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Small anisotropy in iron-based superconductors induced by electron correlation

Hyo Seok Ji, Geunsik Lee, and Ji Hoon Shim*

Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
(Received 9 May 2011; published 17 August 2011)

We have investigated the electron correlation effect on the electronic structures and transport properties of the
iron-based superconductors using density functional theory (DFT) and dynamical mean field theory (DMFT).
By considering the Fe 3d electron correlation using DMFT, the quasiparticle bandwidth near the Fermi level is
found to be substantially suppressed compared to the conventional DFT calculation. Because of the different
renormalization factors of each 3d orbital, DMFT gives considerably reduced electrical anisotropy compared to
DFT results, which explains the unusually small anisotropic resistivity and superconducting property observed
in the iron-based superconductors. We suggest that the electron correlation effect should be considered to explain
the anisotropic transport properties of the general d/f valence electron system.
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Discovery of [superconducting transition temperature (Tc)]
high-Tc superconductivity (HTSC) in LaFeAsO1−xFx with
Tc = 26 K1 has stimulated the effort to understand the
mechanism of HTSC and search for new materials with this
property. Similar to the well-known cuprate superconductors,
it has a layered structure with the square lattice of transition
metals, and the superconductivity emerges from the boundary
of the antiferromagnetic ordering of 3d valence electrons.
This indicates that the magnetic ordering, or more likely
its fluctuation, is closely related to the electron pairing
both in cuprate and iron-based superconductors. Since the
first discovery, many subsequent iron-based superconductors
have been reported coming from the parent compounds of
ReFeAsOF (Re: rare earth elements), AeFe2As2 (Ae: Ba,
Sr, and Ca), LiFeAs, FeSe,2–6 etc. All the superconductors
have similar crystal structures and electronic properties. Two-
dimensional FeAs (or FeSe) layers are commonly observed
to be sandwiched by the insulating blocking layers, which
induces the anisotropic electronic structures. In all the com-
pounds, multiple Fe 3d orbitals participate in the magnetic
or superconducting transitions. Because of the numerous
investigations on iron-based superconductors, one could use
many available experimental data of their physical properties
for the comparative study of these materials in clarifying the
origin of HTSC.

Anisotropy is an important parameter with which to
understand the mechanism of the HTSC. Usually the low
dimensionality has been believed to be the crucial factor for
increasing the superconducting Tc. Most of the compounds
with HTSC have layered structure, and the maximum Tc

among the cuprate superconductors is designed from highly
anisotropic compounds. Indeed, density functional theory
(DFT) calculations predict two-dimensional electronic struc-
tures and anisotropic transport properties of the iron-based
superconductors.7 Using the same strategy as that applied
to the cuprate superconductors, researchers have tried to
synthesize highly anisotropic iron-base superconductors such
as Sr2VO3Fe2As2 with a blocking layer of Sr2VO3.6 However,
the observed maximum Tc in this family is ∼37 K,6 which
is still below the Tc of less anisotropic compounds such
as Gd1−xThxFeAsO (56 K).8 The correlation between the
anisotropy and Tc has yet to be clarified in the iron-based

superconductors. Also, recent experimental results report that
the observed anisotropy is unusually smaller than the value
obtained from the DFT calculations.9 In order to understand
the microscopic mechanism of the superconductivity and
its relation to the dimensionality, one needs to predict the
anisotropic electronic structures of real materials correctly.
In this study, we show that the DFT method systematically
overestimates the anisotropy of the iron-based supercon-
ductors. Also we suggest that the 3d electron correlation
effect should be considered to describe the experimentally
observed small anisotropy of the iron-based superconductors
correctly.

To investigate the electron correlation effects on the
band structures and the electrical anisotropy, we use the
DFT + DMFT approach,10,11 which is a combination of DFT
and dynamical mean field theory (DMFT).12–14 The DFT
calculations are performed with the full-potential augmented
plane-wave method within the WIEN2K code,15 and the
DMFT calculations are implemented on top of the DFT
Hamiltonian.16 For the exchange correlation potential in the
DFT equation, we use the generalized gradient approximation
(GGA) in the Perdew-Burke-Ernzerhof.17 The local electron-
electron correlation of the Fe 3d orbital is obtained from
the DMFT self-consistency equation. The impurity problem
within the DMFT equation is solved by the continuous time
quantum Monte Carlo (CTQMC) method.18,19 In order to show
the systematic change of anisotropy without the variation of the
interaction parameter, we choose the parameters of Coulomb
interaction U = 5.0 eV and Hund coupling constant J = 0.8 eV
in the impurity problem.20 We perform the calculation with
the nonmagnetic phase at a temperature of 72 K. The crystal
structure is considered by the experimentally determined
lattice constants and internal atomic positions.1,4,5,21–25

