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The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett.
105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully
accounts for the coupling to the electronic subsystem. Here, we show that propagation of an
ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that
are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge
transfer problem. We point out the importance of step and bump features in the exact potential that
are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after
it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their
structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping
is presented, including preliminary investigations of velocity-adjustment and the force-induced
decoherence effect. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908133]

I. INTRODUCTION

The Born-Oppenheimer1 (BO), or adiabatic, approxima-
tion is amongst the most fundamental approximations in phys-
ics and chemistry and is at the basis of our understanding of the
coupled electron-nuclear dynamics in molecules and solids. At
the heart of the BO approximation lies the assumption that, due
to the high ratio between nuclear and electronic masses, the
electrons move much faster than the nuclei and adjust instan-
taneously to the positions of the slower moving nuclei. A mole-
cule or solid is then viewed as a set of nuclei moving on a single
potential energy surface (PES) generated by the electrons in
a given eigenstate. Moreover, the fundamental constructs of
the BO approach, the BOPESs, form the launching ground for
methods that describe processes beyond the adiabatic regime
where the BO approximation itself fails. Prominent examples
of such electronic non-adiabatic processes appear throughout
physics, chemistry and biology, for example, vision,2–4 photo-
synthesis,5,6 photo-voltaics,7–9 and proton-transfer/hydrogen
storage.10–13

The standard approaches to describe non-adiabatic molec-
ular processes are in terms of coupled BOPESs and transi-
tions between the corresponding adiabatic electronic states
induced by the nuclear motion. In the Born-Huang expan-
sion, the exact solution of the time-dependent Schrödinger
equation (TDSE) is expanded in the complete set of BO
electronic states, leading to a nuclear wave packet with contri-
butions on several BOPESs that undergo transitions in the
regions of strong non-adiabatic coupling. This formally exact
approach is hard to use in practice because of the high compu-
tational cost of describing the nuclear time evolution quantum
mechanically. Approximate methods that retain a quantum
description of nuclei have been successful in some applica-
tions (e.g., multiple-spawning,14–16 multiconfiguration time-

dependent Hartree,17–19 or non-adiabatic Bohmian dynam-
ics20,21 methods), but are still limited due to the computational
effort required. Therefore, approaches that involve a classical
or semi-classical description of the nuclear motion that is non-
adiabatically coupled to the (quantum mechanical) electrons
become methods of choice due to their applicability to large
systems. Ubiquitous are the Ehrenfest and surface-hopping
methods. In developing a mixed quantum-classical approach,
however, one faces two challenging questions: What are the
true classical forces acting on the nuclear subsystem? How
is the coupling between the nuclear classical trajectories and
the electronic subsystem defined? Despite extensive studies of
both new and routinely used methods,20–56 there is still no clear
answer to the aforementioned questions.

In recent work, we have resolved the question of what
force drives the nuclei57–59 based on the novel perspective
offered by the exact decomposition of electronic and nuclear
motion of Refs. 60 and 61. The full molecular wave function
is represented as a single product of a purely nuclear wave
function and an electronic factor that parametrically depends
on the nuclear coordinates.60,61 We have shown that in this
framework, the nuclear dynamics is governed by a TDSE that
contains a time dependent potential energy surface (TDPES)
and a time-dependent vector potential. These potentials are
rigorous concepts and provide the exact driving forces of the
nuclear evolution. References 57 and 58 showed that step-like
features in these exact potentials mediate coupling between
piecewise Born-Oppenheimer surfaces. Reference 58 demon-
strated that a classical nuclear trajectory evolving on the exact
TDPES can accurately capture averaged observables, such as
the mean nuclear position but fails to capture the splitting
of the nuclear wave packet that occurs after passing through
an avoided crossing between adiabatic surfaces. References
59 and 62 explored a self-consistent mixed quantum-classical

0021-9606/2015/142(8)/084303/17/$30.00 142, 084303-1 © 2015 AIP Publishing LLC
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scheme, treating the nuclei classically in both the electronic
and nuclear equations of motion, finding reasonable accuracy
for averaged observables but again no wave packet splitting.

In the present paper, we analyze in detail a model non-
adiabatic charge transfer process within the exact factoriza-
tion framework when the nuclei are evolved classically. We
consider a one-dimensional (1D) model simple enough to
allow for an exact solution of the full TDSE, while at the
same time exhibiting characteristic features associated with
non-adiabatic dynamics.

Our main results are threefold. First, we show that once
an ensemble of independent classical trajectories is evolved
on the exact TDPES, splitting of the nuclear wave packet
characterizing a non-adiabatic event can be captured. This
therefore overcomes the limitations of the single trajectory
dynamics of Ref. 58. In fact, it turns out that the resulting
quasiclassical evolution is essentially identical to the exact
quantum nuclear dynamics. The representation of the quantum
nuclear wave packet as an ensemble of independent trajec-
tories is the only approximation we make: the forces acting
on the classical nuclei are obtained from the exact potentials
acting on the nuclear subsystem, containing, in the parlance
of mixed quantum-classical methods, the exact “quantum
electronic back-reaction.” The features of the time dependent
potential responsible for the splitting, and, in general, for the
evolution of the nuclei, are analyzed in detail and compared
with the standard picture in terms of static BOPESs. Impor-
tantly, we highlight the significance of the gauge-dependent
contribution to the exact TDPES: without this term the quasi-
classical dynamics is poor. In previous work,57,58 the structure
of the gauge-independent (GI) term has been analyzed for
this problem, and it was observed that the gauge-dependent
(GD) term appears to largely cancel step structures in the GI
term. This brings us to our second main result: we analyze,
with the help of some semiclassical arguments, the structure
of the GD term and explain why it consists of piecewise flat
segments joined by steps which almost, but not completely,
cancel the steps in the GI term. Our third main result concerns
the question of what mixed quantum-classical dynamics based
on the exact TDPES can tell us about standard approaches
such as trajectory surface-hopping (TSH). In particular, how
does the exact force on a trajectory evolving on the TDPES
compare to the force it experiences in TSH? We find several
aspects that are somewhat qualitatively in common: after
passing through an avoided crossing region, the exact TDPES
tracks one BOPES or the other piecewise in space; moreover,
it displays an energy adjustment between the surfaces, which
can be (gauge-)transformed to a kinetic energy contribution,
reminiscent of the velocity-adjustment in TSH. We show that
the exact TDPES sheds light on the notorious problem of over-
coherence in TSH34,35,51,52,63–69 by comparing the electronic
density-matrix associated to trajectories in each case. The
force resulting from the step features in the TDPES appear to
be intimately related to creating decoherence, lacking in TSH.

The larger context in which these results stand is the even-
tual development of a new mixed quantum-classical approach
to non-adiabatic dynamics based on potentials arising out of
the exact factorization of the electron-nuclear wave function.
In the present paper, we do not derive an algorithm, but we

show the features of the classical force that such a numerical
scheme should reproduce. In realistic systems, the exact forces
acting on the nuclei will need to be approximated, and these
approximations should build in the features uncovered in the
present work in order to yield accurate dynamics. Further, it
is extremely instructive to present our analysis in comparison
to other methods, as this comparison gives an idea of the real
possibilities of our procedure in perspective to what has been
already proposed in the literature. Moreover, being aware of
the difficulties in interpreting the new formalism, we try to
put our new findings in the light of old concepts, in order to
help the reader to understand the potentiality of the method.
We devote Appendix A to a detailed discussion about the
connections between the present trajectory-based exact factor-
ization approach and Bohmian dynamics; the point is to stress
that despite both theories involve trajectories propagating on
a time-dependent potential, the present theory is completely
independent of the Bohmian approach.

The paper is organized as follows. A general introduction
to the exact decomposition of electronic and nuclear motion
is given in Sec. II, followed by a discussion about gauge
conditions. The model system is introduced in Sec. III and
its dynamics, both fully exact quantum and with the classical
approximation for nuclei, are analyzed in Sec. IV, along with
the averaged nuclear observables (Sec. IV A). Section V then
focusses on the gauge-dependent contribution to the potential,
analyzing its structure in the TDPES (Sec. V A), and then
gauge-transforming it to a vector potential (Sec. V B) for a
different perspective of its effect on the dynamics. Section VI
is devoted to the topic of decoherence. Our conclusions and
perspectives are summarized in Sec. VII.

II. EXACT DECOMPOSITION OF THE ELECTRONIC
AND NUCLEAR MOTION

The non-relativistic Hamiltonian describing a system of
interacting electrons and nuclei, in the absence of a time-
dependent external field, is

Ĥ = T̂n + ĤBO, (1)

where T̂n is the nuclear kinetic energy operator and

ĤBO(r,R) = T̂e(r) + Ŵee(r) + V̂en(r,R) + Ŵnn(R) (2)

is the standard BO electronic Hamiltonian, with electronic
kinetic energy T̂e(r), and interaction potentials Ŵee(r) for
electron-electron, Ŵnn(R) for nucleus-nucleus, and V̂en(r,R)
for electron-nucleus. The symbols r and R are used to collec-
tively indicate the coordinates of Ne electrons and Nn nuclei,
respectively.

