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The Paul trap simulator experiment is a compact laboratory Paul trap that simulates a long, thin
charged-particle bunch coasting through a kilometers-long magnetic alternating-gradient (AG) transport
system by putting the physicist in the beam’s frame of reference. The transverse dynamics of particles in
both systems are described by similar equations, including all nonlinear space-charge effects. The time-
dependent quadrupolar electric fields created by the confinement electrodes of a linear Paul trap
correspond to the axially dependent magnetic fields applied in the AG system. Results are presented
for experiments in which the lattice period and strength are changed over the course of the experiment to
transversely compress a beam with an initial depressed tune of 0.9. Instantaneous and smooth changes are
considered. Emphasis is placed on determining the conditions that minimize the emittance growth and the
number of halo particles produced by the beam compression process. Both the results of particle-in-cell
simulations performed with the warp code and envelope equation solutions agree well with the
experimental data.
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I. INTRODUCTION

The transverse compression of intense charged-particle
beams after acceleration and transport allows for the deliv-
ery of large numbers of particles and large amounts of
energy to small target spot sizes in applications such as
high energy and nuclear physics, ion-beam-driven high
energy density physics, heavy ion fusion, and spallation
neutron sources [1–6]. The transverse compression should
ideally be executed over as few lattice periods of the
transport system as possible in order to keep the overall
system length, and cost, minimized. However, transverse
compression cannot be applied so rapidly as to drastically
reduce the beam quality, excite collective-mode oscilla-
tions, or generate unwanted halo particles [7–11].

The Paul trap simulator experiment (PTSX) is a compact
and flexible laboratory facility that simulates the propaga-
tion of intense charged-particle beams over thousands of
lattice periods through magnetic alternating-gradient (AG)
quadrupole transport systems [12–20]. The simulation
makes use of the isomorphism between the transverse
equations of motion for particles in the two systems
[12,21–23]. In the work described in this paper, the
PTSX facility has been used to perform transverse plasma
compression experiments in order to develop a better
understanding of the physics of transverse compression
of intense beams.

The PTSX device is a linear Paul trap [24] confining a
one-component plasma of particles with charge eb, where
the ebEext

? forces that the PTSX electrodes exert on the
trapped plasma particles are analogous to the ebvz � Bext

?

forces that the AG system exert on the beam particles in the
beam frame provided that long, coasting beams that are

thin relative to the AG system magnet spacing are consid-
ered. Specifically, the amplitude and frequency of the
voltage waveform applied to the PTSX electrodes corre-
spond to the quadrupole magnet strength and lattice spac-
ing in the AG system. In addition to the equivalence of the
applied forces, the self-field forces in both systems can be
described by scalar potentials that obey Poisson’s equation.
In Ref. [12], it was shown that the self-consistent trans-
verse Hamiltonians and the resulting Vlasov equations for
the AG system and the PTSX system are equivalent, ne-
glecting end effects. Thus, the very good confinement
properties of ions in PTSX and the arbitrary form of the
voltage waveform applied to the confining electrodes make
PTSX a useful laboratory facility in which to simulate
transverse beam compression in an AG system.

II. PTSX APPARATUS

As shown in Fig. 1, the PTSX device is a linear Paul trap
constructed from a 2.8 m-long, rw � 10 cm-radius cylin-
der. The cylinder is divided into two 40 cm-long end

FIG. 1. (Color) The PTSX device consists of three cylindrical
electrodes with radius rw � 0:1 m, each divided into four 90�

sectors. An oscillating voltage �V0�t� confines the charge bunch
in the transverse plane to a radius rp. Static voltages �V̂ on the
end electrodes confine the ions axially within a length 2L �
2 m.*egilson@pppl.gov
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cylinders and a 2L � 2 m-long central cylinder. All cylin-
ders are azimuthally divided into four 90� segments so
that, when an oscillating voltage V0�t� is applied with
alternating polarity on adjacent segments, the resulting
oscillating transverse quadrupole electric field exerts a
ponderomotive force that confines the plasma radially. To
trap the plasma axially, the two end cylinders are biased to
a constant voltage V̂. Voltage waveforms with amplitudes
up to 400 Vand frequencies up to 100 kHz can be used. The
trapping voltage is nominally V̂ � 36 V. The vacuum
pressure of 5� 10�9 Torr prevents neutral collisions
from playing an important role in the plasma behavior.

