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The transverse compression of a long charge bunch is investigated in the Paul trap simulator experiment
(PTSX), which is a linear Paul trap that simulates the nonlinear transverse dynamics of an intense charged
particle beam propagating through an equivalent kilometers-long magnetic alternating-gradient (AG)
focusing system. Changing the voltage amplitude at fixed focusing frequency in the PTSX device
corresponds to changing the field gradient of the quadrupole magnets with fixed axial periodicity in
the AG transport system. In this work, we present experimental results on transverse compression of the
charge bunch in which the amplitude of the applied oscillatory focusing voltage is changed instanta-
neously, and adiabatically. The experimental data are also compared with analytical estimates and 2D
WARP particle-in-cell simulations.
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I. INTRODUCTION

Applications of present- and next-generation high-
intensity accelerators [1–4] to high energy and nuclear
physics, high energy density physics, and heavy ion fusion
often require transverse and longitudinal compression of
the charge bunch to a small spot size at the target location
[5,6]. Typically, the transverse compression can be
achieved by means of increasing the focusing strength of
the alternating-gradient (AG) lattice along the beam propa-
gation direction [5]. However, intense beam propagation
through such a lattice transition region inevitably leads to a
certain amount of beam mismatch and emittance growth
[2,3]. Furthermore, a beam mismatch can produce halo
particles and may deteriorate the beam quality [7,8].
Hence, it is of considerable practical importance to deter-
mine how smooth the lattice transition should be in order
that the beam mismatch and emittance growth are mini-
mized during the transverse compression process. Because
high-intensity accelerator systems are typically very long
and expensive to operate, dedicated experimental studies
of transverse compression are limited in number and scope
[9]. On the other hand, the Paul trap simulator experiment
(PTSX), which is a linear Paul trap [10] that can simulate
the nonlinear transverse dynamics of intense beam propa-
gation over large equivalent distances through an AG
transport lattice [11], provides a compact and flexible
laboratory setup for the experimental investigation of
transverse compression. The amplitude and frequency of
the voltage waveform applied to the electrodes of the
PTSX device correspond to the focusing strength and
lattice spacing in an AG system, respectively. The
computer-generated arbitrary waveform of the voltage am-
plitude can emulate various types of transition patterns.
Hence, in this study, we present experimental results de-
scribing the transverse compression of an intense beam
pulse by compressing a long nonneutral ion charge bunch
trapped in the PTSX device. In addition to compression,

the results of expansion (‘‘decompression’’) experiments
are also presented, and comparisons are made among
analytical theory, experimental results, and numerical
simulations.

II. PAUL TRAP SIMULATOR EXPERIMENT (PTSX)

The PTSX device, cesium ion source, and diagnostics
have been described in detail elsewhere [12,13] and only a
brief summary is given here. To generate the oscillating
quadrupole electric field, the PTSX device is composed of
cylindrical electrodes of radius rw � 10 cm that are sliced
into four 90� azimuthal sectors (Fig. 1). The central elec-
trodes have length 2L � 2 m, while the end electrodes are
each 40 cm long. The trap confines nonneutral ion plasmas
in the transverse direction by applying an oscillating volt-
age �V0�t� with frequency f to the four sectors of the
central electrode, creating a ponderomotive force that is
directed transversely inwards. A DC voltage �V̂, which
provides an axial potential well to confine the charge bunch
axially, is applied to the end electrodes. The PTSX device

FIG. 1. Schematic of the PTSX device showing the quadrupole
electrodes, ion source, and charge collector.
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manipulates the plasma using an inject-trap-dump cycle,
and the one-component pure ion plasmas created in the trap
are highly reproducible. During injection, the short elec-
trodes on the source end are made to oscillate with the
same voltage waveform as the central electrodes. The
injection time is several milliseconds in order to allow
cesium ions with several eV of kinetic energy to fill the
trap. After injection is finished, the source end electrodes
are switched from the fully oscillating voltage waveform to
their static bias voltages. Finally, a long (� 2 m) one-
component ion plasma column is trapped between the
positively biased end electrodes. The typical operating
pressure and ion number density in PTSX are 5	
10�9 Torr and 1	 105 cm�3, respectively, and the plasma
is collisionless to very good approximation.

