger than the case with α = 0.01, in time
the formation of the inner shock became more regular, and the
behavior was more similar to that of α = 0.01.

The oscillatory motion of the shock induced oscillation in all
the disk parameters such as emission, rate of matter consumed
by the black hole, the rate of angular momentum consumed by
the black hole, and the average angular momentum of disk. All
these parameters oscillated with the same period as that of the
shock. The disk oscillation started with α � 0.005. Considering
MBH = 10 M
, for α = 0.005 the oscillation frequency of the
outer shock was 5 Hz and that of the inner shock was 10 Hz; for
α = 0.006 the frequencies were 1 Hz and 3 Hz, respectively, for
the outer and inner shocks, and for α = 0.01 the two frequencies
were 0.125 Hz and 0.25 Hz. Hence, one may conclude that
apart from the dependence of the oscillation frequency on
injection parameters, the QPO frequency definitely decreases
with increasing viscosity and vice versa. Observationally, GRO
J1655−40 exhibits a rise in QPO frequency in its rising state
and a fall in QPO frequency in its declining phase in 2005
(Chakrabarti et al. 2008). Chakrabarti et al. (2009) plotted the
QPO frequency for the object XTE J1550−564 in 1998 burst
phase. They showed that in the rising phase of the outburst, the
low frequency QPO increases from 0.08 Hz to 13.1 Hz and then
starts to decrease in the declining phase before disappearing.
Such rise and fall of QPO frequencies may be explained by the
change in shock oscillation frequency due to the change of the
net viscosity of the disk.

In the presence of viscosity, a positive angular momentum
gradient i.e., dl/dr � 0 helps in the outward transport of angular
momentum. However, a negative gradient may trigger inward
transport of angular momentum. The dl/dr < 0 condition was
attained in the disk in at least two locations, at the outer shock
front and just behind the peak of the specific angular momentum
distribution. Those regions were subject to rotational instability.
dl/dr < 0 caused the average angular momentum 〈l〉 of the
disk to increase, and hence the period and the amplitude of the
shock oscillation to increase, too. This is less perceptible for
lower α and the shock oscillation achieved quasi-saturation, but
for α = 0.1 the shock went outside the computation domain.
We repeated the simulation with α = 0.3 (not presented in the
paper) and in this case too the shock went outside the domain,
although formation of the inner sonic point and oscillation of
the two shocks were observed, too.

In the case of multi-dimensional simulations, a part of
the post-shock matter would have ejected along the vertical
direction in the form of winds, which would have carried away
a part of the angular momentum, such that the increase of 〈l〉

may have been arrested for higher α. This would have meant
that the shock oscillation may saturate for α � 0.1. Hence,
we conjecture that the non-saturation of shock oscillation for
α � 0.1 could be an artifact of one-dimensional simulation.
We will test it in a future work using multi-dimensional
simulations.
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