The plasma source is a 1.5 cm-diameter aluminosilicate
cesium emitter. Singly charged cesium ions are extracted
by applying a bias of less than 10 volts between the emitter
and an acceleration grid. The ions then pass through a
separately biased deceleration grid. The ion source is
situated in the middle of one of the 40 cm-long cylinders,
and to inject a pure cesium ion plasma into the trap, the
segments on this 40 cm-long cylinder are temporarily set to
oscillate with the voltage �V0�t�. The injection time ti is
several milliseconds in order to allow cesium ions with
several eV of kinetic energy to fill the trap. The injection
process is optimized by briefly suppressing ion emission to
allow ions to vacate the vicinity of the 40 cm-long trapping
electrodes to ensure that the trapped plasma is as quiescent
and cool as possible [19].

After trapping the plasma for a time tt, that can be up to
300 ms but is actually 1 ms for the experimental results
presented here, the 40 cm-long cylinder on the opposite
end of the PTSX device from the ion source is set to
oscillate with voltage �V0�t�, and the plasma streams out
of the trap. Part of the exiting plasma is collected on a
movable 5 mm-diameter collector disk. The inject-trap-
dump cycle is repeated to reduce the uncertainty in the
data. The collector is moved along a null in the applied
potential in the transverse plane in order to collect a radial
charge profile of the trapped plasma. The radial density
profile is then computed using the measured radial charge
profile and knowledge of the area of the collector and the
length of the plasma column [14]. Note that since the
plasma ions can take several milliseconds to leave the
trap, the measurements are necessarily averaged over hun-
dreds of lattice periods.

III. TRAPPED PLASMA PROPERTIES

The circular cross section of the PTSX electrodes allows
the time-dependent electric potential to be calculated ana-
lytically. Near the axis, the potential is quadrupolar and the
average smooth-focusing frequency [1] of particles’ trans-
verse oscillations can be expressed for an applied voltage
V�t� � V0 max sin�2�ft� as [1,12]

 !q �
8ebV0 max

mbr
2
w�f

�; (1)

where mb � 133 amu for Cs� ions in PTSX. The factor �
depends on the shape of the voltage waveform and � �
1=2

���
2
p
� for the sinusoidal waveform used herein. Note

that � � 4
���
3
p
=��

���������������
3� 2�
p

� for a periodic step-function
waveform with fill-factor � (the so-called focusing-off-
defocusing-off, or FODO lattice). In addition, the
smooth-focusing vacuum phase advance �sf

v is given by
�sf
v � !q=f [1,13,15]. In order for the particles to be

confined radially, the normalized beam intensity s 	
!2
p�0�=2!2

q must be less than unity, where !p�0� �


nb�0�e2
b=mb�0�

1=2 is the on-axis plasma frequency. The
limit of low s corresponds to the regime where the plasma’s
space-charge effects are small, while the limit s! 1 cor-
responds to the limit of space-charge-dominated beams.
For a flattop density profile, the normalized beam intensity
parameter s is related to the depressed tune �=�o as
�=�0 �

������������
1� s
p

.
Under quasi-steady-state conditions, for a thermal equi-

librium distribution of particles, the average density profile
nb�r� is given by [1,2]

 nb�r� � nb�r � 0� exp
�
�
mb!2

qr2 � 2eb�s�r�

2kT

�
: (2)

Here, k is Boltzmann’s constant, T � const is the effective
transverse temperature, and the space-charge potential
�s�r� is determined self-consistently from numerical
integration of Poisson’s equation r�1@r�r@r�s� �
�nb�r�eb=�0. For kT ! 0 (s! 1), the numerator in the
exponential must also approach zero in order for the den-
sity to remain finite, and this implies a nearly uniform-
density plasma. In the case of low space-charge density
(s! 0), the electrostatic potential term in the exponential
can be neglected and the radial density profile is nearly
Gaussian. As the normalized beam intensity s varies be-
tween 0 and 1, the radial density profile smoothly changes
from a flattop distribution, to a bell-curve shape, and finally
to a Gaussian. If Nb �

