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Abstract: Transition metal carbides (TMCs) and transition metal nitrides (TMNs) have 

attracted attention as promising electrocatalysts that could replace noble metals of high 

price and limited supply. Relative to parent metals, TMC and TMN behave like noble metals 

for electrochemical reactions such as oxidation of hydrogen, CO and alcohols, and reduction 

of oxygen. When TMC and TMN are combined with other metals, the electrocatalytic 

synergy is often observed in electrochemical reactions. Thus, combinations with a minute 

amount of Pt or even non-Pt metals give performance comparable to heavily loaded  

Pt-based electrocatalysts for low temperature fuel cells. It appears that TMC based 

electrocatalysts are more active as anode catalysts for oxidation of fuels, whereas TMN 

based catalysts are more active for cathode catalysts for oxygen reduction and more stable.  

Keywords: transition metal carbide; transition metal nitride; low temperature fuel cells 

 

1. Introduction  

Recently, the attention on clean energy has increased due to the limitation of hydrocarbon based 

energy sources and for protection of a clean environment [1-3]. Fuel cells have been considered as 

effective energy devices with a variety of applications from microdevices of milliwatt (mW) scale to 

large megawatt (MW) scale electric generators. They convert fuels into electricity with higher efficiency 

than Carnot cycle devises, and can be intrinsically environmentally friendly, with much less emission of 
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pollutants, by using clean fuels derived from renewable energy sources. They are pivotal power 

generating devises that would play a key role in upcoming hydrogen economy [4,5].  

As fuel cells convert chemical energy into electrical energy, they need a continuous supply of “fuels” 

for power generation. Fuel cells are specified by their electrolyte, operating temperatures and fuel types. 

Among them, the proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) 

represent the most popular low temperature fuel cells. These fuel cells operate below 373 K and are 

suitable for mobile devices, vehicles and residential power sources, due to their low operating 

temperatures, high efficiency and rapid start-up times (Figure 1) [6-10]. 

Figure 1. The schematic process for power production in PEMFC. (Reprinted from 

Reference 25 with permission). 

 

In low temperature fuel cell systems, hydrogen and methanol are employed as fuels for the anode 

side of PEMFC and DMFC, respectively. In the cathode side, the oxygen or air is supplied in both 

systems. Electrochemical oxidation of the fuels produces protons and electrons. The electrons are 

transferred to the cathode side via an outer circuit, and the protons are also transferred to cathode side 

through the electrolyte, i.e., a polymer membrane. The transferred electrons and protons are combined 

with oxygen on the cathode side to produce water as the final product. Thus the electric potential of the 

reaction is used as power source, i.e., 1.23 V and 1.08 V for PEMFC and DMFC (as theoretical 

potentials), respectively [3,10-12].  

The most important component of low temperature fuel cells in terms of cost, performance and  

long-term stability is the membrane electrode assembly (MEA) consisting of the anode, cathode and 

electrolyte [13-19]. The price of membranes can be greatly reduced by large scale production as the fuel 

cells are commercially produced for widespread use. Yet, this cost improvement with large scale 

production cannot be realized for electrocatalysts [20-22]. The low temperature fuel cells operate under 

strongly acidic conditions (pH < 2) originating from the mobility of protons. Under this acidic condition, 

the utilization of base transition metals such as cobalt and iron is restricted by serious dissolution 

problems, even though they have catalytic activity for the redox reactions [13,23-26]. Noble metals 

such as Pt and Ru are used as electrocatalysts due to their high activity at low temperatures and the 

resistance to dissolution under acidic condition [13,27]. Since Pt is an expensive metal in limited supply, 

reducing the amount of its loading for electrode fabrication, or even better, replacing it with non-Pt 
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metals of low cost, high performance and long-term stability, is a critically important topic of research 

for practical dissemination of fuel cell technology [25,28-34].  

Various investigations have reported reduction or replacement of Pt in the anode side of low 

temperature fuel cells [35-37]. To reduce Pt usage, new techniques and materials have  

been proposed such as a decrease of Pt particle size for effective utilization of the surface [38-41], alloy 

formation with other metals [13,35,42] and the use of carbon supports of various textures (e.g., 1-D 

structures) [38,43,44]. It has been estimated that the amount of Pt can be reduced to 0.05–0.4 mgPt/cm
2
 

and 2–4 mgPt/cm
2
 in PEMFC and DMFC, respectively, without serious sacrifice in activity and 

electrochemical stability [45]. In addition, some non-Pt based electrocatalysts were also suggested for 

oxidation reaction, although their stability was not unequivocally established [27]. The technological 

development of cathode electrocatalysts is much slower than that of anode electrocatalysts because of 

the slow reaction kinetics for oxygen reduction. But the impact of new technological development is 

greater for cathode side because cathode employs much larger amount of Pt to compensate for the slow 

reaction kinetics. It is estimated that around ~0.4 mgPt/cm
2
 is needed for proper activity in PEMFC [13]. 

