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When the three-dimensional topological insulators Bi2Se3 and Bi2Te3 have an interface with vacuum,

i.e., a surface, they show remarkable features such as topologically protected and spin-momentum locked

surface states. However, for practical applications, one often requires multiple interfaces or channels

rather than a single surface. Here, for the first time, we show that an interfacial and ideal Dirac cone is

realized by alternating band and topological insulators. The multichannel Dirac fermions from the

superlattice structures open a new way for applications such as thermoelectric and spintronics devices.

Indeed, utilizing the interfacial Dirac fermions, we also demonstrate the possible power factor improve-

ment for thermoelectric applications.
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Newly discovered ‘‘second-generation’’ three-
dimensional topological insulators such as Bi2Se3 and
Bi2Te3 have attracted great attention due to their exceptional
properties when they have a surface, i.e., relatively large
bulk band gaps, and one simple Dirac cone at the � point in
the Brillouin zone (BZ). Their surface states are protected
by time-reversal symmetry and show the Dirac cones con-
necting the inverted conduction and valence bands [1,2].
These Dirac cones constitute the topological transport
regime, which has the gapless conducting and spin-
momentum locked surface states leading to the suppression
of backscattering. Such extraordinary surface states of the
three-dimensional topological insulators may occur, as the
term ‘‘surface’’ already suggests, only at the surfaces or,
more generally, interfaces where the topological invariant
changes [3,4]. For these topological insulators, the extension
of a single surface to multiple interfaces, i.e., a periodic
array of alternating band and topological insulators [topo-
logical–band insulator (TI–BI) superlattices], has not been
attempted yet although multiple interfacial Dirac cones in
bulk led to new technological opportunities for practical
applications such as thermoelectric and spintronic devices.

Here we use a first-principles density functional
approach to design superlattice structures, using Bi2Se3
topological insulators, whose interfacial electronic struc-
tures show the Dirac cones with massless linear dispersion
to be the same as a single surface state. We propose
O substitutions to make the interface layers, which even-
tually creates the band insulator layers alternating with
topological insulator layers. Advanced crystal growth tech-
niques such as molecular beam epitaxy may be useful for
achieving TI–BI superlattices suggested here, as used in
recent topological insulator experiments [5]. Utilizing pos-
sible high mobilities from multiple interfacial Dirac cones,
we also demonstrate the power factor improvement for
thermoelectric applications.

The theoretical calculations were performed employing
the highly precise full-potential linearized augmented plane

wave (FLAPW) [6,7] method with the gradient-corrected
Perdew, Burke, and Ernzerhof form [8] of the exchange-
correlation potential. The lattice constants and the internal
atomic coordinates were fully optimized; it is assumed that
O substitution does not change the in-plane lattice con-
stants. The core states and the valence states were treated
fully relativistically and scalar relativistically, respectively.
For k-space integrations, a 9� 9� 1 mesh of special k
points was used in the irreducible Brillouin zone wedge.
The energy cutoffs for the interstitial plane-wave basis and
the star functions were 13.0 and 100.0 Ry, respectively. If
not otherwise specified, all calculated results include spin-
orbit coupling (SOC) by a second variational procedure [9].
The muffin-tin radii of Bi, Se, and O were 2.9, 2.4, and
1.5 bohr, respectively. To calculate the power factors, the
Boltzmann distribution function was employed in the con-
stant relaxation time approximation. To determine the
group velocities which are used in the transport coeffi-
cients, we use full intraband optical matrix elements [10]
calculated within the FLAPW method. Different carrier
concentrations for the transport coefficient calculations
were treated within the rigid band model.
The Bi2Se3 crystal has a rhombohedral unit cell or a

layered structure stacked along the c axis of the hexagonal
lattice, as shown as Fig. 1(a). One quintuple-layer slab has
one formula unit in which the anion Se atom has two
different sites. The Se atom at the center has covalent
bonds with six Bi atoms, and the other Se site has three
covalent bonds with Bi, but has van der Waals interactions
with three Se atoms in the other quintuple-layer slab. To
construct TI–BI superlattices, we use the hexagonal super-
cell structures whose (0001) interfaces correspond to a
two-dimensional hexagonal Brillouin zone, as in the film
geometry.
When we substitute O atoms for Se atoms in the

van derWaals layers, O-Bi layers form band insulator layers,
which leads to the interfaces between topological and band
insulators, i.e., the change of the topological invariant.
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Hence, as shown in Fig. 1(b), the ‘‘three-dimensional’’
systems from the superlattice structure of the alternating
topologically distinct insulators give rise to a Dirac cone in
the BZ for each interface just as for their surfaces.We should
note that the topological transport regime from each inter-
face is as robust in the presence of nonmagnetic impurities
as that of their surface states since the backscattering is still
forbidden by time-reversal symmetry.