Rrw
0 nb�r�2�rdr is the line density,

and R2
b � �1=Nb�

Rrw
0 nb�r�2�r3dr is the mean-square ra-

dius of the plasma column, then the parameter � , defined
through the equation Nb � nb�0��R2

b� , is 1 when s � 0
and � � 2 when s � 1. For intermediate values of s, �
must be determined from the numerically integrated solu-
tions of Poisson’s equation (see Fig. 2).

Integration of Eq. (2) over the radial distribution gives
the global radial force balance equation [1],

 mb!2
qR2

b � 2kT �
Nbe2

b

4��0
; (3)

which states that the applied confining force must balance
both the thermal pressure and the repulsive space-charge
force. In the analysis of PTSX results, R2

b and Nb are
calculated as moments of the measured plasma density
profiles; kT is the only parameter not known a priori and
is inferred from Eq. (3). The transverse emittance �? of a
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beam is the phase-space area that the beam particle distri-
bution occupies. Although the equivalent emittance of the
trapped plasma in PTSX is not directly measured, relative
changes in emittance can be inferred by noting that the
emittance scales as �? / Rb

�����������������������
kT�Nb; Rb�

p
. Typical uncer-

tainties in the emittance of 10% to 15% are due to the
uncertainty in the computed value of R2

b that is, in turn, due
to the amplification of small uncertainties in the measured
radial density profile nb�r� of the tail ions by the measure
2�r3dr.

IV. TRANSVERSE COMPRESSION

Transverse compression of the beam can be achieved, in
accordance with the global force balance equation
[Eq. (3)], by increasing the transverse focusing frequency
!q using the flexibility of the PTSX device to apply
arbitrary voltage waveforms to the transverse confinement
electrodes. Assuming that the line density Nb does not
change during the increase in !q, the beam will be com-
pressed as long as any increase in the effective perpendicu-
lar temperature kT is not too great. Analytical and
simulation work by Dorf et al. has explored the effects of
adiabatic changes in!q on the transverse density profile of
the beam [11]. In the present work, the effects of changing
!q are explored experimentally. The transverse focusing
frequency is proportional to V0 maxf�1 on PTSX so that
there are two experimental parameters that can be changed
to implement a variation in !q. It is expected, within the
smooth-focusing model, that only the change in !q is
relevant, and not whether the change is due to changes in
V0 max or f.

Experiments on the transverse compression of plasmas
in PTSX due to changes in V0 max have been discussed by
Chung et al. [20] and those results will be summarized here
and discussed further in a broader context where they are
part of a more complete discussion of variations in !q.
Experiments in which f is varied in order to adiabatically
compress the beam demonstrate that decreases in f are
equally well suited as increases in V0 max for compressing
the radial density profile and increasing the peak density of
the plasma. For the plasmas used in these experiments with
a normalized beam intensity s � 0:2, Rb � 0:85 cm, and
kT � 0:13 eV, the transverse compression may still be

considered adiabatic even if the transition is made over
only 4 lattice periods. Further, the peak density scales with
the transverse focusing frequency as nb�0� / !q as ex-
pected. However, the normalized beam intensity parameter
decreases because s / !�1

q due to the dependence of nb�0�
on !q. Instantaneous changes in !q may still transversely
compress the plasma, but they create a sudden beam mis-
match that ultimately relaxes and increases the long-time
transverse emittance (transverse temperature). It is this
long-time state that is observed since PTSX measurements
are averaged over hundreds of lattice periods. Finally, slow
changes in the average frequency can be implemented as
an example to demonstrate the flexibility of the PTSX
facility and emphasize basic key points about beam
stability.

V. CHANGES IN LATTICE AMPLITUDE V0 max

Adiabatic changes in !q are made by letting !q vary
according to

 !q�t� � !q1 �
!q0 �!q1

2

�
tanh
��t� 	1=2�

	=2
� 1

�
; (4)

where!q0 is the initial value of!q,!q1 is the final value of
!q, 	1=2 is the time where the transition is half complete,
and 	 is the time scale over which the transition is made.
The product 	f is then approximately equal to the number
of lattice periods over which the transition is made. When
	 � 0, the transition is made instantaneously.