Thus, for commercialization of low temperature fuel cells, the amount of Pt should be reduced to  

50%–90% of the current level in PEMFC vehicles [3]. In the long run, Pt should be totally substituted 

by non-Pt based electrocatalyst for anode and cathode sides considering the rarity of Pt. Even the state-

of-the-art Pt/carbon electrocatalysts have not still reached desired level in terms of long-term stability 

because of the dissolution and aggregation of Pt particles and the carbon corrosion [47]. For application 

to transportation vehicles, PEMFC should satisfy 5,000–20,000 hrs operation without acute  

deactivation [3,47]. However, the current level is around 2,000 hrs. These results also indicate that the 

new electrocatalyst materials need to be developed for commercialization of low temperature fuel cells. 

As potential substitutes for Pt as electrode material for low temperature fuel cells, transition metal 

carbides (TMCs) and transition metal nitrides (TMNs) have attracted attention as promising 

electrocatalysts. Relative to their parent transition metals, TMCs and TMNs behave like noble metals 

(Pt, Pd, Rh and Ru) for some chemical and electrochemical reactions, including oxidation of hydrogen, 

CO, and alcohols, and reduction of oxygen [48,49]. These electrocatalysts have been utilized as active 

components by themselves, as support materials for other metals, and the second/third component for 

enhancement of electroactivities of other metals. In this review, the fundamental catalytic properties and 

various applications of TMCs and TMNs based materials as electrocatalysts at anode and cathode sides 

for low temperature fuel cells are discussed including their electrochemical stabilities. Recently, the 

various Pt-free electrocatalysts also have been reviewed including the tungsten carbide based materials 

as anode of low temperature fuel cells [27]. 

2. Transition Metal Carbides (TMCs)  

Many transition metal carbides (TMCs) show good mechanical and chemical stability and resistance 

against corrosion under reaction conditions. These materials also show the various catalytic advantages 

over their parent metals in activity, selectivity, and resistance to poisoning. TMCs have been found to be 

good catalysts for a wide variety of reactions typically catalyzed by noble metals of high cost and limited 

supply [50]. The catalytic properties of TMCs have been reviewed [51–55] and references are available 

that cover more general properties of the materials [56–62].  
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The formation of TMCs is extensive throughout the Periodic Table. All transition metals form 

carbides except for the second and third row Group 9–10 metals (Rh, Ir, Pd, and Pt). Table 1 provides a 

list of the most important carbides of Group 4–10 metals [61]. Among them, carbides of Group 4–6 are 

thermodynamically more stable and possess catalytic properties greatly improved over those of parent 

transition metals. The bimetallic and mixed carbides have also been considered as important materials 

due to their enhanced catalytic properties originated from the complementary effects of the each single 

metal carbide. Each carbide material should have the same crystal structure and similar ionic radius to 

form bimetallic carbides. Table 2 shows the various types of bimetallic and mixed carbides. Here, carbon 

resides in the interstitial sites formed by metal atoms [63]. Because of their importance as catalytic 

materials, this account focuses on the carbides of Group 4–6 metals [50]. 

Table 1. Transition metal carbides and their positions in the periodic table. 

 

 

The physicochemical properties of TMCs are related to their electronic structure. A systematic 

change is observed in their catalytic properties as one goes along the same row of the periodic table. 

TMCs have displayed unique surface reactivity and catalytic properties resembling those of noble metals 

rather than those of the parent metals. Furthermore, they demonstrate the hardness and brittleness of 

covalent solids, the high melting points and simple crystal structures typical of ionic solids, and 

electronic and magnetic properties similar to transition metals. Thus, the bonding in transition metal 

carbides can be described as a mixture of metallic, covalent, and ionic components [50]. 

Among the various tungsten carbides, WC is known for the Pt-like catalytic behavior [49,64]. 

Carbon sp-electrons increase the apparent electron-to-atom ratio, producing relatively more Pt-like 

electronic structure. This has been sometimes wrongly interpreted as a claim that there is electron 

transfer from carbon to the tungsten d-band producing a Pt-like charge distribution and hence, Pt-like 

chemical properties [50]. The theoretical calculations and measurements by XPS and XANES indicate 

that the direction of electron transfer is from transition metal to carbon. The charge transfer decreases 

as the parent metals move from Group 4 to 6, probably due to the increase in their electronegativity.  
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Table 2. Mixed Alloy Formation in Carbides and Nitrides. 

 

 

However, this charge transfer is not an important factor in determining catalytic properties of TMCs. 