It has been proved60,61 that the full time-dependent elec-
tron-nuclear wave function, Ψ(r,R, t), that is the solution of
the TDSE,

ĤΨ(r,R, t) = i~∂tΨ(r,R, t), (3)

can be exactly factorized to the correlated product

Ψ(r,R, t) = χ(R, t)ΦR(r, t), (4)
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where 
dr
����ΦR(r, t)����

2
= 1 ∀R, t . (5)

Here, χ(R, t) is the nuclear wave function and ΦR(r, t) is the
electronic wave function which parametrically depends on
the nuclear positions and satisfies the partial normalization
condition (PNC) expressed in Eq. (5). The PNC guarantees
the interpretation of | χ(R, t)|2 as the probability of finding the
nuclear configuration R at time t, and of |ΦR(r, t)|2 itself as the
conditional probability of finding the electronic configuration
r at time t for nuclear configuration R. Further, the PNC makes
the factorization (4) unique up to within a (R, t)-dependent
gauge transformation,

χ(R, t) → χ̃(R, t) = e−
i
~ θ(R, t)χ(R, t),

ΦR(r, t) → Φ̃R(r, t) = e
i
~ θ(R, t)ΦR(r, t),

(6)

where θ(R, t) is some real function of the nuclear coordinates
and time.

The stationary variations70 of the quantum mechanical
action with respect toΦR(r, t) and χ(R, t) lead to the derivation
of the following equations of motion:(

Ĥel(r,R) − ϵ(R, t)
)
ΦR(r, t) = i~∂tΦR(r, t), (7)

Ĥn(R, t)χ(R, t) = i~∂t χ(R, t), (8)

where the PNC is inserted by means of Lagrange multi-
pliers.71,72 Here, the electronic and nuclear Hamiltonians are
defined as

Ĥel(r,R) = ĤBO(r,R) + Ûcoup
en [ΦR, χ] (9)

and

Ĥn(R, t) =
Nn
ν=1


−i~∇ν + Aν(R, t)2

2Mν
+ ϵ(R, t), (10)

respectively, with “electron-nuclear coupling operator”

Ûcoup
en [ΦR, χ] =

Nn
ν=1

1
Mν

 −i~∇ν − Aν(R, t)2

2

+

(
−i~∇ν χ

χ
+ Aν(R, t)

) (
−i~∇ν − Aν(R, t)) .

(11)

The potentials in the theory are the scalar TDPES, ϵ(R, t),
implicitly defined by Eq. (7) as

ϵ(R, t) = 
ΦR(t)��� ĤBO + Ûcoup

en − i~∂t
���ΦR(t)


r
, (12)

and the time-dependent vector potential, Aν

(
R, t

)
, defined as

Aν

(
R, t

)
=


ΦR(t)��� − i~∇νΦR(t)


r
. (13)

The symbol ⟨ · ⟩r indicates an integration over electronic coor-
dinates only. The r-dependence of the electronic wave func-
tion is dropped only for formal consistency between the
left-hand-side of Eqs. (12) and (13), that do not depend on r,

and the right-hand-side, where the r-dependence is integrated
out. The electronic wave function itself remains a parametric
function of R and a function of r, t. Under the gauge trans-
formation (6), the scalar potential and the vector potential
transform as

ϵ̃(R, t) = ϵ(R, t) + ∂tθ(R, t), (14)

Ãν(R, t) = Aν(R, t) + ∇νθ(R, t). (15)

In Eqs. (7) and (8), Ûcoup
en [ΦR, χ], ϵ(R, t), and Aν

(
R, t

)
are

responsible for the coupling between electrons and nuclei in a
formally exact way. It is worth noting that the electron-nuclear
coupling operator, Ûcoup

en [ΦR, χ], in the electronic equation (7),
depends on the nuclear wave function and acts on the para-
metric dependence of ΦR(r, t) as a differential operator. This
“pseudo-operator” includes the coupling to the nuclear subsys-
tem beyond the parametric dependence in the BO Hamiltonian
ĤBO(r,R). It is worth noting that the shape of TDPES at time
t depends on the choice of initial electronic state ΦR(r, t = 0).
Here, we have chosen a BO electronic state as the initial elec-
tronic wave function to compare the TDPES with the standard
picture of static BOPESs.

The nuclear equation (8) has the particularly appealing
form of a Schrödinger equation that contains a time-dependent
vector potential (13) and a time-dependent scalar potential
(12) that govern the nuclear dynamics and yield the nuclear
wave function. These potentials are uniquely determined up
to within the gauge transformation, given in Eqs. (14) and
(15). As expected, the nuclear Hamiltonian in Eq. (8) is form-
invariant under such transformations. χ(R, t) is interpreted as
the nuclear wave function since it leads to an N-body nuclear
density,

Γ(R, t) = | χ(R, t)|2, (16)

and an N-body current-density,

Jν(R, t) =

Im(χ∗(R, t)∇ν χ(R, t)) + Γ(R, t)Aν(R, t)

Mν
, (17)

which reproduce the true nuclear N-body density and current-
density61 obtained from the full wave function Ψ(r,R, t). The
uniqueness of ϵ(R, t) and Aν(R, t) can be straightforwardly
proved by following the steps of the current-density version73

of the Runge-Gross theorem,74 or by referring to the theorems
proved in Ref. 60.

A. The choice of the gauge

The results of any calculation do not depend on the choice
of gauge in Eq. (6). The form of the TDPES and vector poten-
tial do depend on the choice, but together their effect on the
dynamics, on all observables, electronic populations, etc., is
gauge-independent. It is instructive to decompose the TDPES
into GI and GD constituents,

ϵ(R, t) = ϵGI(R, t) + ϵGD(R, t), (18)
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where

ϵGI(R, t) = 
ΦR(t)��� ĤBO

���ΦR(t)


r

+

Nn
ν=1

(
~2

2Mν


∇νΦR(t)|∇νΦR(t)


r
−

A2
ν(R, t)
2Mν

)
,

(19)

with the second term on the right-hand-side obtained from the
action of the electron-nuclear coupling operator in Eq. (11) on
the electronic wave function, and

ϵGD(R, t) = 
ΦR(t)��� − i~∂t

���ΦR(t)


r
. (20)

The GI part of the TDPES, ϵGI, is invariant under the gauge
transformation (6): ϵ̃GI(R, t) = ϵGI(R, t). The GD part, on the
other hand, transforms as ϵ̃GD(R, t) = ϵGD(R, t) + ∂tθ(R, t).

For purposes of our analysis, to help understand the exact
potentials in coupled electron-ion dynamics, and their compar-
ison to traditional methods, we will find two gauges are partic-
ularly useful. First, we note that the model system we study is
in 1D, so the vector potential can be gauged away. In general,
three-dimensional cases where the vector potential is curl-
free, also the gauge may be chosen where the vector potential
is zero Aν(R, t) ≡ 0. Whether and under which conditions
curl Aν(R, t) = 0 is, at the moment, under investigations.75

The first gauge we will consider is one where the Aν(R, t)
≡ 0, and therefore, the entire electronic back-reaction is con-
tained in the TDPES. To determine this, consider first that the
nuclear wave function is fully determined by its modulus and
phase, according to χ(R, t) = | χ(R, t)|eiS(R, t)/~. The condition

����χ(R, t)���� =


dr���Ψ(r,R, t)���
2
, (21)

on the modulus, automatically satisfies the request that the
exact nuclear density calculated from Ψ can be also obtained
directly from χ. On the other hand, from Eq. (6), we notice
that the phase S(R, t) of the nuclear wave function is related to
the choice of gauge. If we impose

S(R, t) =
 R

dR′
Im ⟨Ψ(t)| ∂R′Ψ(t)⟩r

| χ(R′, t)|2 , (22)

we find A(R, t) = 0 as we will now show. Note that here we
dropped the bold double-underlined symbols, in order to repre-
sent electronic and nuclear coordinates in 1D. Henceforth, the
old symbols will be used whenever our statements have general
validity and the new symbols will be used for the 1D case
only. It can be easily proved that Eq. (22) results in a vector-
potential-free gauge. To do this, we insert the factorization
(4) in the expression of the vector potential (13), obtaining60

a relation between the vector potential itself and the nuclear
velocity field

Aν(R, t) =
Im ⟨Ψ(t)| ∇νΨ(t)⟩r

���χ(R, t)���
2 − ∇νS(R, t) (23)

that in 1D reads A(R, t) = Im ⟨Ψ(t)| ∂RΨ(t)⟩r/| χ(R, t)|2
− ∂RS(R, t). Imposing here A(R, t) = 0 leads to Eq. (22), which

defines the phase of the nuclear wave function. We then obtain
the TDPES, ϵ(R, t) from Eq. (12), by explicitly calculating the
electronic wave function, ΦR(r, t) = Ψ(r,R, t)/χ(R, t). Alter-
natively, we may invert the nuclear equation (8) to find the
TDPES.

We have used this vector-potential-free gauge to perform
the classical calculations. The TDPES alone determines the
time evolution of χ(R, t) and has both GI and GD components,
Eqs. (19) and (20) above. In Sec. V A, we will discuss the char-
acteristic features of ϵGI and ϵGD, with particular attention to
the latter. The former has been extensively analyzed before57,58

and the main results will be briefly recalled.
The second gauge which we will find instructive to study

(Sec. V B) is one where we instead transform the gauge-
dependent part of the TDPES of the first gauge, ϵGD, into a
vector potential. In some sense, this gauge makes a more direct
comparison with the TSH methods, and we will see hints of
“velocity adjustment” used in TSH, appearing in the exact
vector potential.