In Refs. [17,18,20], both adiabatic and instantaneous
changes in !q of up to a factor of 2.2 are made by
increasing the voltage waveform amplitude V0 max.
Figure 6 of Ref. [20] is reproduced here as Fig. 3 to
demonstrate the difference between instantaneous and
adiabatic changes in !q and also demonstrate the good
agreement between the experimental results and the theo-
retical models. For example, the results in Fig. 3 show that,
for increases in !q of 50%, instantaneous changes com-
press the plasma, but the peak density increases by only
30%. The transverse emittance increases by 25%. Further,
the radial density profile shows that a large number of
particles are transferred to a large radius forming a super-
Gaussian tail, corresponding to excitation of a halo particle

FIG. 2. The average radial density profile nb�r� is determined
self-consistently from numerical integration of Poisson’s equa-
tion and Eq. (2). The parameter � � Nb=
nb�0��R

2
b� is plotted

versus the normalized beam intensity parameter s. The profile is
Gaussian in the limit of weak space charge, s! 0 and � � 1.
The profile is uniform when s! 1 and � � 2, corresponding to
a space-charge-dominated beam.
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population. However, for an adiabatic increase in !q of
50% caused by an increase in V0 max, Fig. 3 shows that the
peak density increases by 40%. The emittance increases by
only a few percent. In this case, the radial density profile
remains approximately Gaussian. Over the range 0:6<
Vf=Vi < 1:6, the agreement between the experimental
data and the analytical estimates is particularly good, con-
firming the scaling nb�0� / !q. Most interestingly, it was
also shown in Refs. [18,20] that the transition may be
considered adiabatic when made over more than about
four lattice periods. Making the transition more gradual
than four lattice periods does not compress the charge
bunch any further. Finally, it should be pointed out that
particle-in-cell simulations made with the warp code [25]
are in excellent agreement with the amplitude-change ex-
periments described here [11,18,20].

VI. CHANGES IN LATTICE PERIOD f � 1=T

In this section, increases in!q created by decreasing the
frequency f � 1=T are considered. It is important to note
here that voltage waveforms are applied to the PTSX

electrodes by generating the waveform V0 max sin��t�,
where � is an arbitrary function of time, so that once the
functional form of the instantaneous frequency _��t�=2� is
specified, it must be integrated to obtain ��t�. To obtain a
hyperbolic tangent transition of the instantaneous fre-
quency, the required phase function is

 ��t� � 2�
f1 � f0

2
t� 2�

f1 � f0

2

	
2

� ln
�

cosh
�
��t� t1=2�

	=2

��
: (5)

In Fig. 4, the final measured on-axis charge Q�0�, which
is proportional to the peak plasma density, is plotted versus
the number of initial lattice periods over which the increase
in !q is made. The on-axis charge is 0.48 pC correspond-
ing to normalized beam intensity s � 0:2, the rms radius
is 0.85 cm, and the temperature is 0.13 eV before the
charge bunch is compressed. Note that because the
smooth-focusing vacuum phase �sf

v advance scales like
V1

0 maxf
�2, �sf

v increases more rapidly when the frequency
is changed in order to compress the plasma than when the
amplitude is changed. Given the operating parameters of
the baseline case (V0 max � 150 V, f � 60 kHz), !q can-
not be increased as much compared to when V0 max is
increased, or else �sf

v will exceed the single-particle orbit
stability limit �sf

v critical � 115:6� [14]. This is the value of
the limit for the sinusoidal waveforms used in the present
experiments and corresponds to the limit of the exact
vacuum phase advance �v critical � 180� [14]. Therefore,
a maximum increase in !q of 33% is used.

FIG. 4. The measured on-axis charge Q�0�, which is propor-
tional to the peak plasma density, varies with the number of
initial lattice periods over which the increase in!q is made.Q�0�
increases when the instantaneous frequency _��t�=2� is de-
creased from 60 to 45 kHz. An instantaneous change compresses
the beam less and increases the emittance as compared to an
adiabatic change that is made over two or more lattice periods.