Instead, the formation of carbides may modify the nature of the d-band of the parent metal relating to 

catalytic properties that are different from those of the parent metals but similar to those of Group  

8–10 noble metals. The metal lattice expands and the metal–metal distance increases upon carbide 

formation. For example, the lattice constant of vanadium expands from 0.26 to 0.42 nm, and that for 

niobium from 0.33 to 0.45. The increase in metal–metal distance causes contraction of the metal d-band, 

which is proportional to the inverse fifth power of the metal–metal distance [65]. The d-band 

contraction would give a greater density of states (DOS) near the Fermi level in comparison with the 

parent metal. Thus TMCs could display catalytic properties resembling those of noble metals in various 

reactions, including electrochemical reactions. With these catalytic effects, TMCs have played pivotal 

roles as main catalysts and as promoters for other metals. 

2.1. Electrochemical Stability of TMCs 

The transition metal carbides (TMCs) have been considered as candidate electrocatalysts to replace 

the noble metals in low temperature fuel cells, which depend on a large amount of noble metals, 

especially Pt. TMCs have been employed as main catalyst, support, co-catalyst in various 

electrochemical systems. For electrochemical applications, the intrinsic stability is the primary concern.  
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Among the metal carbides, tungsten carbides have been widely applied in the electrochemical systems 

including the electrocatalyst for low temperature fuel cells. This is due to its surface reactivity 

resembling that of platinum and stability in acidic medium. Tungsten carbides have several phases like 

tungsten mono-carbide (WC), tungsten semi-carbide (W2C) and cubic tungsten carbide (WC1-X). 

Among the various tungsten carbide phases, WC is known to be the most stable phase. Chen et al. 

reported that WC was more stable than W2C under anodic potential range [66]. As shown in Figure 2, 

W2C led to the anodic current peak at lower anodic potential (between 0.4 V and 0.6 V vs NHE) than 

WC (above 0.6 V vs NHE) in 0.5 M H2SO4 electrolyte. Furthermore, this anodic current at lower 

potential indicates that W2C is more easily oxidized than WC, and implies that loss of W2C can occur in 

fuel cell application. In addition, W2C showed higher corrosion current than WC at the same  

potential [67].  

 

Figure 2. Electrochemical CV measurements performed in 0.5 M H2SO4 saturated with N2 

of W2C and WC films on carbon paper (Reprinted from Reference 66 with permission). 

 

A thin layer of WO3 covers WC surface upon exposure to air, as confirmed by XPS [68]. The 

electrochemical dissolution of WO3 layers (less than 5 nm) in electrolytes depends on the various 

electrochemical conditions such as the pH of the electrolyte and applied potential of the electrochemical 

system. The electrochemical dissolution was observed by different mechanisms at the basic [69] and 

acidic pH [70] of electrolyte. WO3 is readily dissolved as WO4
2- 

by surrounding ions in the electrolyte 
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under alkaline conditions. Under acidic conditions, thin passive WO3 layers were preserved well on 

tungsten carbide surface [71]. It is believed that this layer could play a role as a corrosion protecting 

layer and inhibitor of electroactivities. Thus, WC can maintain electrochemical stability in acidic media, 

and can be applied to low temperature fuel cells operating in acidic condition of pH < 2. WC covered 

with thin WO3 layers were stable until +0.7 V (vs SCE) without any redox current in 0.1 M H2SO4 

electrolyte [72]. Further, the electrochemical stability on WC can be improved in acidic electrolyte by 

addition of second metals like Co [73,74], Ni [74], Fe [74] and Ta [75].  

As shown in Figure 3, the electrochemical stability of pure and Pt modified WC foil has been studied 

before and after CV with XPS analysis [76]. Pure WC was completely changed to WxOy species during 

70 repeated CV cycles from –0.09 V to 1.241 V (vs NHE) performed in 0.05 M H2SO4 electrolyte. 

However, in case of Pt modified WC, WC phases were conserved well after 50 cycles CV measurement. 

This enhanced electrochemical stability was also observed in CV results. The corrosion current density 

of Pt modified WC was dramatically reduced at the anodic corrosion region. In addition, onset potential 

of corrosion of Pt modified WC was observed at ~1.0 V, higher than that of pure WC at ~0.8 V (vs 

NHE). Furthermore, this research group studied the electrochemical stability of pure and Pt modified 

Mo2C foil with same analysis. Unlike WC, the electrochemical stability of Pt modified Mo2C was not 

enhanced by Pt. However, the Mo2C phase remained intact after CV measurement carried out at acidic 

media [76]. This result implies that Mo2C has the intrinsic stability without aid of other metals, and the 

onset potential for corrosion was ~0.3 V (vs NHE). 