B. Comparison with Born-Huang expansion

A major theme of this work and the recent papers57,58,61 is
the relation of the exact TDPES to the BOPESs. Therefore, we
introduce here the BO electronic states, ϕ(l)

R (r), and BOPESs,

ϵ
(l)
BO(R), which are the normalized eigenstates and eigenvalues

of the BO electronic Hamiltonian (2), respectively. If the full
wave function is expanded in this basis,

Ψ(r,R, t) =

l

Fl(R, t)ϕ(l)
R (r), (24)

then the nuclear density may be written as

���χ(R, t)���
2
=


l

���Fl(R, t)���
2
. (25)

This relation is obtained by integrating the squared modulus of
Eq. (24) over the electronic coordinates. The exact electronic
wave function may also be expanded in terms of the BO states,

ΦR(r, t) =

l

Cl(R, t)ϕ(l)
R (r). (26)

The expansion coefficients in Eqs. (24) and (26) are related,

Fl(R, t) = Cl(R, t)χ(R, t), (27)

by virtue of the factorization (4). The PNC then reads
l

���Cl(R, t)���
2
= 1 ∀R, t . (28)

We point out that even in the case where the nuclear wave
packet splits onto more than one BOPES, the full wave func-
tion is still a single product: the nuclear wave function has
contributions (projections) on different BOPES while the elec-
tronic wave function is a linear combination of different adia-
batic states, but still we may write

Ψ(r,R, t)

=
*.
,
e

i
~ S(R, t)


l

|Fl(R, t)|2+/
-
*
,


k

Ck(R, t)ϕ(k)
R (r)+

-
, (29)
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where the first term in parenthesis is χ(R, t), using Eqs. (22)
and (25), and the second term in parenthesis is ΦR(r, t), using
Eq. (26). Reference 57 provides a visualization of the elec-
tronic wave function.

III. NON-ADIABATIC ELECTRON TRANSFER

We study here the 1D Shin-Metiu model76 for non-adia-
batic electron transfer. The system consists of three ions and
a single electron, as depicted in Fig. 1. Two ions are fixed at a
distance of L = 19.0 a0, the third ion and the electron are free
to move in one dimension along the line joining the two fixed
ions. The Hamiltonian of this system reads

Ĥ(r,R) = −1
2
∂2

∂r2 −
1

2M
∂2

∂R2 +
1�

L
2 − R

� + 1�
L
2 + R

�

−
erf

(
|R−r |
R f

)
|R − r | −

erf
( |r− L

2 |
Rr

)
�
r − L

2

� −
erf

( |r+ L
2 |

Rl

)
�
r + L

2

� . (30)

Here, the symbols r and R are replaced by r and R, the
coordinates of the electron and the movable ion measured from
the center of the two fixed ions. The ionic mass is chosen as
M = 1836, the proton mass, whereas the other parameters are
tuned in order to make the system essentially a two-electronic-
state model. We present here the results obtained by choosing
Rf = 5.0 a0, Rl = 3.1 a0, and Rr = 4.0 a0 such that the first
BOPES, ϵ (1)BO, is strongly coupled to the second BOPES, ϵ (2)BO,
around the avoided crossing at Rac = −1.90 a0, and there is
a weak coupling to the rest of the surfaces. The BO surfaces
are shown in Fig. 2 (left panel). The analysis developed in
Secs. IV–VII is very general and does not depend on the
strength of the non-adiabatic coupling, similar to Ref. 58. We
show here results from a strong-coupling set of parameters,
and the conclusions we draw here extend also to the weaker-
coupling case studied in Ref. 58 (not shown here).

We study the time evolution of this system by choos-
ing the initial wave function as the product of a real-valued
normalized Gaussian wave packet, centered at Rc = − 4.0 a0
with variance σ = 1/

√
2.85 a0 (thin black line in Fig. 2), and

the second BO electronic state, ϕ(2)
R (r). To obtain the TDPES,

we first solve the TDSE (3) for the complete system, with
Hamiltonian (30), and obtain the full wave function, Ψ(r,R, t).
This is done by numerical integration of the TDSE using the
split-operator-technique,77 with time step of 2.4 × 10−3 fs (or
0.1 a.u.). Afterwards, according to the procedure discussed
in Sec. II (Eqs. (21) and (22)), we uniquely determine the

FIG. 1. Schematic representation of the model system described by the
Hamiltonian (30). R and r indicate the coordinates of the moving ion and
electron, respectively, in one dimension. L is the distance between the fixed
ions.

electronic and nuclear wave functions in the vector-potential-
free gauge.

As an example, we show the evolution of the populations
of the BO states in Fig. 2 (right panel).

IV. CLASSICAL VS. QUANTUM DYNAMICS

We generate classical trajectories by solving Hamilton’s
equations in the gauge A(R, t) = 0:




Ṙ(t) = P(t)
M

Ṗ(t) = −∇RE(R, t)
, (31)

using the velocity-Verlet algorithm with the same time step as
in the quantum propagation (δt = 2.4 × 10−3 fs). It is worth
noting that in an actual algorithm, the use of such a small time
step in not strictly required. As we will show later on, the main
features of the TDPES, the steps, form quite smoothly as func-
tions of time; therefore, their appearance can be captured also
with larger time steps. Moreover, while ϵGI(R, t) and ϵGD(R, t)
separately have steps, their sum, ϵ(R, t), is very smooth and
capturing its shape within a (fully approximate) numerical
scheme will not represent an issue.

In Eq. (31), the energy E(R) is chosen either to be the full
TDPES, ϵ(R, t) = ϵGI(R, t) + ϵGD(R, t), or the GI part only of
the TDPES, ϵGI(R, t). We will compare the effect of the result-
ing dynamics from each. The reason behind this comparison
is the feature of the GI part of the TDPES observed in Ref. 57:
ϵGI(R, t) contains steps that connect its different pieces that are
on top of different BOPESs in different slices of R space. This
feature from a quasi-classical point of view is reminiscent of
the jumps that classical trajectories undergo in TSH. In both
cases, the nuclear force is calculated according to different
BOPESs depending on the position of the classical trajectory.
Therefore, the question may arise as whether ϵGI(R, t) alone
contains enough information to split the trajectories in two
branches, as TSH would do. Moreover, the shape of the GI part
of the potential is not affected by the GD part outside the step
region, thus the force in the asymptotic regions is given by the
slope of the GI part. Thus, one may ask how the energy step in
ϵGD(R, t) affects the trajectories. Such questions are addressed
by evolving classical trajectories on both ϵGI(R, t) and ϵ(R, t).

A set of 2000 trajectories is propagated according to
Eqs. (31), where the initial conditions are sampled from the
Wigner phase-space distribution corresponding to | χ(R, t
= 0)|2 = e−(R−Rc)2/σ2

/
√
πσ2. The nuclear density at later times

is reconstructed from the distribution of the classical positions
and the good agreement with quantum calculations (as shown
below) confirms that the number of trajectories is sufficient to
extract reliable approximate results.

First, we qualitatively analyze the GI and GD compo-
nents of the TDPES, in connection to the features of the
nuclear density. Fig. 3 shows some snapshots of the poten-
tials, ϵGI(R, t) and ϵGD(R, t) (upper panels), and of the nuclear
density, | χ(R, t)|2, along with its BO-projected components,
|F1(R, t)|2 and |F2(R, t)|2, (lower panels). The times, as indi-
cated in the figure, are t = 4.84,14.52,24.20,31.46 fs.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Thu, 30 Jul 2015 08:05:41



084303-6 Agostini et al. J. Chem. Phys. 142, 084303 (2015)

FIG. 2. Left: lowest four BO surfaces, as functions of the nuclear coordinate. The first (red line) and second (green line) surfaces will be considered in the actual
calculations that follow, the third and fourth (dashed black lines) are shown for reference. The squared modulus (reduced by ten times and rigidly shifted in
order to superimpose it on the energy curves) of the initial nuclear wave packet is also shown (thin black line). Right: populations of the BO states as functions
of time. The strong non-adiabatic nature of the model is underlined by the population exchange at the crossing of the coupling region.

At times t = 4.84,14.52 fs, the nuclear wave packet
evolves on the exact potential that either is equivalent to the
second adiabatic surface, on the left of the avoided crossing,
or has a diabatic-like behavior, smoothly connecting the two
BO surfaces through the avoided crossing. At these times,
ϵGD(R, t) is a constant function of R and it only produces a
physically irrelevant rigid shift of ϵGI(R, t) that has no effect
on the dynamics and could be set to zero. After the nuclear
density branches on to the two surfaces at the avoided crossing
(times t = 24.20,31.46 fs of Fig. 3), both terms of the TDPES
develop steps. The GI surface ϵGI lies on one BO surface or the
other, with steps connecting smoothly between the two. The
GD part ϵGD is piecewise constant in R space, affecting the
dynamics only in the intermediate region where the step joins
the two pieces. The steps in ϵGI and ϵGD appear in the same
region and seem to have a similar slope but with opposite sign.

Still, the step in ϵGD(R, t) does not exactly cancel the step in
ϵGI(R, t) (see Sec. V A) and the resulting full TDPES presents
a small “bump” in this region. It was shown in Refs. 57 and
58 that the steps in the GI and GD parts appear at the cross-
over point, R0, between |F1(R, t)|2 and |F2(R, t)|2. We will use
this symbol R0 from now on to indicate the center of the step
region. The two branches of the nuclear wave packet undergo
different dynamics because of the different slopes of the (GI
part of) the TDPES under each branch, one being parallel to
one BOPES and the other parallel to the other, while the extent
of the splitting critically depends on the combined effect of the
two steps in the GI and GD parts of the exact TDPES, as we
will shortly show.