FIG. 3. Plots of the ratio of final to initial on-axis beam density
nbf�0�=nbi�0� for different values of Vf=Vi with f � 60 kHz
[20]. The values nbf�0�=nbi�0� are either (a) estimated from
analytical theory, or (b) measured experimentally. Here, the
initial exact vacuum phase advance �vi is 52�, which corre-
sponds to �sf

v � 49:8�. Both instantaneous (solid circles) and
adiabatic (open circles) transitions are presented.
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An instantaneous decrease (	 � 0) in the frequency
from 60 to 45 kHz compresses the plasma and raises the
peak density by 17% while increasing the emittance by
24%. If instead the transition is made over two or more
lattice periods, the peak density is raised by 30% while the
emittance does not change discernably. The radial density
profiles in Fig. 5 show that an instantaneous change causes
the creation of a distortion of the original Gaussian radial
density profile, corresponding to excitation of a halo par-
ticle population. The radial density profile of the plasma
after an adiabatic transition remains Gaussian. That the
peak density scales linearly with !q and that there is
minimal emittance growth when !q is increased adiabati-
cally agree well with the case where V0 max is changed
while f is held fixed. This confirms the notion that !q is
the important control parameter in characterizing beam
compression, as opposed to either V0 max or f separately.
In both cases, the transition may be considered adiabatic
when the transition is made over more than about four
lattice periods. Note, however, that the change in the
smooth-focusing phase advance is different in the two
cases.

VII. ENVELOPE EQUATION MODEL
COMPARISON

It is informative to compare the experimental results to
the solutions of the coupled transverse envelope equations
where the initial condition is taken to be a KV-equivalent
matched-beam solution that has the same line density Nb,
rms radius Rb, and effective transverse temperature T as
those measured [1]. This KV-equivalent beam represents a
uniform-density charge distribution that has an elliptical

cross section with radii a and b in the transverse x and y
directions. If the frequency f is changed instantaneously
from 60 to 45 kHz, then the mean radius

������
ab
p

decreases on
average, but only by about 8%, and the mean radius
exhibits large oscillations as shown in Fig. 6. Further, the
oscillations are not characteristic of a matched-beam solu-
tion. Note that a reduction in the mean radius of 8%
corresponds to an increase in the peak density of 17%
since nb�0�R2

b � const. This corresponds to the experimen-
tally observed increase in the peak density even though the
emittance was taken to be constant in this calculation. The
emittance is expected to, and indeed is observed to, in-
crease in the experiment itself.

FIG. 5. (Color) The average radial density profile plotted versus
r2 is linear when the density profile is Gaussian. Both the
baseline case and the adiabatically compressed case have radial
density profiles that are Gaussian. In contrast, the instantane-
ously compressed case has a radial density profile in which some
particles have been transferred to a larger radius, thereby pro-
ducing a super-Gaussian tail.

FIG. 6. The mean radius
������
ab
p

undergoes large-amplitude os-
cillations that do not correspond to a matched-beam solution of
the coupled envelope equations when an instantaneous decrease
in the frequency _��t�=2� from 60 to 45 kHz to compress the
charge bunch is made.

FIG. 7. The mean radius
������
ab
p

decreases as an adiabatic de-
crease in the frequency _��t�=2� from 60 to 45 kHz made over 5
initial lattice periods, 	 � 5� �60 kHz��1, compresses the
charge bunch. The compression is more than in the
instantaneous-change case, and the mean radius oscillations
correspond to a beam that is still well matched.
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If the same KV-equivalent beam is then subjected to a
transverse compression administered over 5 initial lattice
periods, then Fig. 7 shows that the final mean radius is
smaller by 12% which is consistent with the observed
increase in peak density of 30% mentioned above, since
1:122 � 1:25. After the compression, the oscillations in the
mean radius are much smaller than in the instantaneous-
change case, and the beam remains well matched after the
adiabatic transition.