Using the band structures obtained from the DFT or
DFT + DMFT method, one can obtain the electrical contri-
bution of the transport properties. In the Boltzmann equation,
the electrical conductivity distribution is calculated as26,27

σij = − e2

4π3

∫
τvivj

(
∂f0

∂E

)
dk, (1)

where the group velocity vi is obtained from the band
dispersion vi = ∂ε(k)/∂k, the relaxation time τ is assumed
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to be constant, and f0(E) is the Fermi-Dirac distribution
function.28 When we consider the anisotropy between the x
and z directions, the anisotropy of the electrical conductivity
is given by Eq. (2).29

γσ = σxx/σzz ≈ vxvx/vzvz. (2)

The anisotropy is induced from the anisotropic band
structures, which have different band dispersion along each
direction. In the s, p orbital system, the DFT method has been
successful in describing the transport properties as well as the
thermoelectric properties.27

As an example to represent the electron correlation ef-
fects on the spectral function, we show the Fe 3d spectral
functions of Ba(Fe0.9Co0.1)2As2, which has optimal doping
for superconductivity with Tc = 22 K.22 We have used
the virtual crystal approximation for Co doping on an Fe
site. All the other iron-based superconductors show similar
electronic structures near the Fermi level, although there are
some variations in the bandwidth and dimensionality due to
the different blocking layers. Usually, the insulating blocking
layers have a role in supplying additional electrons or holes to
the Fe2+ valence state, and their spectral function provides a
negligible contribution to the Fermi level, so their role in the
transport properties is negligible.

In the DFT results as shown in Fig. 1, the spectral functions
of dz2 and dx2−y2 orbitals show well-separated peaks around the
Fermi level due to the strong covalent bonding between Fe 3d
and As 4p orbitals. The main spectral contribution from As 4p
orbitals is located between −2 eV and −5 eV. On the other
hand, the dxz,yz and dxy orbitals show rather narrow bandwidth,

FIG. 1. (Color online) Orbital-resolved Fe 3d spectral functions
of Ba(Fe0.9Co0.1)2As2 obtained with the DFT (blue lines) and
DFT + DMFT methods (red lines).

and the spectral peak appears to be near the Fermi level. The
contributions of the dxz,yz and dxy orbitals are dominant at
the Fermi level, so their electronic structures are important for
understanding the transport properties.

In the DFT + DMFT approach, we use the projection-
embedding steps between the Kohn-Sham basis and the
Wannier-like local basis.16 In the projection step, the local
Green’s function is extracted from the full Green’s function in
the Kohn-Sham basis. Then, the local self-energy is obtained
from the impurity solver in the Wannier-like local basis.
Finally, in the embedding step, the local self-energy is exported
back to the Kohn-Sham basis. The DMFT self-consistency
condition is given by,

Gloc(ω) =
∑

k

PkG(k,ω), (3)

where Pk is the projection operator, which preserves both
causality and spectral weight. The full Green’s function is
given by

G(k,ω) = 1

ω + μ − HDFT
k − Ek	(ω)

, (4)

where μ is the chemical potential, Hk
DFT is noninteracting

energy obtained by the DFT calculation, and Ek is the
embedding operator. The electron correlation effect is treated
by the self energy 	(ω) in the local orbital basis.

Near the Fermi level, quasiparticle bandwidth is substan-
tially suppressed with a factor of 1/Z (=1 − ∂	[ω]/∂ω|ω=0),
and the incoherent background (	[ω] �= 0) exists far from
the Fermi level, as shown in Fig. 1. Usually the band-
width renormalization factor (1/Z) can be described by the
competition of the local Coulomb interaction U and the
bandwidth W in a one-band Hubbard model. With large W
compared to U, the band structures are well described by
the conventional DFT method (1/Z ∼1). With decreasing
W/U, the quasiparticle bandwidth is renormalized (1/Z >

1), and the spectral weight is transferred to the incoherent
background, which is called Hubbard bands. Below the critical
value of W/Uc (where 1/Z → ∞), the spectral weight is totally
transferred to the incoherent states, and the system becomes
the Mott-Hubbard insulator. In a multiband system, such as
iron-based superconductors, the Hund’s coupling constant
J plays an important role in the strength of the electron
correlation. The behavior of 1/Z is much more sensitive to J
rather than U. With small values of J, there are no well-defined
Hubbard bands, even if U is as large as 5 eV. Only when
J = 0.8 eV do 1/Z values of each local 3d orbital become
2.0–2.6 in Ba(Fe0.9Co0.1)2As2. When we slightly increase J,
the system shows a substantial incoherent spectrum with the
suppression of the quasiparticle spectrum. The importance
of Hund’s coupling in the description of the metal-insulator
transition has been noticed in the two-band Hubbard model at
half-filling.30 In most of the iron-based superconductors, the
renormalization factor is estimated by 1/Z = 1.5–4 due to the
Fe 3d electron correlation.31,32