Knowing the TDPES allows us to directly test the accu-
racy of a classical treatment of the nuclei by reconstructing the
nuclear dynamics using classical trajectories. By evolving an

FIG. 3. Upper panels: the GI part of the TDPES (blue) and the GD part (red) (uniformly shifted by − 0.4 in all plots), at four times t = 4.84,14.52,
24.20,31.46 fs. The two lowest BO surfaces are shown for reference as solid black lines. Lower panels: the nuclear density |χ(R, t)|2 (solid black line),
and BO-projected densities |F1(R, t)|2 (dashed green line), |F2(R, t)|2 (dashed orange).
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ensemble of multiple trajectories on the exact TDPES, with
a distribution taken from the exact initial nuclear wave packet
(see discussion earlier in this section), we take into account the
quantum uncertainty principle in the initial conditions, so the
effect of the classical approximation for the dynamics can be
tested by itself and independently of the approximation used
for the nuclear forces. Further, we can study the impact of the
step structure itself by comparing classical dynamics evolving
on ϵGI(R, t) and on ϵ(R, t). The difference between these two
potentials, i.e., ϵGD(R, t), is piecewise constant in R. Therefore,
its shape does not alter the force calculated from ϵGI(R, t) in the
regions away from the step, where ϵGI(R, t) is equal to one or
the other BO surface.

In Fig. 4, the nuclear densities are approximated with
histograms constructed from the distributions of classical posi-
tions evolving on ϵGI(R, t) and on the full TDPES. The histo-
grams are represented as blue and red linepoints, respectively,
and are compared to the exact nuclear density (solid black
lines). Evolving on the GI part of the TDPES yields some effect
of splitting, but the distribution obtained from the propagation
of classical trajectories presents an intense peak localized in
the region occupied by the wave packet propagating on the
lower surface, with very little density on the left of R0. This
is clearly not correct, and can be explained from considering
the effect of the step in ϵGI(R, t): the classical trajectories
“slide down” the step that “opens” towards the lowest BO
surface (see snapshots at times t = 24.20 fs and t = 31.46 fs
in Fig. 3), so leaking the density away from the left to the
right. Classical trajectories propagating on the full TDPES in
Fig. 4 confirms the importance of the GD component of the
exact potential, as already suggested in Ref. 58: they are in
excellent agreement with exact fully quantum results, both
before and after the splitting of the nuclear wave packet. This
confirms that the splitting of the nuclear wave packet can be
captured perfectly with treating the nuclei as classical parti-
cles, provided the force on the nuclei is the right one. The
steps in both components of the TDPES, yielding a surface
with a resultant “bump,” should be correctly reproduced for
an accurate description.

The step features in the exact TDPES have been observed
in previous work57,58 but what is new here is that quasiclassical
evolution on the exact TDPES correctly captures the splitting
of the nuclear wave packet and that the balance between the
steps in both the GI and GD part is critical to capture the correct
dynamics. Our results are based on the fact that we know, for
the simple model of non-adiabatic charge transfer discussed
here, the exact potential that governs the nuclear dynamics.
Therefore, we are able to compute the “exact” classical force. It
iscrucial forapproximations tobeable toaccount for thesteps in
both ϵGI and ϵGD that we proved to be responsible for the correct
splitting of the nuclear wave packet and ensuing dynamics.

We stress that the procedure presented so far is not analo-
gous to Bohmian dynamics, as discussed in Appendix A. When
Bohmiantrajectoriesareusedtomimicthequantummechanical
evolutionofawavefunction,anextracontribution, theso-called
quantum potential, appears as a time-dependent correction to
the standard interaction term, e.g., the Coulomb interaction,
in the Hamiltonian. The results shown in Fig. 4 are, instead,
obtained by only employing the TDPES, without including
extra correction terms. The TDPES is the bare potential in the
quantum Hamiltonian (10) and the TDPES is used to calculate
classical forces. No additional terms are considered. Therefore,
it is not a priori obvious that the classical treatment of nuclear
motion is a good approximation even if the TDPES is exact.

A. Nuclear position, momentum and kinetic energy

Here, we calculate some nuclear observables to demon-
strate that measurable quantities can be predicted by evolving
classical trajectories under the correct force, i.e., that provided
by the exact TDPES. The observable will be evaluated employ-
ing the standard expression

O(t) = 1
Ntraj

Ntraj
I=1

OI(t) (32)

when multiple trajectories (MTs) represent the evolution of
the nuclear density. The total number of trajectories is Ntraj,

FIG. 4. Nuclear density reconstructed from the distribution of the classical positions at four times t = 4.84,14.52,24.20,31.46 fs, as in Fig. 3. The red curves
represent the density obtained by propagating classical trajectories on the full TDPES and the blue curves are the results of the propagation on the GI part of the
TDPES. For reference, the exact nuclear densities are plotted as black lines.
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OI(t) is the value of the observable along the I-th trajectory
at time t, and O(t) is the instantaneous average at time t. We
will compare Eq. (32) with the value of the same observable
calculated along a single trajectory (ST), whose initial position
and momentum are the mean position and momentum of the
quantum wave packet and whose evolution is generated ac-
cording to the force from the TDPES. As already discussed in
Ref. 58, a ST cannot capture the spatial splitting of the nuclear
density, but can still give information about the observables.

Fig. 5 (left panels) shows the mean values of the nuclear
position (upper panel) and momentum (lower panel) calculated
according to Eq. (32) for the MT scheme (dashed green lines),
compared to the ST (dashed red lines) and exact calculations
(continuous black lines). The ST results are not bad, but MT
enables an almost perfect agreement with the exact for both
the position and momentum variables. This is not surprising
given the results presented above. The spatial extension of the
nuclear density is accounted for, in an approximated way, in
the MT approach and corrects (or washes out) the deviations
from ST calculations.

It is instructive to also show the comparison between the
nuclear kinetic energy calculated from the full wave function
and the corresponding observable estimated from the approx-
imate dynamics. First, we note that, as discussed in Ref. 61,
when the factorization (4) is used in the expression for the
expectation value Tn(t) of the nuclear kinetic energy operator
at time t

Tn(t) =


drdRΨ∗(r,R, t)
Nn
ν=1

−~2∇2
ν

2Mν
Ψ(r,R, t), (33)

the following expression is obtained:

Tn(t) =


dR χ∗(R, t)
Nn
ν=1

[−i~∇ν + Aν(R, t)]2
2Mν

χ(R, t)

+


dR ���χ(R, t)���

2
Nn
ν=1

~2

2Mν


∇νΦR(t)��� ∇νΦR(t)


r

−


dR
����χ(R, t)����

2 Nn
ν=1

A2
ν(R, t)
2Mν

. (34)

In the gauge where A(R, t) = 0, only two terms survive, namely,

Tn(t) = −~
2

2M


dR


χ∗(R, t)∂2

R χ(R, t)

+ | χ(R, t)|2 ⟨∂RΦR(t)| ∂RΦR(t)⟩r

. (35)

In our quasiclassical simulation, this expression is estimated
by considering

OI(t) = P2
I (t)

2M
+
~2

2M
⟨∂RΦR(t)| ∂RΦR(t)⟩r ���RI (t)

in Eq. (32), with the first term the “bare” nuclear kinetic energy
associated to the Ith trajectory at time t and the second term
the value of the function ⟨∂RΦR(t)| ∂RΦR(t)⟩r evaluated at the
classical position RI(t) along the Ith trajectory at time t. Fig. 5
(right, upper panel) shows once again that the results from
the propagation of MTs on the TDPES perfectly reproduce
the quantum expectation value, whereas large deviations are
observed for the ST calculation. The kinetic energy contribu-
tion due to the term ~2 ⟨∂RΦR(t)| ∂RΦR(t)⟩r/(2M), plotted in
Fig. 5 (right, lower panel), is a small fraction of the total kinetic
energy, and also is well-approximated by the MT result.

V. GAUGE DEPENDENT POTENTIALS

In Sec. IV, we have discussed the importance of the GD
part of the TDPES and pointed out that while it yields a
zero force in most regions of space, its step feature plays
an essential role in obtaining the correct dynamics. Refs. 57
and 58 explained why the slope of the GI part of the TDPES
far from the step tracks that of one or the other BO sur-
face, as well as how the slope in the step region is related to
the slope in the coefficients as they switch from one surface
to the other. Moreover, characteristic features of the forma-
tion and structure of the steps in the GI part of the TDPES
were identified. In particular, the steps appear in the region
around the crossing point R0, which is where the moduli of the
two coefficients of the expansions of Ψ(r,R, t) (and ΦR(r, t))
on BO states have the same value, |F1(R0, t)|2 = |F2(R0, t)|2,
and |C1(R0, t)|2 = |C2(R0, t)|2 = 1/2. But what about the step-
feature in ϵGD? Section IV showed the height of the step in the

FIG. 5. Mean nuclear position (left,
upper panel) and mean nuclear mo-
mentum (left, lower panel) calculated
from the propagation of ST (dashed
red line) or of MTs (dashed green
line) on the TPDES. Mean nuclear ki-
netic energy (right, upper panel) and ki-
netic energy contribution from the term
~2⟨∂RΦR(t)| ∂RΦR(t)⟩r/(2M ) (right,
lower panel). The black curves repre-
sent the quantum mechanical values of
the observables.
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GD part of the TDPES must be properly accounted for in order
to obtain a quantitative good estimate of the splitting, so it is
important to characterize its structure as well. In Subsections V
A and V B, we estimate the energy difference the step-feature
in the GD term represents, and we look at its effect in terms of
velocity-adjustments in comparison to TSH.