VIII. NONMONOTONIC VARIATION OF !q

Having demonstrated that adiabatic, monotonic changes
in the transverse focusing frequency !q can transversely
compress the plasma when applied over as few as four
lattice periods, regardless of whether the change is made
by changing the lattice field-strength or the periodicity,
nonmonotonic changes in !q are now considered. The
applied voltage waveforms considered in this section allow
the effects of varying !q�t� to be explored. The experi-
mental results presented here provide a good example of
the flexibility that the PTSX facility possesses, through
the arbitrary voltage waveform V�t�, to simulate a wide
variety of magnetic alternating-gradient transport system
configurations.

The specific form of !q�t� that is considered is moti-
vated by noting the difference between the instantaneous,
or actual frequency _��t�=2� of the applied voltage wave-
form V�t� � V0 max sin��t� and the average frequency
�=2�t. In contrast to what was considered in the previous
sections, if it is now required that the average frequency be
prescribed by a hyperbolic tangent function in time, then
the instantaneous frequency acquires a nonmonotonic
form; therefore, so do !q�t� and �sf

v �t�. The phase function
assumes the form

 ��t� � 2�f1t� ��f0 � f1�t
�

tanh
��t� t1=2�

	=2
� 1

�
: (6)

Both �=2�t and _��t�=2� are plotted in Fig. 8 for the case
where the initial frequency is 60 kHz, the final frequency is
50 kHz, and the transition is made over 1 ms. In this case,
	 � 21:35f�1

0 and 	1=2 � 0:5 ms.
Figure 9 shows the results of several experiments where

the initial frequency f0 is 60 kHz, and the final frequency
f1 ranges from 55 to 47 kHz. The on-axis charge is plotted
versus the number of initial lattice periods over which the
frequency change is applied. Depending on the final fre-
quency, there is a threshold value 	c�f1� of the transition
time below which transverse confinement is lost. For the
cases where f1 is 55 and 50 kHz, data were also taken for
	 � 0, where the transitions are instantaneous and it is
found that the plasma is not lost. Finally, when 	 > 	c so
that the transition is sufficiently gradual, the long-time
value of the on-axis charge scales linearly with f1=f0 as
expected. It is found that the plasma will adjust its shape to

maintain global force balance as long as !q is varied
sufficiently slowly. For completeness, a data set is dis-
played in Fig. 10 in which f1 � 90 kHz so that the charge
bunch is allowed to expand. In this case, the transverse
confinement is never completely lost, in contrast with the
results shown in Fig. 9. Although, when the transition is
made more rapidly than approximately 15 initial lattice
periods, the final on-axis charge is smaller than when the
transition is made more gradually.

FIG. 8. If the average frequency ��t�=2�t (solid) decreases
like the hyperbolic tangent from 60 to 50 kHz, then the instan-
taneous frequency _��t�=2� (dashed) also transitions from f0 to
f1, but undershoots. In this case, both the transverse focusing
frequency and the phase advance overshoot.

FIG. 9. (Color) The measured on-axis charge Q�0�, which is
proportional to the peak plasma density, varies with the number
of initial lattice periods over which the increase in !q is made.
Adiabatic decreases in the average frequency ��t�=2�t com-
press the plasma and raise the on-axis charge Q�0� only if the
transition time 	 is greater than some critical time 	c. Otherwise,
plasma confinement is lost. The exception is if the decrease in
frequency is made instantaneously.
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These results can be understood by considering what is
happening to the instantaneous frequency during the tran-
sition. Figure 8 shows how both the instantaneous and
average frequencies vary during the transition to a lower
frequency. When the average frequency assumes the form
of the hyperbolic tangent function, the instantaneous fre-
quency undershoots by an amount that depends on the
difference between the initial and final frequencies and
the transition time. If the minimum instantaneous fre-
quency is small enough so that the smooth-focusing vac-

uum phase advance exceeds the single-particle orbit
stability limit, then transverse confinement will be lost.
The transcendental equation that results from writing
down the condition that the maximum smooth-focusing
vacuum phase advance equals �sf

v critical can be solved nu-
merically to find 	c for a given f0 and f1. For the data in
Fig. 9 f0 � 60 kHz and so 	c�f1� can be computed and
compared to the measured values of 	c as in Fig. 11. The
excellent agreement confirms that transverse confinement
of the charge bunch is indeed lost because the single-
particle orbits become unstable.