III. ANALYTICAL THEORY

For simplicity in the theoretical analysis presented in
this section, we assume that the beam states before and
after the transition are both quasiequilibrium states, and the
average effects of the quadrupole focusing field are de-
scribed by an equivalent smooth-focusing force [1,2]. In
equilibrium, radial force balance on a fluid element of
beam ions with charge q and mass m in the smooth-
focusing approximation is given by [1]

 

@
@r
P?b�r� � �qnb�r�

@
@r
�s�r� �m!2

qnb�r�r; (1)

where nb�r� is the radial density profile, !q is the applied
smooth-focusing frequency, and r is the radial distance
from the beam axis. Here, the space-charge potential
�s�r� is determined self-consistently from Poisson’s
equation r�1@r�r@r�

s� � �qnb�r�=�0, and P?b�r� �
nb�r�mhv2

?i=2 is the perpendicular pressure profile, where
�0 is the permittivity of free space and the angular bracket
h
 
 
i denotes statistical average over the equilibrium dis-
tribution function in transverse velocity space. Manipu-
lation of Eq. (1) gives the global radial force balance
equation [1]

 m!2
qR2

b � 2 �T? �
Nbq

2

4��0
; (2)

where Nb � 2�
Rrw

0 drrnb�r� is the line density, R2
b �

�2�=Nb�
Rrw

0 drrr2nb�r� is the mean-squared radius of the
beam, and �T? is the effective transverse temperature de-
fined by
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Note that the effective transverse temperature �T? measures
the kinetic energy per particle averaged over the transverse
phase space.

For an applied voltage waveform V0�t� �
V0 max sin�2�ft�, the smooth-focusing frequency is given

approximately by [12]

 !q �
8qV0 max

m�r2
wf

1

2
���
2
p
�
: (4)

By increasing or decreasing the voltage waveform ampli-
tude V0 max at fixed focusing frequency f, we can change
!q accordingly. If !q is changed, a new quasiequilibrium
state will be achieved satisfying the force balance equation
(2) with new values of Rb and �T?. When !q is increased,
the plasma is compressed; and when !q is decreased, the
plasma expands. To describe transitions ranging from in-
stantaneous changes to adiabatic changes, we adopt a
simple model in which V0 max varies in time according to

 V0 max�t� � Vi � �Vf � Vi�
�

exp
��1=2 � t

�=4

�
� 1

�
�1
; (5)

where �1=2 is the time at which the transition is half
complete, and � is the characteristic time scale for the
variation of V0 max�t� from the initial amplitude Vi to the
final amplitude Vf (Fig. 2). The number of lattice periods
for transition can be defined as Nt � �f, where Nt � 0
corresponds to an instantaneous change. We assume that
the transition begins at t � 0 when the beam is in an initial
equilibrium state and well characterized, and is essentially
complete by t � 2�1=2. For continuity of the voltage wave-
form at t � 0 and t � 2�1=2, we require exp�4�1=2=�� � 1.

A. Instantaneous transition

The analysis in this section makes use of total energy
conservation discussed by Reiser [14]. When a beam is in a
quasiequilibrium state, the average transverse kinetic en-
ergy per particle is identified with the effective transverse
temperature as Ek � �T?. Moreover, the average potential
energy per particle associated with the external focusing
force is calculated to be

FIG. 2. Plot of voltage waveform amplitude V0 max�t� used in
the compression experiments. During the characteristic time
scale �, about 80% of the transition is completed.
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in the smooth-focusing approximation. The average
electrostatic energy associated with the self-electric field
is defined by Ee � �2�=Nb�

Rrw
0 drr 1

2 �0��@r�s�2 [1]. For
analytical simplicity, we assume that the beam has a uni-
form density profile nb�r� � n̂b � const for 0 �
r <

���
2
p
Rb. Then the electrostatic energy [1] can be calcu-

lated as Ee � �Nbq2=4��0�
ln�rw=
���
2
p
Rb� � 1=4�, where

rw is the radius of the perfectly conducting wall.
Therefore, the total energy per particle, E � Ek � Ep �
Ee, for a beam with uniform density profile can be ex-
pressed as

 E � m!2
qR2
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2
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�
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2
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�
�

1

4

�
; (7)

where use has been made of the global force balance
equation (2) to eliminate �T?.