In the anisotropic multi-orbital system, each orbital usually
has a different bandwidth Wi , so they experience a different
renormalization factors 1/Zi due to the difference of Wi/U
(or Wi/J ). With the smaller bandwidth of the dxz,yz and dxy
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FIG. 2. (Color online) The DFT + DMFT spectral function of
Ba(Fe0.9Co0.1)2As2 (red spectrum) and rescaled DFT band structure
(blue lines) by a factor of 2.5.

orbitals, they have bigger 1/Zi of 2.54 and 2.56, respectively.
With the larger bandwidth of the dz2 and dx2−y2 orbitals, they
have smaller 1/Zi of 2.01 and 2.03, respectively. One can
also identify the shift of the peak position from the DFT to
DFT + DMFT spectral functions, which reflects the different
renormalization factors.

The correlation effect can be shown more clearly from the
momentum-resolved spectral function. Figure 2 compares the
DFT + DMFT spectral function and the DFT band structures
of Ba(Fe0.9Co0.1)2As2. Due to the incoherent part of the
spectral function in the DFT + DMFT method, the spectral
function cannot be simply interpreted as simple band structures
in the DFT method. Near the Fermi level, however, this system
follows well the Fermi liquid behavior, so the spectral function
can be clearly defined as a quasiparticle band structure.
At the higher energy range, due to the incoherent part of
the electron-electron scattering, the spectral functions are
blurred and cannot be defined as a single band feature.
We rescaled the DFT bandwidth by a factor of 2.5, which
provides reasonable agreement between the DFT + DMFT
spectral functions and the DFT band structures near the Fermi
level.

FIG. 3. (Color online) Schematic view of the electron correlation
effect on the electrical anisotropy (γ σ ). vi is the group velocity
obtained from the band dispersion, and Zi is the band renormalization
factor due to the electron correlation effect.

Due to the different renormalization factors of each Fe 3d
orbital, the DFT + DMFT band structures are slightly distorted
from the simply rescaled DFT band structures near the
Fermi level. The discrepancies are consistent with the orbital-
dependent renormalization factors shown in Fig. 1. Our results
are in good agreement with the recently reported ARPES
results.33

Figure 3 summarizes the electron correlation effect on
the conductivity anisotropy schematically. The directional
conductivity is calculated by the group velocity along each
direction σ i ∼ vi

2 as shown in Eq. (1), and its anisotropy is
given by γ σ ∼ vx

2/vz
2. If we assume that each band has an

independent orbital character, and they have different renor-
malization factors 1/Zi , then they experience different scaling
of the band dispersion, and the directional conductivity is given
by σ i

′ ∼ (Zivi)2. Finally, the conductivity anisotropy has to
be modified with the coefficient of Zx

2/Zz
2. Usually, such

an anisotropic correlation effect is observed in multi-orbital
systems such as the d/f valence electron compounds. Indeed,
the conventional DFT approaches have failed to explain the
experimentally observed anisotropies of the conductivity9,34

and superconducting properties in iron-based superconduc-
tors, as shown in Fig. 4(a). In the real band structures, the mass
enhancement of each band should be understood as a mixture
of multi-orbital contributions. Although 1/Z is a local property
for each orbital, the quasiparticle renormalization in the
Kohn-Sham basis can have the momentum-dependency 1/Zk

by the embedding step. Actually, the Kohn-Sham eigenstates
have multiple characters of the correlated and noncorrelated
conduction electrons. So, the group velocity, which is the
momentum derivative of the eigenvalues, depends on the
proportion of each orbital.

In the DFT calculation, the conductivity anisotropy of
Ba(Fe0.9Co0.1)2As2 is calculated at 7.67, which reflects that
this system is rather two dimensional, i.e., also consistent with
the two-dimensional Fermi surfaces in the literature. However,
a recent experiment on the resistivity reveals that the anisotropy
is 2.5–4.5, which is much smaller than the theoretical value
obtained from the DFT calculation.9 Using the DFT + DMFT
calculation, the anisotropy is strongly suppressed with the
value of 3.24, which is consistent with the experimental
value.

We have calculated the anisotropy of superconducting
properties of several iron-based superconductors using the
DFT and DFT + DMFT method. The anisotropy in the
superconducting properties also can be extracted from the
band structures according to the Ginzburg-Landau theory.
The London penetration depth anisotropy is approximately
given by γ λ = γ σ

1/2,29 assuming an isotropic supercon-
ducting gap and low-temperature limit. In the DFT + DMFT
calculation, we use the quasiparticle band structures for the
calculation of the group velocity in Eq. (1). The scattering
rate coming from the correlation effect is neglected be-
cause this system follows well the Fermi liquid behavior
at low temperature. If the system is more localized and
deviates from the Fermi liquid behavior, the finite size of
the scattering rate should be correctly treated in the transport
properties.