A. Gauge-dependent part of the TDPES

We observed earlier that steps in the GD part appear at
the same position as in the GI term, but have the opposite
direction. A “bump” then results upon adding the GI and GD
term to form the full TDPES. The heights of the steps in these
two components of the TDPES are similar but do not quite
cancel each other. We show here why the step in ϵGD almost
compensates the step in ϵGI.

First, we prove that ϵGD(R, t) has a characteristic sigmoid
shape resembling an error-function. This feature is not a result
obtained for the particular system studied here or for the partic-
ular set of parameters in the Hamiltonian (30), but it is rather
general in the absence of an external time-dependent field. We
begin by writing the gauge condition A(R, t) = 0, in terms of
the two relevant BO states from Eqs. (13) and (26)

0 =

l=1,2

|Cl(R, t)|2∂Rγl(R, t) − i~
2
∂R


l=1,2

|Cl(R, t)|2

− i~


l,k=1,2

C∗l (R, t)Ck(R, t)dlk(R), (36)

where the symbol γl(R, t) has been used to indicate the phase
of the coefficient Cl(R, t) of the electronic wave function
(Eq. (26)) and dlk(R) = ⟨ϕ(l)

R |∂Rϕ(k)
R ⟩r indicates the non-adia-

batic coupling vectors (NACVs) in 1D. The second term on the
right-hand-side is identically zero, due to the PNC in Eq. (28),
while the third term can be neglected in the region far from
the avoided crossing where the NACVs are negligible. This is
the region we are interested in, since ϵGD(R, t) is different from
a constant function only after the passage of the nuclear wave
packet through the avoided crossing. The remaining term gives

|C1(R, t)|2∂Rγ1(R, t) = −|C2(R, t)|2∂Rγ2(R, t), (37)

which means ∂Rγ1(R, t) = 0 ∀ R where |C1(R, t)|2 = 1 while
|C2(R, t)|2 = 0. Similarly, ∂Rγ2(R, t) = 0 ∀ R where |C2(R, t)|2
= 1 while |C1(R, t)|2 = 0. We conclude γl(R, t) = Γl(t), namely,

the phase of the coefficient Cl(R, t) is only a function of time
(constant in space), in the region where the squared modulus
of the corresponding coefficient is equal to unity. We confirm
this by showing in Fig. 6 (lower panels) some snapshots of
the functions |C1(R, t)|2 and |C2(R, t)|2. In the regions where
one of the two coefficients is equal to 1, the other is 0. This
means that the electronic wave function has “collapsed” onto
one adiabatic state, that whose coefficient is non-zero. Eq. (26)
can then be written as

ΦR(r, t) =



e
i
~ Γl(t)ϕ(l)

R (r) ∀ R : |Cl(R, t)|2 = 1
l
Cl(R, t)ϕ(l)

R (r) otherwise,
(38)

meaning that ΦR(r, t) has a purely adiabatic character for
R where |Cl(R, t)|2’s are either zero or one, while a linear
combination of adiabatic states in the region in between. The
sigmoid-shape of ϵGD(R, t) then follows by using Eq. (20),

ϵGD(R, t) =



Γ̇l(t) ∀ R : |Cl(R, t)|2 = 1
l
|Cl(R, t)|2γ̇l(R, t) otherwise.

(39)

Numerical results are shown at different time steps in Fig. 6
(upper panels).

The “collapse” of the electronic wave function on one or
the other adiabatic state is a smooth and continuous process
that can be observed in time by looking either at the step
formation in the GI (and GD) part of the TDPES, for instance
in Fig. 3, or at the step formation in |Cl(R, t)|2 (with l = 1,2),
in Fig. 6.

Both ϵGD(R, t) and |Cl(R, t)|2 can be fitted via a function
f (R, t) of the form

f (R, t) = o(t) + h(t) erf [α(t) (R − R0(t))] , (40)

where the time-dependent parameters o(t),h(t),α(t), and R0(t)
are determined by the fitting procedure. Fig. 6 shows as thin
dashed black line the analytic function Eq. (40) and the values
of the parameters indicating the slope of the step, α(t), and
the position of the step, R0(t). In the lower panels, we need
only to fit |C1(R, t)|2, since due to the PNC, |C2(R, t)|2 = 1
− |C1(R, t)|2. We observe that the values of the fitting parame-
ters are very similar for |Cl(R, t)|2 and ϵGD(R, t), meaning that
the step in ϵGD(R, t) has the same spatial-dependence as that of
|Cl(R, t)|2. In the case of |C1(R, t)|2, the remaining two parame-
ters, o(t) = h(t) = 0.5, as expected. In the case of ϵGD(R, t), we

FIG. 6. Upper panels: ϵGD(R, t) plotted as red line at
some time steps after the nuclear wave packet has crossed
the non-adiabatic coupling region. The fitting function in
Eq. (40) is shown as black dashed line. Lower panels:
|Cl(R, t)|2 for l = 1 (green lines) and l = 2 (orange lines)
at the same time steps, with the fitting function shown
again as dashed black line. The fitting parameters α(t)
and R0(t) from Eq. (40) are indicated in the upper and
lower panels.
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FIG. 7. Comparison between the height of the step in ϵGD(R, t) estimated
from Eq. (41) (red) and the value calculated from the fitting (black) with an
error-function.

analytically derive in the appendix that

2h(t) ≃ α
√
π


dR


ϵ
(2)
BO(R) − ϵ (1)BO(R)


e−α

2(t)(R−R0(t))2, (41)

while we do not consider o(t) since it is only a uniform poten-
tial, that has no physical effect on the dynamics. Here, the
integral is computed with boundaries ±∞ and we used the
property that |C1(R, t)|2 has an error-function shape in order
to analytically determine its spatial derivative as a Gaussian.

Numerical results are shown in Fig. 7, where we compare
the value of the height obtained from the fit of ϵGD via the error-
function in Eq. (40) and from Eq. (41). Fig. 7 shows that the
results of our estimate are in good agreement with the fit.

In summary, we have explained why ϵGD is piecewise
constant, with a sigmoid structure whose height is an average
of the difference between the BO energies weighted by a
Gaussian centered in the step region, Eq. (41). This explains
(i) why the step in ϵGD(R, t) almost compensates the energy
difference in ϵGI(R, t) and (ii) why the slope in the GD part of
the TDPES has the opposite sign with respect to the GI part.

B. Vector potential

The analysis in Secs. IV and V A shows that the GD
component of the TDPES, ϵGD, does not affect the force that
evolves the classical trajectories on either side of the step (it is
constant in these regions). However, it diminishes the energy
separation in ϵGI between the two sides. This energy barrier
almost disappears in the full TDPES. However, the TDPES
is gauge-dependent, and the question arises as to how does
this reduction of the energy difference that we see in ϵGD

appear in other gauges? In particular, going to a gauge where

ϵGD(R, t) = 0 means that the non-zero vector potential must
compensate the effect of the energy step in the GI part of the
TDPES. We will analyze this effect in this section.

The gauge ϵGD(R, t) = 0 offers an interesting point of
view, giving perhaps a more direct interpretation of the TSH
scheme in terms of the exact TDPES and vector potential. In
TSH, the force that produces the nuclear evolution is given by
the gradient of one of the BOPESs, and the classical particles
evolve adiabatically on the BO surfaces before and after the
stochastic jumps take place. In our exact formulation in this
gauge, a large component of the classical force driving the nu-
clear motion is given by the GI part of the exact TDPES, which
reduces to the gradient of either one or the other adiabatic
surface away from the step region, similar to TSH. But there is
also a component to the force from the time-dependent vector
potential. This appears as a momentum correction, whose ef-
fect and interpretation in the perspective of TSH will be shown
below.

We apply the gauge-function θ(R, t) (see Eqs. (6), (14),
and (15)) on the wave functions and potentials of Secs. II–IV,
such that in the new gauge,

ϵ̃GD(R, t) = ϵGD(R, t) + θ̇(R, t) = 0. (42)

Equivalently,

θ(R, t) = −
 t

dt ′ ϵGD(R, t ′). (43)

From Eq. (15), noting that in the previous gauge A(R, t) = 0,

Ã(R, t) =
 t

0
dt ′

(
− ∂RϵGD(R, t ′)

)
. (44)

That is, the vector potential in the gauge where it absorbs all the
gauge-dependence, is the time integral of the force generated
by the GD part of the TDPES in the gauge where the vector
potential is zero.

The vector potential contributes a term to the nuclear
momentum density, that is induced by the coupling to the
electrons:

P(R, t) = ∇RS̃(R, t) + Ã(R, t), (45)

where S̃ is the phase of the nuclear wave function in the
present gauge. Note that the total averaged momentum is
the integral of the total current density: P(t) = 

dR j(R, t)
=


dR | χ(R, t)|2P(R, t), plotted in Fig. 8. Both contributions,
∇RS̃(R) and Ã(R), weighted by the nuclear density, are shown
in Fig. 8 as the black and blue lines. Examining alongside ϵGI

shown in Fig. 3, we observe that the vector potential lowers the

FIG. 8. Contributions, at times t
= 24.20,29.04,33.88 fs, to the total
nuclear momentum density from the
terms ∇RS̃(R, t) (black line) and
Ã(R, t) (blue line), from Eq. (45),
weighted by the nuclear density. The
dashed-red line represents the term on
the left-hand-side in Eq. (45), weighted
by the nuclear density.
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momentum and kinetic energy in the region where the nuclear
wave packet evolves on the upper surface.