In the case where the average frequency is changed
instantaneously, the smooth-focusing vacuum phase ad-
vance does not exceed �sf

v critical at any time, and the charge
bunch remains confined. Transverse compression is
achieved, but with substantial emittance growth. When
!q is decreased by increasing the final frequency as in
Fig. 10, !q and �sf

v undershoot during the transition and
the single-particle orbits remain stable. However, when the
transition is too rapid, the undershoot in !q allows the
charge bunch to expand and the particles to be lost to the
wall, resulting in a decreased on-axis charge after the
transition in complete.

FIG. 11. The values of 	c extracted from the data in Fig. 9 are
plotted together with a curve derived from solving the equation
that results from demanding that the maximum smooth-focusing
vacuum phase advance that occurs during the transition equal the
maximum value for single-particle orbit stability 115.6�.

FIG. 10. The measured on-axis charge Q�0�, which is propor-
tional to the peak plasma density, is plotted versus the number of
initial lattice periods over which the decrease in !q is made. If
the average frequency ��t�=2�t is increased from 60 to 90 kHz,
then the plasma is allowed to expand, thus reducing the on-axis
charge Q�0�. If the transition time 	 is less than about 15 initial
lattice periods, then there is a further expansion of the plasma.
As the transition time approaches zero and the transition be-
comes instantaneous, the increased expansion disappears.

FIG. 12. The evolution of the mean radius
������
ab
p

is plotted for
four different values of the transition time scale 	. (a) When 	 �
	c, the mean radius undergoes large-amplitude oscillations and
the final beam is not well matched. (b) When 	� 	c (26f�1

0

here), the charge bunch is able to follow the changing transverse
focusing frequency and the final state is well matched. (c) As 	 is
decreased further from 	c, the mean radius grows to the wall
radius rw � 10 cm. (d) Instantaneous changes compress the
plasma, but leave large residual oscillations of the mean radius.
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Similar results are seen in the solutions of the coupled
transverse envelope equations. For the case where f0 �
60 kHz, f1 � 50 kHz, and 	 � 	c � 21:35f�1

0 , the mean
radius is observed to momentarily increase before settling
to an unmatched oscillation about a larger mean radius
[Fig. 12(a)]. It is not until 	 � 26f�1

0 that the long-time
oscillations in the mean radius correspond to a matched-
beam solution [Fig. 12(b)]. Conversely, once 	 < 19:9f�1

0 ,
the mean radius exceeds the 10 cm wall radius of the
machine during a portion of the transition [Fig. 12(c)].
Finally, as in Sec. VII, an instantaneous decrease in the
frequency causes the mean radius to oscillate about a
smaller long-time value, demonstrating transverse com-
pression, albeit with a beam mismatch that ultimately leads
to an increase in emittance [Fig. 12(d)].

IX. CONCLUSIONS

The transverse compression of a charged particle beam
moving through a magnetic alternating-gradient transport
system can focus the beam to a small spot size in order to
deliver more particle flux and energy to the target. It is
important to determine how few lattice periods are needed
to make such a transverse compression while maintaining a
reasonably well-matched-beam envelope. The results of
experiments performed with the flexible PTSX facility
show that, for moderately intense beams with normalized
beam intensity parameter s � 0:2 (�=�0  0:9), transverse
compression can be affected by changes in the smooth-
focusing frequency !q over only four lattice periods. The
changes in !q can be made by using the arbitrary wave-
form voltage V�t� to change either the field strength or the
lattice periodicity, although the final smooth-focusing vac-
uum phase advance depends on whether V0 max or f is
changed. As long as the transition is made sufficiently
gradual, even nonmonotonic changes in !q can be made.

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of
Energy. It is a pleasure to acknowledge the benefit of useful
discussions with Mikhail Dorf.

[1] R. C. Davidson and H. Qin, Physics of Intense Charged
Particle Beams in High Intensity Accelerators (World
Scientific, Singapore, 2001).