 

Figure 3. (a) Electrochemical CV measurements and (b,c) XPS results of pure and Pt 

modified WC foil performed in 0.05 M H2SO4 electrolyte (Reprinted from Reference 76 

with permission). 

 

2.2. CO Oxidation on TMCs 

Carbon monoxide (CO) is produced as an intermediate during the oxidation of methanol in DMFC. 

Also, CO is the common impurity in the hydrogen feed in PEMFC systems. CO has a strong binding 

energy on Pt surface, poisoning the active sites of platinum. It needs to be oxidized to be removed from 

the sites. Tungsten carbide has shown high CO tolerance in low temperature fuel cell system. Thus,  

20 wt% Pt/WC based on commercial tungsten carbide (low specific surface area ~1 m
2
/g) was reported 
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for CO tolerance [77]. CO oxidation peak in CO-stripping experiment with Ag/AgCl reference 

electrode and a scan rate of 15 mV/sec in 1 M HClO4 electrolyte, appeared at 0.68 V (vs RHE) which 

was lower potential than that of 20 wt% Pt/C (0.8 V vs RHE). This result implies that WC could adsorb 

the hydroxyl group (–OH) more easily like common second metals such as Ru and Sn in anode of 

DMFC. Therefore, CO adsorbed on Pt can be oxidized by –OH groups and leave the Pt surface. Pure 

WC and cobalt containing WC showed high current density in a half cell test under 1% CO/99% H2 

flow as shown in Figure 4 [78].  

 

Figure 4. CO tolerance test of (a) pure WC, (b) Co containing WC (Reprinted from 

Reference 78 with permission). 

 

 

The difference of current density was just 2~6% with and without CO. Also, 7.5 wt% Pt/WC 

electrocatalyst showed the 7% decrease of EAS value in a half cell system under 1% CO/99% H2 gas 

dissolved in 1 M H2SO4 electrolyte (Figure 5) [79].  

Considering the 20% decrease of commercial Pt/C catalyst under the same condition, WC is 

considered to have the high resistance to CO poisoning. Another theory for CO tolerance was proposed 

by Hwu et al. for WC [80,81]. They suggested that the CO tolerance might be originated from the 

lower CO desorption temperature on pure and Pt modified WC than that of pure Pt. The suggestion 

was based on the fact that CO2 was not detected by TPD during methanol oxidation on Pt modified 

C/W(111) surface.  

Considering the 20% decrease of commercial Pt/C catalyst under the same condition, WC is 

considered to have the high resistance to CO poisoning. Another theory for CO tolerance was proposed 

by Hwu et al. for WC [80,81]. They suggested that the CO tolerance might be originated from the 

lower CO desorption temperature on pure and Pt modified WC than that of pure Pt. The suggestion 

was based on the fact that CO2 was not detected by TPD during methanol oxidation on Pt modified 

C/W(111) surface.  
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Figure 5. CO tolerance test of (a) 20wt% Pt/C (E-Tek), (b) 7.5wt% Pt/WC (Reprinted 

from Reference 79 with permission). 

 

 

2.3. Hydrogen Oxidation on TMCs 

 

Hydrogen oxidation over tungsten carbides provides the test for application to PEMFC. WC itself, 

metal loaded WC and carbon supported WC have displayed effective hydrogen oxidation showing a 

synergistic phenomenon of the corresponding components.  

Hydrogen oxidation activity of pure WC and W2C phases was reported by Burstein et al. [67,78]. 

Pure WC showed anodic current density of 30 mA/cm
2
 under H2 flow in chronoamperometric 

experiment in 1.5 M H2SO4 electrolyte. This anodic current density was three times higher than that of 

pure W2C. In addition, WC loaded with a small amount of Pt was investigated for hydrogen oxidation. 

Electrocatalytic hydrogen oxidation activities can be represented by electrochemical active surface area 

(EAS [m
2
/gPt]) in half cell system. Ten wt% Pt loaded WCs showed 5.9 m

2
/gPt to 11.4 m

2
/gPt in  

0.5 M H2SO4 electrolyte at room temperature [82], while 7.5 wt% Pt loaded W2C and WC led to high 

EAS value of 327 m
2
/gPt [83] and 316 m

2
/gPt [84] in 1 M H2SO4 electrolyte at room temperature.  