In TSH, different adiabatic surfaces are energetically
accessible by the classical nuclei because of the stochastic
jumps and the subsequent momentum rescaling: when a jump
occurs in the direction of increasing potential energy, e.g., from
state 1 to state 2 in our example, the velocity of the classical
particle is reduced by the amount determined by imposing
energy conservation, along the direction of the NACV between
the states involved in the transition. In our scheme based on
the exact TDPES, we see a similar effect in two different ways
depending on the gauge: either the GD part of the potential
is responsible for bringing “energetically closer” different
BOPES, or the vector potential provides the necessary kinetic
energy contribution. From the observations reported in the
present section, the vector potential contributes to the nuclear
momentum as a reduction of the propagation velocity of the
trajectories on the upper surface, with respect to the trajectories
on the lower surface. This is reminiscent of the momentum
adjustment in TSH, when the classical particles undergo a non-
adiabatic jump from one BO surface to the other. An interest-
ing development of these qualitative observations would be
the analysis, in higher dimensions, of the direction of the mo-
mentum adjustment due to the vector potential, in comparison
to the direction chosen in the TSH approach, i.e., the direction
of the NACVs. This line of investigation, along with a more
quantitative understanding of the connection between the time-
dependent vector potential and the velocity corrections in the
TSH scheme is currently under investigation.

VI. FURTHER RELATION WITH TRAJECTORY
SURFACE HOPPING

A consequence of the steps in the GI and GD components
of the TDPES is that they allow the nuclear wave packet to feel
forces from different BOPESs in different regions of space at
the same instant in time. This feature signals electronic deco-
herence. Although TSH shares the feature that wave packets
evolving in different spatial regions on different surfaces expe-
rience different forces, it does not capture the electronic de-
coherence that should come hand-in-hand. There has been
extensive and on-going developments to build decoherence
into TSH34,35,51,52,64,68,69 but it remains a challenging problem
today. We now ask what we can learn about decoherence from
the exact TDPES in relation to TSH. We will find that the
concerted action of the step features in ϵGI and ϵGD results in
decoherence.

Consider the force produced by the GD part of the poten-
tial. The force is a gauge-independent quantity, therefore does
not depend on the choice of the gauge. In a gauge where there
is zero vector potential, the classical nuclear force is the sum
of two contributions,

− ∂Rϵ(R, t) = −∂RϵGI(R, t) − ∂RϵGD(R, t), (46)

where the second term on the right-hand-side can be also
written as

− ∂RϵGD(R, t) = ∂t Ã(R, t) (47)

in the gauge where the entire GD term has been transformed
to a vector potential, Eq. (44). The results shown in Fig. 6
for ϵGD(R, t) clearly indicate that Eq. (47) either is zero or
has a Gaussian-like shape, since ϵGD(R, t) either is constant or
has the characteristic sigmoid shape reminiscent of an error-
function.

We now consider single trajectories generated according
to the fewest-switches algorithm, on one hand, and the trajec-
tories evolving on the TDPES, on the other hand. We distin-
guish two classes of trajectories: (i) those that in TSH do not
hop, thus always propagating on the upper BO surface ϵ

(2)
BO(R)

and (ii) those that undergo a single hop, whose evolution after
the passage through the avoided crossing takes place along the
lower surface ϵ

(1)
BO(R). In this analysis, we do not look at all

other trajectories undergoing two or more hops.
We have identified a typical trajectory from each of these

classes and matched each up with a classical trajectory evolv-
ing on the exact TDPES that has almost identical initial mo-
mentum and position and that either “ends up” on the upper
surface (class (i)) or slides over to the lower BO surface (class
(ii)). Since TSH is a stochastic scheme, identical trajectories
are difficult to find. Nevertheless, this comparison allows us to
classify also the trajectories on the TDPES as class (i) or (ii).

These pairs of trajectories are plotted in the upper left
panel of Figs. 9 (class (i)) and 10 (class (ii)). These panels
verify the similarity of the TSH (red lines) and TDPES (dashed
blue lines) trajectories of each pair. The other panels repre-
sent: (upper right) the phase space from TSH and the TD-
PES (in this case the momentum is shown on the x-axis and
the position on the y-axis); (lower left) the force from the
first term on the right-hand-side of Eq. (46), in the following
referred to as GI-force (continuous black line), the force in
Eq. (47), referred to as GD-force, and their sum (dashed green
line), determined by evaluating Eqs. (46) and (47) at each
time at the classical position along the trajectory propagating
on the TDPES; (lower right) the squared moduli of the off-
diagonal elements of the electronic density matrix ρTDPES

12 (t)
= |C1(Rcl(t), t)|2|C2(Rcl(t), t)|2, evaluated at the classical posi-
tions (dashed orange lines), as the force in the lower left panel,
compared to the corresponding quantity ρTSH

12 (t) (black lines)
calculated along the single TSH trajectory shown in the upper-
left panels.

With the classification of the trajectories in mind, we
compare the phase space of the trajectories associated to the
upper and to the lower surfaces. Clearly, for a trajectory in class
(ii), the momentum calculated according to TSH will show a
discontinuous behavior in the vicinity of the avoided crossing
because it undergoes a hop from ϵ

(2)
BO(R) to ϵ

(1)
BO(R), while

the trajectory propagating on the TDPES continues to evolve
smoothly. This is indeed verified in the upper right panel of
Fig. 10 where the “kink” in the red curve near R = −2 a0
indicates a momentum jump occurring at the corresponding
surface hop. However, after passing through this region, the
curves are once again very close to each other.

This suggests that the time-integrated effects of the forces
from the TSH surface-hop and the exact vector potential on
the classical trajectory are approximately the same, although
their nature is rather different. Both the TSH trajectory and
the TDPES trajectory begin evolving under the force from the
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FIG. 9. Results for the trajectories of class (i). Upper left panel: trajectory calculated from TSH (red line) and by propagating classical positions on the TDPES
(dashed blue line). Upper right panel: phase space (momentum shown on the x-axis and position on y-axis) from TSH (red line) and from the trajectory on
the TDPES (blue line). Lower left panel: the GI-force (continuous black line), the GD-force (dashed black line) and their sum (dashed green line), determined
by evaluating Eqs. (46) and (47) at the instantaneous position. Lower right panel: squared moduli of the off-diagonal elements of the electronic density matrix
ρTDPES

12 (t)= |C1(Rcl(t), t)|2|C2(Rcl(t), t)|2, evaluated at the classical positions (dashed orange lines), compared to the corresponding quantity ρTSH
12 (t) (black

lines) calculated along the TSH trajectory. The vertical and horizontal dashed black lines highlight the regions of time and space, respectively, where the effect
of the vector potential on the classical trajectory is not zero. The values associated to these regions are also reported in the plots.

FIG. 10. Same as in Fig. 9 but for the
trajectory of class (ii).
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upper BO surface, but, due to the velocity adjustment, the TSH
trajectory experiences an instantaneous δ-function-like force
when it hops between the surfaces. We can interpret this force
as arising from a vector potential that turns on sharply at the
avoided crossing. The force on the TDPES trajectory, on the
other hand, is always smooth. In the lower left panels of Figs. 9
and 10 we observe a distinct behavior of the classical force in
the region within the two dashed vertical lines: outside this re-
gion, the GD-force is zero, suggesting that classical dynamics
is completely governed by one or the other BOPES; within the
region, the effect of the steps in ϵGI and ϵGD (or the appearance
of the vector potential according to Eq. (47)) clearly yields
large peaks in the force. The time intervals indicated by the
vertical dashed black lines in Figs. 9 and 10 give an estimate
of the time during which the GD-force has a non-zero effect
on the classical trajectory. The forces in TSH coincide with
those of the TDPES only outside these time intervals. One
can see that such intervals coincide with space regions where
the phase space from TSH calculations and resulting from the
trajectories evolving on the TDPES are qualitatively different.
These regions are indicated by the horizontal dashed black
lines.