In the pristine Bi2Se3 surfaces, it is known to be difficult
to isolate the surface states from the bulk states especially
by transport measurements [4,11]. The band structures of
the pristine Bi2Se3 surfaces, which are confirmed by theo-
retical calculations [1,12], clearly show that the Kramers
point is close to or even lower than the bulk valence bands,
which leads to possible elastic scattering channels between
the surface and bulk states. The hexagramlike isoenergy
contours in the BZ far from the Kramers point, but still
within the bulk band gap, also provide the finite q elastic
scattering channels [13], which reduces the energy range
for observing the transport effects of the ideal Dirac cones.

The theoretical calculations for the Bi2Se3 superlattices,
which are composed of three quintuple layers with O
substitution at the top and bottom surfaces, show a very
similar band structure to that for their film geometries; the
spin-split interface states by the spin-orbit coupling tra-

verse the bulk band gap between Kramers pairs at ~k and

� ~k, and cross each other at the � point, resulting in the
‘‘ideal’’ Dirac cones.

The Dirac cones which originate from the O substitution
are ideal in the topological insulators in the sense that they
show a significantly improved topological spin transport
regime compared to that of the pristine Bi2Se3 surfaces; as
shown in Fig. 1(c), the Fermi level is located at the Kramers
point in the middle of the bulk band gap of approximately
0.48 eV, which is relatively large compared to the bulk

Bi2Se3 band gap of 0.3 eV [14]. The surface states in
Fig. 1(d) also show the circular isoenergy contours in the
BZ within the range of 0.3 eV centered at the Kramers
point. The fact that the Kramers point at the Fermi level is
far away from the bulk bands is related to the role of O-Bi
(band insulator). In Fig. 2(a), the charge density plot of the
surface state at � illustrates that the surface states mostly
reside in the van der Waals layers near the interface where
two Se atoms face each other, not in the O-Bi layers [see
Fig. 2(b)]. This fact is of great significance since the effect
of possible disorders in the O-Bi layers is expected to be
small on the surface states [15]. Note that, in Fig. 2(a),
the Bi in the O-Bi layer has almost no contribution to the
surface states, as the Se also does not at the center of three
Bi2Se3 quintuple layers sandwiched by O.
The large bulk band gap obtained here also suggests a

crucial point, i.e., a tunable bulk band gap which can be
controlled by the thickness of the Bi2Se3 layers between
the O layers. The topological insulator region in the super-
lattice structures barely sees (or interacts with) each other
over the band insulators. The bulk band gaps in these
superlattices are determined by quantum confinement, as
in the film geometry. The detailed band structure for the
superlattices in Fig. 2(b) shows a bulk band gap of ap-
proximately 0.59 eV in Fig. 2(c) when the SOC is not

FIG. 2 (color online). (a) The charge density plot of the surface
states at � and (b) its corresponding Bi2Se3 structure with O
substitution at both ends, which is a periodic unit of superlattices
along the c axis in Fig. 1(a). The band structures of superlattices of
three quintuple layers [(c),(d)] and (e) nine quintuple layers of
Bi2Se3 with O substitution at both ends. In (c), only the Perdew,
Burke, and Ernzerhof functional is used without spin-orbit
coupling (SOC), but (d) and (e) include the SOC.

FIG. 1 (color online). (a) Superlattices of alternating band (BI)
and topological (TI) insulators. (b) Dirac cones representing
each interface state between the layers of band and topological
insulators in (a). (c) Three-dimensional plot of the interface state
of (a), and (d) its contour plot above and below the Kramers
point. The contour interval is 0.05 eV.
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included in the calculations, while the calculations with the
SOC yield Dirac-cone-like interface states which originate
from the distinct topological invariants between the band
and topological insulators, as shown in Fig. 2(d). The
thicker nine quintuple layers of topological insulators be-
tween the O layers yield nearly the same bulk band gap as
that of the bulk Bi2Se3 [see Fig. 2(e)]. Also we note that the
possible interactions between the interfaces due to a thin
topological insulator slab in superlattices may result in
slightly dispersive interface states along � to A as shown
in Fig. 2(d), while the topological insulator slab which is
sufficiently thick to prevent the interactions between the
interfaces should give nearly flat bands, as shown in
Fig. 2(e). This is an analogy to opening a gap at the
Kramers point due to the intersurface interaction in ultra-
thin films. These results are all of importance not only for
technological applications but also for observing novel
phenomena driven by the helical Dirac fermions.