Figure 4(a) shows the comparison of the penetration
depth anisotropies obtained from the DFT calculation and

054542-3



HYO SEOK JI, GEUNSIK LEE, AND JI HOON SHIM PHYSICAL REVIEW B 84, 054542 (2011)

FIG. 4. (Color online) The experimental electrical anisotrop-
ies9,34–44 of iron-based superconductors compared to the (a) DFT
and (b) DFT + DMFT calculations. The dotted lines represent the
reference points where the experimental and calculated results are in
good agreements.

experiments.9,34–44 Because various experimental results show
different anisotropies for given compounds, we collected
all the available experimental results and represent them
as the error bar. We assume that the upper critical field
anisotropy γHC2 = HC2

ab/HC2
c is same to γ λ. Although it shows

temperature variance due to the multiple superconducting
gaps, we consider them as the error bar. The DFT results
clearly show the trends observed in experiments, although
they systematically overestimate the experimental values.
LaFeAsO0.9F0.1 has the biggest anisotropy due to the biggest
blocking layers between FeAs layers. FeSe also has large
anisotropy in the calculation due to the empty space. Because
its interlayer interaction is very weak due to the van der Waals
force, the anisotropy of FeSe is also expected to be big. LiFeAs
and BaFe2As2 have comparable sizes of anisotropies. With
a decreasing size of cations, SrFe2As2 and CaFe2As2 show
suppressed anisotropies. For CaFe2As2, the anisotropy is just
γ λ = 1.33 with the DFT calculation, which is almost three

dimensional. Only CaFe2As2 shows good agreement between
the DFT calculation and experimental observations. In all other
compounds, the DFT results are higher to the experimental
values.

By adding the correlation effect with the DFT + DMFT
approach, all the iron-based superconductors show substan-
tially reduced anisotropies by factors of 40%–80%,which are
in good agreement with the experimental results. Although
we assume that all the compounds have the same U and
J, DFT + DMFT results are within the experimental devia-
tions, except SmFeAsO0.75F0.25. The discrepancy observed in
SmFeAsO0.75F0.25 might be explained by the incorrect use
of U and J. More precise experiments on the anisotropy will
confirm the importance of the exact estimation of U and J.

In the iron-based superconductors, each band has multiple
orbital characters, which include mainly Fe 3d states, so the
different 1/Z values for each 3d orbital provide the main
contributions in the change of anisotropy. The proportion
of As 4p states is also an important factor because they are
substantially hybridized with the Fe 3d states near the Fermi
level. The change of the anisotropy should be analyzed not
only by the different 1/Z values for each Fe 3d orbital but
also by the proportion of As 4p orbital. For example, among
the two electron Fermi surfaces (FS) near the X point in
Fig. 2, one (FS1) has mainly Fe 3d orbital character, which
has a rather small group velocity due to its narrow bandwidth.
Another FS (FS2) has a mixed orbital character of Fe 3d and
As 4p states, which has a bigger group velocity with broad
bandwidth. The group velocity of FS1 is more suppressed than
that of FS2 because FS1 has more correlated electrons. This
difference induces the change in the anisotropy as explained
in Fig. 3.

Even though the anisotropy values vary depending on
the different lattice constants or blocking layers between
FeAs layers,7,9 all the iron-based superconductors are not
as anisotropic as predicted in the DFT calculations. Specif-
ically, AeFe2As2 has almost three-dimensional electronic
properties,45 as shown in Fig. 4(b). These 3D-like features
are clearly different from the quasi-2D copper oxides, so the
HTSC in iron-based superconductors should be understood
in different way.46 Therefore, we suggest that the correlation
effect in the iron-based superconductors should be correctly
treated to understand the superconductivity and transport
properties of the iron-based superconductors.

In summary, we have used the DFT + DMFT method
to show that the electron correlation effect has an impor-
tant role in describing the anisotropy of the iron-based
superconductors. Due to the different renormalization fac-
tors of each 3d orbital, the electrical anisotropy by the
DFT + DMFT method is substantially suppressed compared
to the value of the DFT method. Our results are in good
agreement with recent experimental results from iron-based
superconductors.

We acknowledge useful discussions with K. Haule, J.
S. Kim, and K. H. Kim. Also we appreciate K. Haule for
providing DFT + DMFT code.16 This research was supported
by the National Research Foundation of Korea (No. 2010-
0006484, 2010-0026762, R32-2008-000-10180-0), and by the
POSTECH Basic Science Research Institute Grant.
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