This time window during the gradual onset and offset
of the GD-force infinitely reduces when interpreted in the
light of TSH. Although this difference has little net effect
on the classical dynamics after the transition region (the two
trajectories end up matching up again), it has a profound
influence on the electronic amplitudes associated with these
trajectories, as we will now argue. The major consequence of
the appearance of the peaks in the GI-force and the GD-force
on the TDPES-evolved trajectory, and the associated structure
in Ûcoup

en in the electronic equation, is to induce decoherence,
an effect that the instantaneous action of the force on the TSH-
evolved trajectory does not capture properly. From a quantum
mechanical point of view, we expect to observe decoherence
when the components of the nuclear wave packet associated
to different BO states evolve independently from each other
on the two adiabatic surfaces. In the mixed quantum-classical
picture provided by the classical trajectories propagating on
the TDPES, decoherence is correctly observed. In order to
quantify this statement, we employ, as indicator of decoher-
ence, the off-diagonal elements of the electronic density ma-
trix, i.e., |ρTDPES

12 (t)| = |C1(Rcl(t), t)|2|C2(Rcl(t), t)|2 (dashed or-
ange lines) in the lower right panels of Figs. 9 and 10. The
coefficients Cj(R, t) with j = 1,2, from the expansion of the
electronic wave function on the adiabatic basis, are functions
of position and time, and in the expression of |ρTDPES

12 (t)| they
are evaluated at each time at the classical positions along the
trajectory Rcl(t). The elements of the density matrix |ρTDPES

12 (t)|
are compared with the corresponding quantity calculated along
a given TSH trajectory (black lines in the lower right panels of
Figs. 9 and 10), i.e., |ρTSH

12 (t)|.
In the same time intervals indicated by the vertical lines in

the lower left panels, |ρTDPES
12 (t)| decays to 0. These time inter-

vals, and the corresponding regions of space, can be associated
to the decay of the coherences (ρ12). Now if we compare these
matrix elements with those calculated along a given trajectory
according to the TSH scheme, the decay to 0 is clearly absent.
After the transition through the coupling region, TSH predicts

for all trajectories approximately the same values of |ρTSH
12 (t)|,

which, being different from zero, imply a spurious coherence.
Since the velocity adjustment in TSH is analogous to the

action of an instantaneous vector potential (or an infinitely
steep step in the TDPES), decoherence is not induced after
the nuclear wave packet, i.e., the trajectory-bundle, crosses the
coupling region. The GD-force of the TDPES and its combined
effect with the GI-force can be used to estimate a decoherence
time and length and to provide corrections to the problems of
TSH. Further analysis in this direction will be investigated.

VII. CONCLUSIONS

This work shows the best results that can be obtained when
an (independent) trajectory-based mixed quantum-classical
procedure is used to simulate the coupled non-adiabatic dy-
namics of electrons and nuclei. Here, the electronic effect on the
classical nuclei is not approximated, but it is treated exactly by
employing the TDPES and the time-dependent vector potential
defined in the framework of the exact factorization of the
electron-nuclear wave function of Refs. 60 and 61. A quasiclas-
sical treatment of nuclear dynamics is sufficient to accurately
capture the true quantum dynamics, in particular the splitting
of the nuclear wave packet. Critical step and bump features of
the exact TDPES are responsible for the correct dynamics, and
these were analysed in detail.

Envisaging the development of a mixed quantum-classical
algorithm from the analysis reported here, we observe that
reproducing the step feature in the GI and GD components of
the TDPES is crucial to correctly reproduce the splitting of a
nuclear wave packet created by an avoided crossing. In partic-
ular, after passage through the avoided crossing, the correct dy-
namics of the different branches of the nuclear wave packet are
caused by the deformation of the full time-dependent potential,
that (i) becomes parallel to one or the other BO surface in
different regions and (ii) develops a small bump in the interme-
diate region. A detailed analysis of the shape of the GD compo-
nent was given here, while earlier work had focussed on the
GI component.57,58 In particular, we explained why the shape
is a sigmoid, and why the step in the GD component largely
cancels that in the GI component. The effect of the GD part
of the TDPES was analyzed also under a different perspective,
by pointing out the qualitative connection with the momentum
adjustment in the TSH procedure. With a suitable change of the
gauge, i.e., ϵGD(R, t) = 0, the time-dependent vector potential
appears as a kinetic contribution in the nuclear Hamiltonian
and its effect is reminiscent of the velocity rescaling of TSH.

We have also discussed the role of the steps in the two
components of the TDPES for the correct account of deco-
herence. The steps indicate that both the GI-force and GD-
force develop a peak, giving a time-interval corresponding to
the typical time for the decay of coherences. These peaks, or
equally the steps in the potentials and associated structures in
Ûcoup
en , are essential to reproduce electronic decoherence.

Future work will further highlight differences and anal-
ogies to existing procedures. For instance, the decoherence
force proposed in the decay-of-mixing method by Truhlar and
co-workers51,52 seems to play a similar role as the force (the
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peaks in the GI-force and in the GD-force) arising during the
decoherence time window. Also, like dynamics on the exact
TDPES, the non-adiabatic dynamics scheme based on the
Meyer-Miller-Stock-Thoss (MMST) Hamiltonian44,45 also has
classical trajectories evolving on just one potential, and it was
shown that when these Ehrenfest trajectories are treated semi-
classically, including phase information, then wave packet
splitting can occur.46,47,78 Comparisons of mixed quantum-
classical schemes based on the exact factorization and methods
such as these will lead to more insight into electron-nuclear
correlation.

At longer times, not studied here, when multiple passes
through avoided crossing regions and reflections become im-
portant, the quasiclassical approach is expected to become
poor. However, what our work here demonstrates is that it
certainly is able to fundamentally capture the non-adiabatic
charge transfer event. A modified approach, based again on
an ensemble of classical trajectories but now incorporating
phases, such as in the semiclassical dynamics approaches of
Refs. 78 and 79, could prove to be a promising approach in such
cases, and is an avenue for further research.

The observations that we have reported here establish
the basis for interpreting existing approximated methods that
deal with the problem of coupled electron-nuclear dynamics
and for understanding how their deficiencies can be cured.
Furthermore, our work leads to new insights into the physics of
electronic non-adiabatic processes and may lead to the design
of new mixed quantum-classical algorithms59,62 that satisfy
exact requirements.
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APPENDIX A: CONNECTION TO BOHMIAN
TRAJECTORIES

We devote this appendix to a brief overview of the Boh-
mian approach27,28 to quantum dynamics. Even though this
procedure might seem somehow connected to the work pre-
sented in the paper, as it is based on the propagation of trajec-
tories on a time-dependent potential, it will become clear here
that this is not the case. Also, let us discuss only the adiabatic
case, since the non-adiabatic version of Bohmian dynamics,
recently proposed by Tavernelli and co-workers,20 is based on
the Born-Huang expansion ofΨ(r,R, t) and it is used to evolve
the coefficients of this expansion rather than the wave function.

The state of the system is described by the wave function
χ(R, t), that evolves according to the TDSE

Ĥ χ(R, t) = i~∂t χ(R, t), (A1)

with Hamiltonian Ĥ containing a kinetic energy term and
a potential term V̂ (R), e.g., the (static) Coulomb interaction

among particles. For the moment, no relation between χ(R, t)
in Eq. (A1) and the nuclear wave function of Eq. (4) is
assumed. We write χ(R, t) in polar form, defining its phase
S(R, t) and amplitude a(R, t), both real functions of R, t. Start-
ing from the TDSE (A1) and separating the real and imaginary
part, two coupled equations are obtained, namely,

− ∂tS(R, t) =

ν


∇νS(R, t)2

2Mν
+ Ṽ (R, t), (A2)

∂ta(R, t) = −

ν


∇νS(R, t)

Mν
· ∇νa(R, t). (A3)

The sum over the index ν runs over the particles and the new
time-dependent potential Ṽ is

Ṽ (R, t) = V (R) −

ν

~2

2Mν

∇2
νa(R, t)
a(R, t) . (A4)

The second term on the right-hand-side is the so-called quan-
tum potential, depending on the amplitude of the wave function
and therefore carrying the time-dependence of Ṽ . Trajectories
can be used to solve Eq. (A2), by defining the momentum as
Pν(R, t) = ∇νS(R, t), i.e.,

Ṗν = −∇νṼ (R, t). (A5)

This Newton’s equation is exactly equivalent to Eq. (A2).
In contrast to Eq. (A1), the Hamiltonian given in Eq. (10)

and used in the TDSE (8) for the evolution of the nuclear
wave function of the factorization does not only contain a
static Coulomb interaction (already included in the TDPES)
among particles, but also a time-dependent contribution due
to the electrons, that are treated fully dynamically within the
exact factorization approach. Despite this difference, the above
procedure, used to derive Bohmian trajectories, can be applied
to Eq. (8). We now identify χ(R, t) with the nuclear wave func-
tion in Eq. (4). Let us restrict ourselves to the case considered
throughout the paper, namely, with a choice of gauge that sets
the vector potential to zero. The general case is considered in
Refs. 59 and 62. Then, Eq. (A2) becomes

− ∂tS(R, t) =

ν


∇νS(R, t)2

2Mν
+ ϵ̃(R, t), (A6)

with

ϵ̃(R, t) = ϵ(R, t) −

ν

~2

2Mν

∇2
νa(R, t)
a(R, t) (A7)

and ϵ(R, t) given in Eq. (12). In Eq. (A7) it is clear that
the, already time-dependent, potential ϵ(R, t) is corrected by
the Bohmian quantum potential. From Eqs. (A6) and (A7),
Newton’s equation can be derived,

Ṗν = −∇νϵ(R, t) − ∇ν

ν′

~2

2Mν′

∇2
ν′a(R, t)
a(R, t) . (A8)

This is not the equation used in Sec. IV, as the quantum
potential is not considered in the calculation of the force (see
Eq. (31) for comparison). It follows that it is not a priori
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expected that the classical trajectories evolving on ϵ(R, t) alone
reproduce the quantum nuclear evolution. The presence of
the quantum potential in Eq. (A8) ensures that the trajectory-
based treatment of the quantum dynamical problem is exactly,
apart from numerical errors, equivalent to a TDSE. When this
contribution is neglected, as in the results presented in Sec. IV,
disagreement between exact and trajectory-based results might
be observed. Moreover, it is worth stressing that since the
quantum potential is totally ignored throughout the paper, our
analysis does not focus on understanding the properties of or
creating a potential that allows to include quantum nuclear ef-
fects within a trajectory-based approach. We aim at describing
the properties of a potential that induces effects, such as the
splitting of a nuclear wave packet, related to the non-adiabatic
behavior of the electrons that are coupled to the nuclei. The
TDPES itself will not be able to account for purely nuclear
quantum effects, such as tunnelling, which can be however
expected if the quantum potential is taken into account in
Eq. (A8).