For an instantaneous change of focusing field strength
from !qi to !qf, there will be an energy difference be-
tween initial and final equilibrium states given by �E �
m�!2

qf �!
2
qi�R

2
bi=2, where Rbi is the rms radius of the

initial beam, which is assumed to remain constant at the
instant of transition. Note that �E> 0 for compression,
while �E< 0 for expansion. This energy difference rep-
resents the free energy that can be redistributed by non-
linear space-charge forces or instabilities [2]. If the beam
relaxes from an initial state with energy Ei into a final
quasiequilibrium state with energy Ef � Ei � �E, we
obtain the transcendental equation for the final rms radius
Rbf,

 

�Rbf
Rbi

�
2
�
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2!2

qfR
2
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ln
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�
�

1

2

�
1�

!2
qi

!2
qf

�
� 0; (8)

where Kb � 2Nbq2=4��0m is the effective self-field per-
veance, and the line density Nb is assumed to remain
constant during the transition. Redistribution of the free
energy �E usually introduces an emittance growth [2,3].
Because there is often a large mismatch after an instanta-
neous transition, this emittance growth typically occurs on
the time scale of the envelope oscillations, and is associ-
ated with the formation of a low-density halo region [1–3].
Since the formation of the halo is not included in the
present simplified theoretical model, the final rms radius
Rbf measured in experiments with a significant halo con-
tribution during an instantaneous transition is usually
larger than the analytical estimate in Eq. (8) [for example,
see Fig. 9(a) in Sec. IV of this paper].

B. Adiabatic transition

Beams in an ideal equilibrium do not experience emit-
tance growth. However, beams are rarely in an ideal equi-

librium, and any changes in the focusing system and
nonuniformities in charge density can produce changes in
the beam distribution, usually accompanied by emittance
growth [3]. Transverse compression also induces emittance
growth. However, we can minimize the emittance growth
by compressing the beam very slowly. For a quantitative
description of the adiabaticity of the compression process,
we make use of the following equation that describes the
evolution of the rms radius of a long charge bunch with
uniform density profile [1,2,5]:

 

d2

dt2
Rb �

�
!2
q�t� �

Kb
2R2

b

�
Rb �

�2�t�

4R3
b

: (9)

Here, the smooth-focusing frequency!q�t� evolves in time
according to Eqs. (4) and (5), and ��t� � 2Rb
�2 �T?=m� �
�dRb=dt�2�1=2 is the unnormalized transverse emittance
defined in the beam frame. To describe the time evolution
of the transverse emittance self-consistently, we need to
solve the nonlinear Vlasov-Maxwell equation numerically.
However, for the case of an adiabatic transition in !q�t�,
we can assume ��t� � 2Rb�2 �T?=m�1=2 � const [5]. If we
change !q�t� slowly, then there is a small-amplitude per-

turbation around the quasiequilibrium radius �Rb � 
�Kb ���������������������������
K2
b � 4�2!2

q

q
�=4!2

q�
1=2, with oscillation frequency given

by !b � 2!q�1� Kb=4 �R2
b!

2
q�

1=2. As long as the charac-
teristic transition time � is much longer than!�1

b , the beam
mismatch induced by changing !q remains small [5].
Therefore, the condition for adiabatic transition is given by

 

Nt
f

min
2!q�1� Kb=4 �R2
b!

2
q�

1=2�> 1: (10)

It is evident from Eq. (10) that for the case of beam
expansion (!qf=!qi < 1) a larger number Nt of lattice
periods is required for the adiabatic transition to occur.
If the beam relaxes adiabatically from an initial state
with �i � 2Rbi�2 �T?i=m�1=2 to a final state with �f �
2Rbf�2 �T?f=m�1=2, then by assuming �i ’ �f and making
use of Eq. (2) we obtain the simple algebraic equation for
the final rms radius Rbf,

 

�Rbf
Rbi

�
4
�

Kb
2!2

qfR
2
bi

��Rbf
Rbi

�
2
� 1

�
�
!2
qi

!2
qf

� 0; (11)

where it is assumed that Kb (or equivalently Nb) remains
constant during the transition.