The optimized geometry in Fig. 2(b) shows a consistent
picture with the nature of the alternating topological in-
variants as well. The O binds strongly with Bi and shrinks
significantly towards the Bi. Their distance is only 2.4 Å,
which makes nearly a perfect single layer of O and Bi. The
Bi in the O-Bi layer has a slightly larger bonding distance
with Se, by 0.01 Å, compared to those of other Bi-Se bonds
where the Bi has only Se as a nearest neighbor, which also
guides us to distinguish the band (O-Bi) and topological
insulator layers.

The Bi-based chalcogenides such as Bi2Se3 and Bi2Te3
are typical materials for thermoelectric applications due to
their relatively low thermal conductivities. As illustrated
above, the O substitution in the Bi2Se3 gives the ideal
transport regime for Dirac fermions, as well as the high
density of the interfacial Dirac cones in the superlattice
structures. These facts naturally lead us to the investigation
of possible improvements for thermoelectric applications.
The performance of the thermoelectric materials is deter-
mined by the figure of merit, ZT ¼ S2�T=ð�e þ �LÞ,
where S is the Seebeck coefficient, � is the electrical
conductivity, and �e and �L are the electronic and lattice
thermal conductivities, respectively.

The ideal Dirac transport regime may result in as high
mobilities as the graphene systems, especially by suppress-
ing the scattering channels as discussed above, and the high
density of the interfacial Dirac cones yields a high carrier
concentration. In graphene, Dirac fermions are known to
exhibit ballisticlike transport depending on the experimental
conditions; the mobilities of the charge carriers in graphene
can easily exceed 15 000 cm2 V�1 s�1, and even reach
100 000 cm2 V�1 s�1 in a suspended graphene [16]. The
observed high mobilities in graphene show a weak depen-
dence on temperature (<300 K) indicating impurities as a
dominant source of scattering, and remain high even at high
carrier concentration (>1012 cm�2) regardless of the dop-
ing methods [17]. Moreover, the interfacial Dirac cones
from the three-dimensional topological insulators retain
several advantages over graphene for high mobilities.

Apparently absent in the superlattice systems studied here
are the interactions between graphene and the substrate,
microscopic inhomogeneity (graphene sheet’s warping and
rippling), and possible elastic scattering channels due to the
double spin and double valley degeneracy of the graphene’s
Dirac cones, which affect conductivities adversely.
To investigate the possible improvements in the power

factor (S2�), we calculate S and � by employing the
Boltzmann distribution function in the constant relaxation
time approximation [10]. We focus here on the low tem-
peratures (<200 K) considering several strong and weak
points. The electronic contribution to the thermal conduc-
tivity can be suppressed by the low temperature. The
mobilities may tend to remain high at low temperatures
by subduing phonon contributions as in the graphene sys-
tems. The gapless feature yields reduced Seebeck coeffi-
cients at high temperatures due to thermal excitation.
Assuming 10 000 cm2 V�1 s�1 for mobilities, which is
smaller by a factor of 10 than the reported maximum value
for graphene, the calculated power factors in the superlat-
tice of Fig. 3(a) still show significantly larger values by a
factor of approximately 10 for p type at 200 K than those
observed in the Bi2Se3 single crystals [18]. Figure 3(a)
shows the power factors only for shallow chemical poten-
tials within the Dirac transport regime to avoid the bulk
states. The unusual increase in the Seebeck coefficients in
Fig. 3(b) when the chemical potentials are very deep (e.g.,
�0:2 eV below the Kramers point at 100 K) originates
from the contribution of the bulk valence bands. However,
the possible multiple scattering channels at these deep
chemical potentials may reduce the relaxation time and
thus mobilities significantly.
To suppress the lattice thermal conductivities, but to

maintain the high conductivities of the interfacial Dirac
fermions, the scattering centers (or layers) for phonons
can be introduced in the band or topological insulator layers
far from the interface. This phonon-blocking and electron-
transmitting strategy is well known for thermoelectric stud-
ies, as can be found in Bi2Te3=Sb2Te3 experiments [19]. In
this context, we introduce thin Sb2Se3 layers in the Bi2Se3
topological insulator layers as shown in Fig. 4(a). Even
though Sb2Se3 bulk is known as a band insulator, as shown
in Fig. 4(b), introducing thin Sb2Se3 layers in the layers of
the Bi2Se3 does not make another discontinuity of a topo-
logical invariant, and thus shows Dirac cones only at the