Tungsten carbide based electrocatalysts without Pt have been evaluated in PEMFC single cell. The 

maximum power densities of WC/C (1 mg/cm
2 

loading on carbon paper) and Ni-WC/C (1 mg/cm
2 

loading) were 6.5 mW/cm
2
 and 8.9 mW/cm

2 
measured for 5 cm

2
 of active area with cathode of 20 wt% 

Pt and Nafion 117 membrane [85]. Ni-WC/C showed 16 mA/cm
2
 at 0.5 V. In Figure 6, W2C (loading of 

0.48 mg/cm
2
) based anode electrocatalyst prepared by ball-milling of WO3, Mg and C mixture was 

evaluated in PEMFC single cell test at 80 °C (cell operation temperature) for 5 cm
2
 of active area, 

cathode of Pt/C (0.3 mg/cm
2
), Nafion 112 and H2/Air = 5. This electrocatalyst showed high current 

densities of 240 mA/cm
2
 (2 atm) and 280 mA/cm

2
 (3 atm) at 0.5 V, respectively [86]. The origin of this 

unusually high current density is not clear. 
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Figure 6. Polarization curves of the tungsten carbide-based anode in a 5 cm
2
 single cell with 

fully humidified H2 / air at flow rates of 0.2/0.5 slpm and 80 °C (Reprinted from  

Reference 86 with permission). 

 

2.4. Oxidation of Methanol and Ethanol on TMCs 

The electrocatalytic activity of methanol oxidation on pure tungsten carbide is very low [87]. 

Therefore, in many cases, the electroactivities for methanol oxidation was evaluated with a small 

amount of Pt loaded on tungsten carbides to take advantage of a synergistic effect between Pt and 

tungsten carbides [50,66,81]. These synergistic effects between Pt and C/W(111) and polycrystalline 

WC were revealed via TPD and HREELS analysis for methanol oxidation reaction. Tungsten carbides 

were more active for formation of methoxy group (CH3O–) than Pt as shown in Figure 7 [66,81,88].  

 

Figure 7. HREEL spectra monitoring thermal properties of 1.0 L CH3OD adsorbed on (a) 

pure C/W(111) and (b) 0.7 ML Pt/C/W(111). (Reprinted from Reference 88 with 

permission). 
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The methoxy groups adsorbed on pure C/W(111) surface with energy loss of 2,936 cm
-1

 or  

2,963 cm
-1

 were formed at very low temperature, and it remained up to high temperature without 

further reactions as in Figure 7(a). In contrast, Pt was more active for subsequent oxidation process of 

methoxy groups than tungsten carbides. As shown in Figure 7(b), the methoxy groups were actively 

oxidized by 0.7 ML Pt/C/W(111) from 330 K which was similar operating temperature of DMFC. 

Furthermore, they reported another type of synergistic effect related to the corrosion stability of 

tungsten carbide by addition of Pt [89].  

These synergistic effects were also observed in other reports. 7.5 wt% Pt loaded W2C microspheres 

partly covered with amorphous carbon led to high specific activity of 156 mA/cm
2
 at 0.75 V  

(vs Ag/AgCl) for methanol oxidation in half cell test without Ru [83]. This specific activity was higher 

than that of commercial PtRu/C electrocatalyst. In addition to the synergistic effect for methanol 

oxidation discussed above, a strong bifunctional effect was suggested of Pt and WC for CO resistance. 

This group also reported that specific activities (above 200 mA/cm
2
 at 0.75 V vs Ag/AgCl) of 3.5 wt% 

and 7.5 wt% loaded tungsten carbide (WC) were higher than those of Pt/W2C and commercial catalyst 

(20 wt% PtRu/C, E-Tek) for methanol oxidation as shown in Figure 8, [84].  

Figure 8. (A) TEM images of (a) pure mesoporous WC and (b) 3.5 wt% Pt/mesoporous 

WC. (B) Methanol oxidation of (a) 3.5 wt% Pt/part mesoporous WC, (b) 20 wt% PtRu/C 

commercial (E-Tek) and (c) 3.5 wt% Pt/mesoporous WC in repeated CV (Reprinted from 

Reference 84 with permission). 
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Also, 20 wt% Pt/W2C electrocatalysts showed the higher mass current density (mA/mgPt) than  

20 wt% Pt/C at the same potential in 0.5 M H2SO4 electrolyte, SCE reference electrode [90]. Recently, 

many new reports for methanol oxidation over tungsten carbides have been published. PtNiPb loaded on 

WC (major phase) showed higher electroactivity and long-term stability than those of PtNiPb/C in half 

cell reaction performed under 0.5 M CH3OH + 0.5 M H2SO4 electrolyte and scan rate of 20 mV/s as 

shown in Figure 9 [91]. Particularly, the electroactivity of this electrocatalyst in CV was preserved for 

1,000 cycles in potential range from 0.05 to 1.2 V (vs RHE). This enhanced activity and stability 

seemed to originate from the high CO tolerance and strong interaction between metals and  

tungsten carbide.  