IV. EXPERIMENTAL RESULTS

The initial charge bunch for the compression experi-
ments is trapped in the PTSX device with a sinusoidal
voltage waveform with f � 60 kHz and V0 max �
150:4 V, which corresponds to !q � 52:2 kHz and
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smooth-focusing vacuum phase advance �sfv � !q=f �
49:8�. Ion injection into the trap has been optimized in
order that the initial beam is both well matched to the
focusing lattice and well characterized [15]. The initial
beam has normalized intensity s � !2

p�0�=2!2
q � 0:22,

and its density profile is nearly Gaussian with Rb �
0:85 cm and �T? � 0:13 eV [Fig. 3(a)]. Here, !2

p�r� �
nb�r�q

2=�0m is the plasma frequency squared. By chang-
ing the amplitude of the voltage waveform at fixed focus-
ing frequency, various instantaneous and adiabatic
transitions are applied to the charge bunch. The total
duration of the transition 2�1=2 is typically 1 msec, which
is equivalent to 60 lattice periods for f � 60 kHz. The
radial charge profile Q�r�, which is proportional to the
number density nb�r�, is measured by averaging the signal
at each radial position over 20 repeated measurements. The
size of the charge collector aperture ra and an estimate of
the length of the trapped plasma Lp are then used to
calculate nb�r� � Q�r�=q�r2

aLp. For example, the on-
axis charge Q�0� prior to the transition in Figs. 3(a) and
4 corresponds to an on-axis density nb�0� of 0:83	

105 cm�3. Since the trapped plasmas are highly reproduc-
ible and the offset errors in the charge collector system are
typically less than 1 fC, the relative errors in the calculation
of low-order moments of the particle distribution (such as
line density, rms radius, and emittance) are typically a few
percent. Typical standard errors in the radial profile mea-
surement are also shown in Fig. 3(a).

In Fig. 4, scans of the numberNt of lattice periods for the
compression transition reveal that, for voltage amplitude
increases of 50% and 90%, the compression leads to an
increase in the on-axis charge that saturates after the
transition is made in several lattice periods. There is no
extra benefit in adiabatic compression by making the tran-
sition more gradual than approximately four lattice peri-
ods. Indeed, the condition for adiabaticity, �!b � 6:9> 1,
is well satisfied for compressions with Nt � 4. It is inter-
esting to note that for Nt � 0 (instantaneous transition),
due to the beam loss and emittance growth associated with
the large beam mismatch, the on-axis charge after the
instantaneous transition with Vf=Vi � 1:9 becomes
smaller than for the case with Vf=Vi � 1:5. Figure 3 in-
dicates that the measured radial profiles for adiabatic tran-
sitions with Nt � 4 and Nt � 20 are almost identical,
whereas for the instantaneous case (Nt � 0), the radial
profile broadens considerably. Another example that illus-
trates this point is presented in Fig. 5 by solving Eq. (9)
numerically. For an adiabatic compression with Vf=Vi �
1:5, it is evident that Nt � 4 constitutes enough lattice
periods to avoid mismatch oscillations, as expected from
the experimental data. However, to make certain that the

FIG. 3. Measured radial beam profiles (a) prior to transitions
and (b) after transitions with Vf=Vi � 1:5. The transitions are
made instantaneously (solid circles), adiabatically with Nt � 4
(open triangles), and adiabatically with Nt � 20 (open circles).
The initial smooth-focusing vacuum phase advance �sfvi is 49:8�,
and the applied focusing frequency f is fixed at 60 kHz during
the transitions. A straight line in the log versus r2 plot indicates
that the radial profile is a Gaussian function of r.

FIG. 4. Measured on-axis charge dependence on the number
Nt of lattice periods for transitions with Vf=Vi � 1:5 (solid
circles) and Vf=Vi � 1:9 (open circles) for �sfvi � 49:8� and f �
60 kHz. Nt � 0 corresponds to an instantaneous transition. In
Fig. 4, the on-axis charge prior to the transition is 0.476 pC,
which is indicated by dashed line.
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transitions are sufficiently gradual, we have performed the
subsequent adiabatic transition experiments with Nt � 20
for compression, and Nt � 40 for expansion. [As noted
earlier in relation to Eq. (10), larger values of Nt are
required for the case of expansion.] If Nt > 40, then dis-
continuities in the voltage amplitude at the start point and
end point become larger than 5%, which can be another
source of mismatch.

In Fig. 6, the ratio of the final to initial on-axis beam
density nbf�0�=nbi�0� is estimated analytically and mea-
sured experimentally. The transition is made either instan-
taneously or adiabatically, and the ratio of the final to
initial voltage amplitude, Vf=Vi, is scanned from 0.1 to
2.2. Since the applied focusing frequency is fixed, we have
Vf=Vi � !qf=!qi � �sfvf=�

sf
vi . Except for the lower

(Vf=Vi < 0:6) and upper (Vf=Vi > 1:6) ranges, the experi-
mental data are in relatively good agreement with the
analytical estimates. In Fig. 6(a), the theoretical estimates
are made by using Eqs. (8) and (11). When it is assumed
that the transverse emittance is approximately constant
during the adiabatic transition [5], the on-axis beam den-
sity increases approximately linearly according to the in-
crease in the voltage amplitude. In Fig. 6(b), the on-axis
beam density (or equivalently, the on-axis charge) is mea-
sured by opening the diagnostic-end electrodes immedi-
ately after the transition is complete. Since it takes about
2 msec to dump all of the trapped plasma to the charge
collector, the measured signal for a single inject-trap-dump
cycle is necessarily averaged over about 120 lattice oscil-
lation periods for f � 60 kHz. It is clear that in the range
0:9 � Vf=Vi � 1:2, there is no noticeable difference in the

on-axis beam density between the instantaneous and adia-
batic cases. In fact, the measured radial profiles for the
instantaneous and adiabatic compression cases, for
Vf=Vi � 1:2, are almost indistinguishable [Fig. 7(a)].
This suggests that modest changes ( & 20%) in the focus-
ing field strength may be made abruptly, without the need
for a lengthy gradual-transition region. For example, if we
increase the voltage amplitude by 20% for each cycle, then
after four cycles we find Vf=Vi � �1:2�4 � 2:1. This may
explain why only several lattice periods are adequate for
adiabatic compression when Vf=Vi � 1:9 in Fig. 4.

It is also interesting to note, for the adiabatic compres-
sion case, that the envelope instability [1,2] can affect the
on-axis plasma density when Vf=Vi > 1:6. We define vac-
uum phase advance �v as the phase advance of a particle
oscillating in a quadrupole focusing field in the absence of
space-charge force [1,2,16]. For Vf=Vi � 1:6, �v is ap-
proximately 88�. Therefore, when the initial charge bunch
is compressed by more than a 60% increase in the voltage
amplitude, the charge bunch enters the unstable parameter

FIG. 5. Numerical solutions to the envelope Eq. (9) with
��t� � const. Evolution of the rms beam radius during an in-
stantaneous transition (dotted line), adiabatic transition with
Nt � 4 (solid line), and adiabatic transition with Nt � 20
(dashed line). Here, Vf=Vi � 1:5, �sfvi is 49:8�, and f � 60 kHz.

FIG. 6. Plots of the ratio of final to initial on-axis beam density
nbf�0�=nbi�0� for different values of Vf=Vi with f � 60 kHz.
The values nbf�0�=nbi�0� are either (a) estimated from analytical
theory, or (b) measured experimentally. Here, the initial vacuum
phase advance �vi is 52�, which corresponds to �sfvi � 49:8�.
Both instantaneous (solid circles) and adiabatic (open circles)
transitions are considered.
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region for the envelope instability (�v > 90�) [2].
However, for the moderate space-charge-density beams
(s � 0:2–0:3) considered in the present study, the tune
depression �=�0 � �1� s�

1=2 is approximately 0.84–
0.89, and the instability band around �v � 90� is usually
very narrow [16]. Therefore, if the beam is compressed in
such a way that the beam passes through the instability
band quickly (for example, in several lattice periods for the
present study), then we can minimize the emittance growth
associated with the excitation of the envelope instability. In
the experimental results presented in Fig. 6(b), no detri-
mental beam degradation is observed even when the final
vacuum phase advance �vf becomes larger than 90� (or
equivalently Vf=Vi > 1:6). Nonetheless, when the initial
beam is further compressed with Vf=Vi * 2:2, then �v !
180�, and we begin to lose confinement of the beam
particles.

Plots of the ratio of final to initial line density Nbf=Nbi
for different values of Vf=Vi are shown in Fig. 8, from
which we can verify particle number conservation in the
transition experiments. As expected, for the case of trans-
verse compression, adiabatic compression is more effec-

FIG. 7. Measured radial beam profiles after transitions with (a)
Vf=Vi � 1:2, and (b) Vf=Vi � 1:9 for �sfvi � 49:8� and f �
60 kHz. The transitions are made either instantaneously (solid
circles), or adiabatically with Nt � 20 (open circles). The
squares in Fig. 7 correspond to the radial profile for the case
where Vf � Vi (no transition). A straight line in the log versus r2

plot indicates that the radial profile is a Gaussian function of r.

FIG. 8. Plots of the ratio of final to initial line density Nbf=Nbi
for different values of Vf=Vi. The values of Nbf=Nbi are mea-
sured from experiments with instantaneous transitions (solid
circles), and adiabatic transitions (open circles). Here, �sfvi �
49:8� and f � 60 kHz.