APPENDIX B: STEP’S HEIGHT IN ϵGD(R, t )
The expression of the GD part of the TDPES can be

rewritten by using the relation for the phase, γl, of the coef-
ficient of Cl, in terms of the phases, sl, of Fl(R, t) and the
phase, S(R, t), of the nuclear wave function: γl(R, t) = sl(R, t)
− S(R, t). Together with the PNC, we obtain then an exact
expression

ϵGD(R, t) =

l=1,2

|Cl(R, t)|2ṡl(R, t) − Ṡ(R, t). (B1)

The phase of the nuclear wave function appears also in the
expression for the vector potential, as

A(R, t) =

l=1,2

|Cl(R, t)|2s′l(R, t) − S′(R, t), (B2)

where we neglected all terms containing the NACVs since they
are negligible in the region where the steps form.

The gauge condition, A(R, t) = 0, can be used here to
derive an expression for Ṡ(R, t) in Eq. (B1). By setting Eq. (B2)
equal to 0, we obtain

S(R, t) =
 R

dR′

l=1,2

|Cl(R′, t)|2s′l(R′, t). (B3)

We insert this expression in Eq. (B1)

ϵGD(R, t) =

l=1,2

|Cl(R, t)|2ṡl(R, t)

−
 R

dR′∂t

l=1,2

|Cl(R′, t)|2s′l(R′, t) (B4)

=

 R

dR′∂R′

l=1,2

|Cl(R′, t)|2ṡl(R′, t)

−
 R

dR′∂t

l=1,2

|Cl(R′, t)|2s′l(R′, t) (B5)

(differentiating and integrating the first term on the right-hand-
side to get the second equality). Throughout, we neglect any

spatially constant term in ϵGD(R, t) because it has no physical
effect and we are interested in evaluating energy differences.
After the derivatives are applied to all quantities in the sum,
the remaining terms are

ϵGD(R, t) =
 R

dR′

l=1,2


∂R′|Cl(R′, t)|2


ṡl(R′, t)

−
 R

dR′

l=1,2


∂t |Cl(R′, t)|2


s′l(R′, t). (B6)

If the full TDSE is expanded on the adiabatic basis, neglecting
the contributions from the NACVs and considering only the
real part up to within terms O(~2), ṡl(R, t) can be expressed as

− ṡl(R, t) =
s′
l
2(R, t)
2M

+ ϵ
(l)
BO(R). (B7)

Instead, the time derivative of |Cl(R, t)|2 may be written as

∂t |Cl(R, t)|2 = 2
|Cl(R, t)|
| χ(R, t)|

(
∂t |Fl(R, t)|

− |Cl(R, t)|∂t | χ(R, t)|
)

(B8)

using the relation Eq. (27). Moreover, the time derivatives of
|Fl(R, t)| and | χ(R, t)| can be traded for spatial derivatives,
by the equation of continuity, from the imaginary part of the
TDSE expanded on the adiabatic basis,

∂t |Fl(R, t)| = −
s′
l
(R, t)
M

∂R|Fl(R, t)| −
s′′
l
(R, t)
2M

|Fl(R, t)|, (B9)

and from Eq. (8),

∂t | χ(R, t)| = − S′(R, t)
M

∂R| χ(R, t)| − S′′(R, t)
2M

| χ(R, t)|. (B10)

We now replace the explicit expressions for S′(R, t) and S′′(R, t)
from Eq. (B3), and Eq. (B8) becomes

∂t |Cl(R, t)|2 = −2
s′
l
(R, t)
M

|Cl(R, t)|2∂R|Fl(R, t)|
|Fl(R, t)|

−
s′′
l
(R, t)
M

|Cl(R, t)|2 + |Cl(R, t)|2 S′′(R, t)
M

+ 2|Cl(R, t)|2 S′(R, t)
M

∂R| χ(R, t)|
| χ(R, t)| , (B11)

where

∂R| χ(R, t)|
| χ(R, t)| =


l=1,2 |Fl(R, t)|∂R|Fl(R, t)|

| χ(R, t)|2
=


l=1,2

|Cl(R, t)|2∂R|Fl(R, t)|
|Fl(R, t)| , (B12)

which follows from Eq. (25). These expressions are used in
Eq. (B6), and, after some algebra, ϵGD(R, t) becomes

ϵGD(R, t)
=

 R

dR′
(
I(BO)(R′, t) + I(I )(R′, t) + I(I I )(R′, t)) .

(B13)

The three terms in the integral are the BO term

I(BO) =
(
ϵ
(2)
BO − ϵ

(1)
BO

)
∂R|C1|2 (B14)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Thu, 30 Jul 2015 08:05:41



084303-16 Agostini et al. J. Chem. Phys. 142, 084303 (2015)

and two small corrections labeled (I) (first)

I(I ) =
�
s′2 − s′1

�2

M


∂R|F1|
|F1| +

∂R|F2|
|F2|


|C1|2|C2|2 (B15)

and (I I) (second)

I(I I ) =
�
s′1s′′1 + s′2s′′2 − s′′1 s′2 − s′1s′′2

�2

M
|C1|2|C2|2. (B16)

So far, the only approximation has been neglecting the term
O(~2) in the evolution Equation (B7) for ṡl(R, t). Note that
the PNC, in the form ∂R|C2(R, t)|2 = −∂R|C1(R, t)|2, has been
used in Eq. (B14). The left panel in Fig. 11 show for the times
indicated in the plots, the functions in Eqs. (B14)–(B16). It
is clear that the BO term is by far the dominant contribution
to ϵGD(R, t) and that the contribution from Eq. (B16) can be
neglected. The right panel in Fig. 11 shows an approxima-
tion to Eqs. (B14) and (B15). To have an analytic expression
for I(BO), first we make use of the error-function structure
of Eq. (40). This means its spatial derivative is a Gaussian
centered at R0 with variance α−2(t), namely,

∂R|C1(R, t)|2 = α(t)
√
π

e−α
2(t)(R−R0(t))2. (B17)

Inserted into Eq. (B14), this gives an expression for the domi-
nant contribution to ϵGD(R, t) in terms of the BOPESs, the
crossover point R0 and width α(t). For the correction term
Eq. (B15), we use Eq. (B7) to identify the spatial derivative of
the phase sl(R, t), as the momentum associated to the motion
of the wave packet on the l-th BO surface and we approximate
|Fl(R, t)|2, with a Gaussian centered in Rqm

l
(t) with variance

σ2
l
(t). Therefore, we use the following expression:

∂R|Fl(R, t)|
|Fl(R, t)| = −

R − Rqm
l
(t)

σ2
l
(t) , (B18)

where Rqm
l

and σ2
l

are obtained from exact calculations, ac-
cording to

Rqm
l
(t) =


dR R|Fl(R, t)|2
dR|Fl(R, t)|2 (B19)

FIG. 11. Left: comparison between Eq. (B14), solid lines, Eq. (B15), dashed
lines, and Eq. (B16), dotted lines, at some times after the splitting of the
nuclear wave packet. The figure shows that the average of the BO energies
in the region of the step, weighted by ∂R |C1(R, t)|2 is indeed the leading
term. Right: approximations to Eqs. (B14) and (B15) based on quasiclassical
arguments.

and

σ2
l (t) =

2


dR
�
R − Rqm

l
(t)�2|Fl(R, t)|2

dR|Fl(R, t)|2 . (B20)

The height 2h(t) of the steps can be estimated as the energy
difference between two points R+ > R0 and R− < R0, chosen
far enough from R0, such that it guarantees that ϵGD(R > R+, t)
and ϵGD(R < R−, t) are constant. Therefore,

2h(t) = ϵGD(R+, t) − ϵGD(R−, t)
=

 R+

dR′ [· · · ] −
 R−

dR′ [· · · ] , (B21)

where the dots in square brackets represent the function under
the integral sign in Eq. (B13). Since R+ > R−, we can split the
first integral in two parts

2h(t) =
 R−

dR′ [· · · ] +
 R+

R−
dR′ [· · · ] −

 R−

dR′ [· · · ]
(B22)

and the remaining term is only the integral performed over the
region from R− to R+. Since the functions in the integral are
localized around R0 and rapidly decay to zero (the Gaussian in
Eq. (B14) and the product |C1(R, t)|2|C2(R, t)|2 in Eq. (B15)),
the boundaries of the integral can be set to infinity. The final
result, as shown in Eq. (41), is

2h(t) ≃ α
√
π

 +∞

−∞
dR∆(BO)

21 (R) e−α
2(t)(R−R0(t))2 (B23)

with ∆(BO)
21 (R) = ϵ

(2)
BO(R) − ϵ (1)BO(R), with correction

C(t) = − [P2(t) − P1(t)]2
4M

 +∞

−∞
dR|C1(R, t)|2|C2(R, t)|2

×


R − Rqm
1 (t)

σ2
1(t)

+
R − Rqm

2 (t)
σ2

2(t)

. (B24)
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