Figure 9. CV traces of methanol electro-oxidation on (A) PtNiPb/WC and (B) PtNiPb/C 

catalysts in a solution of 0.5 M CH3OH and 0.5 M H2SO4 before and after accelerated 

durability test (Reprinted from Reference 91 with permission). 

 

 

Also, PtWC/MWCNT showed higher current density for methanol oxidation in half cell evaluation 

than those of PtRu/C and Pt/C with stable operation for 1,000 cycles [92]. These effective results were 

also proposed to originate from the synergistic effect between Pt and WC, high CO resistance from 

bifunctional effect of Pt and WC, and strong interaction between metal and WC. Pt decorated 
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WC/graphitic carbon nanocomposite electrocatalyst showed excellent performance in half cell test in 

comparison with Pt loaded on Vulcan carbon (VC) [93]. The former electrocatalyst displayed more than 

three times higher mass electroactivity than that of Pt/VC at forward peak potential, and 

Pt/WC/graphitic carbon also showed higher stability for 3,000 CV cycles than Pt/VC.  

Molybdenum carbides were studied for methanol oxidation by Chen et al. [94]. Methanol was readily 

dissociated on carbide-modified Mo(110) which was 63% of complete decomposition to atomic species 

(C and O) and 37% of gas product like CO and H2. This indicated that the molybdenum carbides could 

become a promoter of tungsten carbides for high electroactivity in DMFC system. And C/V(110) and 

C/Ti(0001) surfaces could produce the methoxy intermediate with CH4 gas after dissociation of 

methanol as analyzed by TPD and HREELS techniques [95]. Especially, C/Ti(0001) surface showed the 

ability to decompose the methoxy groups at 351 K and 333 K. C/V(110) and C/Ti(0001) surfaces were 

more active for methoxy formation than those of other planes. 

For ethanol oxidation, non-Pt tungsten carbides electrocatalysts were investigated. Thus, Pd/W2C on 

C and Pd/W2C on MWCNT were tested in half cell system with 1 mol dm
-3

 KOH + 1 mol dm
-3

 ethanol 

electrolyte and Hg/HgO reference electrode under various operating temperatures as shown in  

Figure 10 [96]. 

 

Figure 10. (A) TEM images of (a) WC/MWCNT, (b, c) Pd-WC/MWCNT and (B) the half 

cell results of various electrocatalysts for ethanol oxidation (Reprinted from Reference 96 

with permission). 
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Similarly, Pd/WC on C and Pd/WC on MWCNT electrocatalysts also showed higher specific 

activities (mA/cm
2
) and exchange current density (A/cm

2
) than Pd on C and Pd on MWCNT for ethanol 

oxidation, respectively. Especially, Pd/WC electrocatalysts showed two orders of magnitude higher 

exchange current density than that of Pd/C between 303 K and 363 K. AuPd-WC/C (mixed phase of 

tungsten carbides:WC+W2C+W) displayed higher specific activity than those of Pt/C and Au-Pd/C 

under the same electrochemical condition [97].  

There are some encouraging results of alcohol oxidation with TMC-based electrocatalysts. It is 

particularly interesting that the combination of a minute amount Pt or even Pd and TMC gives activities 

comparable to that of Pt/C of high loading. Thus the synergistic effect between these metals and TMC is 

remarkable although its origin is sometimes not clear. However, these encouraging results have not 

been demonstrated under more realistic single cell conditions.  

2.5. Oxygen Reduction on TMCs 

Metal-loaded carbides and carbide-metal co-deposited carbon have been employed for ORR. 

Tungsten carbides have been most widely studied for oxygen reduction reaction among TMCs.  

40 wt% Pt/WC showed similar cathodic current (–5 × 10
-4

 A) to that of 40 wt% Pt/C as well as the 

electrochemical stability during 100 cycles in CV from 0 V to 1.4 V (vs RHE) with 2,000 rpm [98]. The 

electroactivity of 40 wt% Pt/C for oxygen reduction was seriously degraded after 100 cycles. By 

contrast, 40 wt% Pt/WC electrocatalyst maintained stable cathodic current under the same operation 

condition. The WC+Ta electrode resulted in the enhanced cathodic onset potential, current density and 

stability at various temperatures [75]. This electrocatalysts showed 0.8 V of onset potential and  

–33 μA/cm
2
 (at 0.2 V vs DHE) of cathodic current density for ORR. These high electrochemical 

properties seemed to originate from the enhanced stability of WC by Ta addition. The onset potential 

and current density were higher than those of WC, Ta-WC, Ta, TaC.  