FIG. 9. Plots of the ratio of final to initial rms radius Rbf=Rbi
for different values of Vf=Vi. The values of Rbf=Rbi are either
estimated based on analytical theory (solid circles), or inferred
from experimental data (open circles). The two cases correspond
to (a) instantaneous transitions, and (b) adiabatic transitions.
Here, �sfvi � 49:8� and f � 60 kHz.
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tive in minimizing particle losses. Considering the detec-
tion limit (� 1 fC) of the charge collector system, particle
loss can be interpreted as the formation of a tenuous halo at
large radius. In Fig. 9, we plot the ratio of final to initial
rms radius Rbf=Rbi for different values of Vf=Vi. The
values of final rms beam radius are either estimated based
on analytical theory, or calculated from the measured
radial profiles. For the case of adiabatic compression, the
experimentally determined rms radius is in good agree-
ment with the analytical estimate [Fig. 9(b)]. This is
mainly because mismatch oscillations are minimized dur-
ing adiabatic compression. On the other hand, an instanta-
neous transition induces mismatch oscillations, which
causes the measured radial profile to have a super-
Gaussian tail [see, for example, Fig. 7(b)]. Hence, the
experimentally determined rms radius for the case of in-
stantaneous transition is somewhat larger than the analyti-
cal estimate [Fig. 9(a)]. The ratios of final to initial
transverse emittance �f=�i are illustrated in Fig. 10 for
different values of Vf=Vi. For the experimental results, the
emittance is inferred from Eq. (2) and the measured radial
profile, which determines Nb and R2

b. It is remarkable that
the experimental data for adiabatic compression show that
the emittance remains almost constant during the compres-

sion process, which is approximately consistent with the
analytical estimate. When the final focusing strength is too
small or too large, the rms mismatch induces a significant
emittance growth for the instantaneous case, as expected.
For the case with Vf=Vi � 1:9, the emittance more than
doubles. In this case, an adiabatic transition has a large
advantage over an instantaneous transition in obtaining
high on-axis density, and minimizing the emittance
growth. While an instantaneous transition leads to a radial
profile that exhibits a broad halo region, an adiabatic
transition results in a radial profile that is nearly
Gaussian [Fig. 7(b)]. Note that a straight line in the log
versus r2 plot indicates that the radial profile is a Gaussian
function of r.

In contrast, it should be noted from Figs. 8 and 10 that,
for the case of expansion �!qf=!qi < 1�, there is no dis-
tinct advantage provided by an adiabatic transition. This is
because of various nonideal effects in the PTSX device,
such as the 3D end effects caused when the beam pulse
reflects from the DC potential, and by higher-order correc-
tions to the quadrupole focusing field in the off-axis region
[11], both of which become strong effects when the beam
radius is sufficiently large.

V. NUMERICAL SIMULATIONS WITH THE WARP
PARTICLE-IN-CELL CODE

In this section, we present numerical simulation results
using the two-dimensional version of the WARP electro-
static particle-in-cell code [17] for the analysis of experi-
mental data in regimes where there are significant
departures from simple analytical estimates. The WARP

code describes the beam’s self-consistent response to an
alternating-gradient quadrupole focusing field with time-
varying amplitude. To describe the effective emittance of
such a pulsating beam, we use the average transverse
emittance defined by � � ��x�y�1=2, where �x � �hx2i	

h _x2i � hx _xi2�1=2 and �y � �hy
2ih _y2i � hy _yi2�1=2 [5]. The

simulation results in Figs. 11 and 12 show the normalized
on-axis density nb�0�=nbi�0�, and the normalized average
transverse emittance �=�i as functions of time. Simulation
parameters for loading the initial particle distribution have
been chosen in such a way that the normalized intensity
parameter s and initial transverse emittance �i are close to
the measured values of the initial beam parameters in the
experiments. By considering a transition time of 1 msec,
and a dumping time of 2 msec, we perform simulations
extending to 3 msec after the initial quasiequilibrium state
is formed.