[2] M. Reiser, Theory and Design of Charged Particle Beams
(Wiley, New York, 1994).

[3] A. W. Chao, Physics of Collective Beam Instabilities in
High Energy Accelerators (Wiley, New York, 1993).

[4] P. G. O’Shea et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 464, 646 (2001).

[5] N. Kjærgaard and M. Drewsen, Phys. Plasmas 8, 1371
(2001).

[6] A. B. Sefkow and R. C. Davidson, Phys. Rev. ST Accel.
Beams 9, 090101 (2006).

[7] S. M. Lund and B. Bukh, Phys. Rev. ST Accel. Beams 7,
024801 (2004).

[8] L. K. Spentzouris, J.-F. Ostiguy, and P. L. Colestock, Phys.
Rev. Lett. 76, 620 (1996).

[9] D. Neuffer, E. Colton, D. Fitzgerald, T. Hardek, R.
Hutson, R. Macek, M. Plum, H. Thiessen, and T.-S.
Wang, Nucl. Instrum. Methods Phys. Res., Sect. A 321,
1 (1992).

[10] J. Byrd, A. Chao, S. Heifets, M. Minty, T. O.
Raubenheimer, J. Seeman, G. Stupakov, J. Thomson,
and F. Zimmerman, Phys. Rev. Lett. 79, 79 (1997).

[11] M. Dorf, R. C. Davidson, and E. A. Startsev, Phys. Rev. ST
Accel. Beams 9, 034202 (2006).

[12] R. C. Davidson, H. Qin, and G. Shvets, Phys. Plasmas 7,
1020 (2000).

[13] E. P. Gilson, R. C. Davidson, P. C. Efthimion, R. Majeski,
and H. Qin, in Proceedings of the 2003 Particle
Accelerator Conference (IEEE Catalog
No. 03CH37423C, 2003), p. 2655.

[14] E. P. Gilson, R. C. Davidson, P. C. Efthimion, R. Majeski,
and E. A. Startsev, AIP Conf. Proc. 692, 211 (2003).

[15] E. P. Gilson, R. C. Davidson, P. C. Efthimion, and R.
Majeski, Phys. Rev. Lett. 92, 155002 (2004).

[16] E. P. Gilson, M. Chung, R. C. Davidson, P. C. Efthimion,
R. Majeski, and E. A. Startsev, Nucl. Instrum. Methods
Phys. Res., Sect. A 544, 171 (2005).

[17] E. P. Gilson, M. Chung, R. C. Davidson, M. Dorf, P. C.
Efthimion, and R. Majeski, Phys. Plasmas 13, 056705
(2006).

[18] E. P. Gilson, M. Chung, R. C. Davidson, M. Dorf, D.
Grote, P. C. Efthimion, R. Majeski, and E. A. Startsev,
Nucl. Instrum. Methods Phys. Res., Sect. A 577, 117
(2007).

[19] M. Chung, E. P. Gilson, M. Dorf, R. C. Davidson, P. C.
Efthimion, and R. Majeski, Phys. Rev. ST Accel. Beams
10, 014202 (2007).

[20] M. Chung, E. P. Gilson, M. Dorf, R. C. Davidson, P. C.
Efthimion, and R. Majeski, Phys. Rev. ST Accel. Beams
10, 064202 (2007).

[21] H. Okamoto and H. Tanaka, Nucl. Instrum. Methods Phys.
Res., Sect. A 437, 178 (1999).

[22] N. Kjærgaard, K. Mølhave, and M. Drewsen, Phys. Rev. E
66, 015401 (2002).

[23] R. Takai, H. Enokizono, K. Ito, Y. Mizuno, K. Okabe, and
H. Okamoto, Jpn. J. Appl. Phys. 45, 5332 (2006).

[24] W. Paul and H. Steinwedel, Z. Naturforsch. A 8, 448
(1953).

[25] A. Friedman, D. P. Grote, and I. Haber, Phys. Fluids B 4,
2203 (1992).

ERIK P. GILSON et al. Phys. Rev. ST Accel. Beams 10, 124201 (2007)

124201-8