 

Figure 11. (a) TEM images and (b) half cell results for oxygen reduction (Reprinted from 

Reference 99 with permission). 
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As other active tungsten carbide based electrocatalysts, Ag-W2C/C (Figure 11) [99],  

Pt-W2C(+WC)/C [100], AuPd-WC/C [101] showed higher cathodic onset potential, current density and 

Tafel slopes including higher exchange current density than those of Pt metal or Pt/C, which are  

state-of-the-art cathodic electrocatalyst. Especially, Pt-W2C(+WC)/C showed much better methanol 

resistance than Pt/C at cathode side of DMFC as shown in Figure 12. Only oxidation current was 

observed when methanol concentration was above 0.2 M, whereas reduction current was observed up 

to 0.5 M. Thus higher concentrations of methanol feed could be used as fuel. 

 

Figure 12. (A) CVs of ORR on Pt/C in an O2 saturated 0.5 M H2SO4 solution with different 

methanol concentrations (B) CVs of ORR on Pt-W2C/C at the same conditions (Reprinted 

from Reference 100 with permission). 

 

 

 

Like the previous oxidation reactions, all reports are based on results obtained only from the half cell 

system. There is no good single cell performance reported for tungsten carbides based electrocatalysts. 
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It should be noted that the results of half-cell test are not necessarily transferable to the results of the 

single cell test. 

3. Transition Metal nitrides (TMNs)  

Transition metal nitrides (TMNs) display the similar formation and physicochemical properties 

including catalysis to those of transition metal carbides (TMCs) [102]. All transition metals can form 

nitrides with the exception of the second and third row Group 8–10 metals (Ru, Os, Rh, Ir, Pd, and Pt). 

Table 3 provides important nitrides for Group 4–10 metals and the formation of mixed and alloy nitrides 

is already indicated in Table 2. They also have high melting points, hardness, and corrosion resistance. 

These physical properties are desired attributes of catalytic materials that require resistance against 

attrition and sintering under reaction conditions. TMNs demonstrate catalytic advantages over their 

parent metals in activity, selectivity, and resistance to poisoning. They are good catalysts for various 

reactions typically catalyzed by noble metals of high cost and limited supply. The catalytic properties of 

TMNs have been reviewed together with those of carbides due to their resemblance in many  

reactions [51-55] and references that cover more general physicochemical properties of the materials 

are also available [56,58-60,62,103,104].  

Table 3. Transition metal nitrides and their positions in the periodic table. 

 

 

 

The composition of TMNs is similar to that of TMCs of the same metal. TMNs of Group 4–6 are 

thermodynamically more stable and catalytically more active than parent metals. Here, the nitrogen 

resides in the interstitial sites formed by the larger parent metal atoms. The thermodynamic stability 

decreases with increasing Group number from the nitrides of the Group 4 metals. Because the size of 

atoms decreases with the group number, the lattice of high group metals cannot accommodate 

interstitial nitrogen atoms while maintaining close-packed or near close-packed metal atoms [102]. Thus, 

nitrides of Group 7–10 metals are generally less stable and do not belong to the interstitial compounds. 

The catalysis of these nitrides is not discussed, although these metals often turn to surface or bulk 
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nitrides during reactions involving nitrogen-containing reactants. Non metallic Group 13, 14 nitrides 

(BN, Si3N4, AlN, GaN, and InN) are characterized by predominantly covalent bonding and are 

nonconductive or semiconductive. Non metallic Group 13, 14 nitrides have also displayed the similar 

properties with metallic nitrides such as high melting temperature, hardness and corrosion resistance. 

The catalytic utilization of non-metallic nitrides is limited, but they could be used as catalyst supports.  

The physicochemical properties of TMNs are similar to those of TMCs. However, the difference in 

the number of valence electron between nitrogen and carbon brings some different properties [102]. In 

general, the shift in structure correlates with the number of valence electrons in carbon and nitrogen, 

and suggests that these elements increase the concentration of sp electrons in their alloys. And the 

change of geometric and electronic structure is closely related with catalysis. A maximum melting point 

of metals is observed between Group 5 and 6. In case of TMCs, the maximum temperatures of TMCs 

and TMNs are shifted to Group 5 and Group 4, respectively [55]. The shift in the carbides and nitrides 

again correlates with the number of valence electrons in carbon and nitrogen and suggests a greater 

degree of band-filling in the compounds. 