The simulation results shown in Fig. 11 clearly indicate
that instantaneous transitions introduce significant mis-
match oscillations and emittance growth. The emittance
increase, ��=�i � ��� �i�=�i, is 33% for Vf=Vi � 1=1:5,
and 250% for Vf=Vi � 1:9, which are in much better
agreement with the experimental data than the simple

FIG. 10. Plots of the ratio of final to initial transverse emit-
tance �f=�i for different values of Vf=Vi. The values of �f=�i are
either estimated based on analytical theory (solid circles), or
inferred from experimental data (open circles). The two cases
correspond to (a) instantaneous transitions, and (b) adiabatic
transitions. Here, �sfvi � 49:8� and f � 60 kHz.
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analytical estimates in Sec. IV [see Fig. 10(a)], where there
is no consideration of halo particle generation. For ex-
ample, the emittance increase for Vf=Vi � 1:9 in
Fig. 10(a) is 25% based on the analytical estimate, and
240% from the actual measurement. Because of the large
mismatch, significant oscillations in the on-axis plasma
density last more than 2 msec after the abrupt changes
are made at t � 0:5 msec. Hence, the measured signals of
the on-axis density can be interpreted as the time-averaged
values of the on-axis density oscillations during the dump-
ing process. Note that the frequency of the on-axis density
oscillations observed in Fig. 11(a) is easily identified with
the breathing mode frequency (!b � 67:9 kHz).

Simulation results for an adiabatic compression case
with Vf=Vi � 1:9 are shown in Figs. 12(b) and 12(d) for
Nt � 20. As expected from the analytical estimates and
experimental results, adiabatic compression assures that
the final beam remains well matched, and the emittance
growth during the transition is minimized (��=�i < 0:5%).
In the simulation results reported previously [18], it was
shown that the adiabatic compression with Nt � 4 also

assures that the final beam stays well matched, which is
consistent with the earlier discussions in the present paper.
However, for the case of adiabatic expansion with Vf=Vi �
1=1:5, even the numerical simulations do not reproduce the
experimental results [compare Figs. 10(b) and 12(c)]. As
mentioned earlier in Sec. IV of this paper, the enhanced
emittance growth observed in the expansion experiments is
likely due to nonideal (e.g. 3D) effects [11], which are not
considered in the two-dimensional version of the WARP

code used in the present study. In contrast to the instanta-
neous transition cases, the on-axis densities relax almost
immediately after the adiabatic transitions are complete at
t � 1 msec. The final normalized on-axis density,
nbf�0�=nbi�0�, is about 0.65 for Vf=Vi � 1=1:5, and about
1.8 for Vf=Vi � 1:9, which are slightly less than the ana-
lytical estimates in Fig. 6. Note that the on-axis density
oscillations observed in Fig. 12(b) has a frequency of
120 kHz, which is twice the external focusing frequency
f. This oscillation is a result of the pulsating motion of the
beam envelope, and its amplitude increases considerably
when the beam is compressed.

FIG. 11. 2D WARP simulations for an alternating-gradient quadrupole lattice. The evolution of the normalized on-axis density
nb�0�=nbi�0� and normalized transverse emittance �=�i are shown during an instantaneous transition process with �sfvi � 49:8� and
f � 60 kHz. Frames (a) and (c) correspond to the case with Vf=Vi � 1=1:5, and frames (b) and (d) correspond to the case with
Vf=Vi � 1:9.

MOSES CHUNG et al. Phys. Rev. ST Accel. Beams 10, 064202 (2007)

064202-8



VI. SUMMARY AND CONCLUSIONS

Experimental studies of the transverse compression of a
long charge bunch have been performed in the Paul trap
simulator experiment (PTSX). By applying voltage wave-
form amplitude changes, the non-neutral ion plasma
trapped in the PTSX device is compressed (or expanded)
following the same transverse dynamics as an intense beam
pulse propagating through an AG focusing system. Modest
changes ( & 20%) in voltage amplitude compress or ex-
pand the beam slightly. In this case, the difference is small
between making the transition instantaneously or adiabati-
cally. Most interestingly, when the voltage waveform am-
plitude is increased by more than 20%, adiabatic
compression of the waveform over only about four lattice
periods is adequate to assure that the charge bunch remains
well-matched after the compression. The experimental
data for adiabatic compression are consistent with analyti-
cal estimates and 2D WARP simulations, showing that the
emittance remains approximately constant during the tran-
sition. On the other hand, an instantaneous transition in-
duces beam mismatch, which is accompanied by emittance
growth.

Future experiments with other choices of waveform
(e.g., a focus-drift-defocus-drift, or FODO, lattice) for
the focusing field of an AG transport system are expected
to further improve our basic understanding of transverse
beam compression for high-intensity accelerator
applications.
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