FIG. 3 (color online). (a) Calculated power factors and
(b) Seebeck coefficients of superlattices in Fig. 1(a).
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interface with the O-Bi layers as before. The bulk band gap
in Fig. 4(b) is approximately 0.15 eV, mainly due to the
thick (nine quintuple) layers of the topological insulators
between the O layers. As shown in Fig. 4(c), this small bulk
band gap significantly affects Seebeck coefficients which
show n-type dominating behavior for relatively high tem-
peratures (>150 K) due to the high density of states in the
conduction bands near the Kramers point. With the band
gap effect, the low density of the interfacial Dirac cones in
the superlattices of the thick nine Bi2Se3 quintuple layers
gives rise to the relatively smaller power factors in Fig. 4(d)
compared to those of three Bi2Se3 quintuple cases in
Fig. 3(a). This illustration clearly shows the possibility of
manipulating the phononic contribution as well as the bulk
band gaps, which makes it important to find the optimal
thicknesses for band and topological insulators; inserting
extra layers (as Sb2Se3 in this case) to reduce the thermal
conductivities may possibly give a smaller bulk band gap
and a lower density of the interfacial Dirac cones. In addi-
tion, the tuning of the chemical potential within the Dirac
transport regime will be limited by the bulk band gap.

Inserting magnetic layers near the interface of the super-
lattices will open a gap at the � point by applying a local
magnetic field to the interface and breaking local time-
reversal symmetry. The nonzero gap at the Kramers point
will play an important role in determining the Seebeck
coefficients, which should be investigated in the future not
only for the thermoelectrics but also for other applications
such as spintronics.

The O substitution in the topological Bi2Se3 insulators
yield not only the interfacial Dirac cones from the alter-
nating different topological invariants, but also the ideal
topological transport regime. This will open new techno-
logical opportunities with their long coherent length, high
mobilities, and high densities of the interfacial helical
Dirac fermions. The understanding of such a remarkable
structure sheds light on designing thermoelectric and spin-
tronics applications.
Financial support from the U.S. DOE under Grant

No. DE-FG02-88ER45372 is gratefully acknowledged.

*jhsong@pluto.phys.northwestern.edu
[1] Y. Xia et al., Nature Phys. 5, 398 (2009).
[2] H. Zhang et al., Nature Phys. 5, 438 (2009).
[3] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,

106803 (2007).
[4] M.G. Hasan and C. L. Kane, arXiv:1002.3895 [Rev. Mod.

Phys. (to be published)].
[5] Y. Zhang et al., arXiv:0911.3706.
[6] E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman,

Phys. Rev. B 24, 864 (1981).
[7] H. J. F. Jansen and A. J. Freeman, Phys. Rev. B 30, 561

(1984).
[8] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.

77, 3865 (1996).
[9] A. H. MacDonald, W. E. Pickett, and D.D. Koelling, J.

Phys. C 13, 2675 (1980).
[10] M. S. Park et al., Phys. Rev. B 81, 155211 (2010).
[11] J. E. Moore, Nature (London) 464, 194 (2010).
[12] W. Zhang, R. Yu, H.-J. Zhang, X. Dai, and Z. Fang,

arXiv:1003.5082.
[13] Z. Alpichshev et al., Phys. Rev. Lett. 104, 016401

(2010).
[14] A Kohn-Sham density functional scheme with the local

density approximation usually yields underestimated band
gaps. Hence, the calculated large band gaps are mainly
due to quantum confinement effects as explained in the
text. However, the local density approximation for Bi2Se3
bulk is known to give a relatively good estimate for the
band gap, 0.3 eV, only 0.05 eV smaller than the measured
one (Ref. [1]).

[15] The optimized geometry gives an approximately 2%
larger distance between Se-Se van der Waals (vdW) bound
layers than the experimental value. The small possible
error for the optimized O-O vdW layer distances due to
the Perdew-Burke-Ernzerhof functional should have little
effect on the interface states since, as explained in the text,
the interface states mostly reside in the Se-Se vdW layers
near the interface, but not in the band insulator (O-Bi)
region nor in the O-O vdW layers.

[16] X. Du, I. Skachko, A. Barker, and E.Y. Andrei, Nature
Nanotech. 3, 491 (2008).

[17] A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183
(2007).

[18] Y. S. Hor et al., Phys. Rev. B 79, 195208 (2009).
[19] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.

O’Quinn, Nature (London) 413, 597 (2001).
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(d) power factors of superlattices in (a).
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