The band structure of TMNs is qualitatively similar to those of fcc transition metals in the shape and 

relative ordering of the bands. For the transition metals, the d-band begins to fill from Ru and Os to Pd 

and Pt. This coincidence of the band structure seems responsible for the observed similarity in catalytic 

properties between Group 4–6 TMCs and TMNs and the Group 8–10 transition metals [102]. The 

electronic structure strongly related with properties of TMNs studied by various spectroscopic 

techniques [105]. Thus, the filled states of d-band were narrowed after formation of nitrides, resulting in 

the similar electronic structure of TMCs and noble metals up to the Fermi level. On the other hand, at 

energies above the Fermi level, the width of the unfilled states of the metal was found to be broadened 

because of the TMNs formation, giving rise to a greater density of empty levels for TMNs than those of 

the parent metal. Due to the deficiency in the d-band occupation near the Fermi level, nitride surfaces 

could have a reduced ability to donate d-electrons to adsorbates. Therefore, high reactivities of early 

transition metals are explained by the formation of nitrides for reactions involving the donation of 

electrons from the metal catalysts to absorbate. The broadened unfilled portion of the d-band should 

make these nitrides better electronic acceptors than both the parent metals and the Pt Group metals. 

Thus for reactions that involve the donation of bonding electrons to the unfilled orbitals of the metal 

substrate, nitride catalysts might be more efficient than both parent metals and Pt Group metals [102].  

3.1. Electrochemical Stability of TMNs 

Application of TMNs has been attempted for the electrochemical systems, including fuel cells, 

electric storage and secondary battery as electrocatalysts with low cost and high efficiency, although not 

as much as TMCs. Recently, various investigations have reported on TMNs as electrocatalyst in some 

important fields, and the attention has been growing. Almost all electrochemical systems depended 

heavily on the large amount of noble metals such as Pt, which makes them expensive. As mentioned, 

TMNs has been considered as a promising electrocatalyst to replace the noble materials due to their 

unique catalytic properties, low price, and abundance. As before, electrochemical stability is one of 

important considerations of electrochemical properties for long-term stability in real system.  
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Tungsten mono-nitride (WN) showed anodic current at low anodic potential region around –0.4 V 

(vs Hg/HgO) in voltammogram performed with a scan rate of 10 mV/s in alkaline electrolyte  

(1 M KOH), which could easily provide the anions to WN [106]. The onset anodic potential 

representing the electrochemical corrosion of WN was shifted to the lower potential region, and the 

corrosion current increased by decrease of scan rate. Until now, the information of electrochemical 

stability for tungsten nitride is insufficient. 

Molybdenum nitride was used in low temperature fuel cells as cathodic electrocatalyst. MoxN  

(x = 1 or 2) on Ti substrate displayed electrochemical stability in acidic electrolyte of 4.4 M H2SO4 up 

to +0.67 V (vs SHE) anodic potential during repeated 50 cycles [107]. But, this electrocatalysts showed 

the surface damage such as crack and crumbling in high cathodic (below –0.1 V vs SHE) and anodic 

(above +0.67 V vs SHE) potential region due to the cathodic and anodic corrosion, respectively. 

Especially, at high anodic potential region above +0.67 V (vs SHE), the composition of oxygen 

increased due to oxide formation of MoOx, which could cause deactivation. These results indicate that 

MoxN reacts with oxygen species present in the aqueous electrolyte and it is unstable above +0.67 V  

(vs SHE).  

Titanium nitride (TiN) shows the high corrosion resistance in electrochemical system. TiN on glass 

substrate had the corrosion onset potential of +0.6 V (vs SSE) in 0.5 M H2SO4 electrolyte [108]. This 

result indicates that TiN is stable up to +0.6 V (vs SSE) without electrochemical redox reaction. And, 

TiN showed enhanced onset potential (~+3 V vs SHE) for corrosion than that of TiC (~+2 V vs SHE) 

in ~3 M NaNO3 electrolyte carried out with a scan rate of 0.5 V/s [109]. Therefore, TiN has been 

utilized as coating of other materials for enhanced corrosion resistance [110]. 

3.2. Methanol Oxidation on TMNs 

As stated above, the application of TMNs for methanol oxidation is rare. In one case, Pt loaded TiN 

showed the electroactivity for methanol oxidation [111]. As shown in Figure 13, Pt/TiN deposited on 

stainless steel substrate showed the high If/Ib ratio representing the high CO resistance in voltammogram 

performed with a scan rate of 20 mV/sec in 0.5 M CH3OH + 0.5 M H2SO4 electrolyte. The bifunctional 

effect between Pt and TiN was cited for the CO resistance of Pt/TiN.  
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Figure 13. (a) SEM image and (b) Cyclic voltammograms of Pt–TiN for methanol oxidation 

in 0.5 M CH3OH and 0.5 M H2SO4 obtained by repeated cycles (Reprinted from Reference 

111 with permission).  

 

3.3. Oxygen Reduction on TMNs 

W2N/C was investigated under half and single cell PEMFC conditions for oxygen reduction [112]. 

W2N/C (18 wt% W) displayed effective electroactivity for oxygen reduction in voltammogram shown in 

Figure 14 performed with oxygen saturated 0.5 M sulfuric acid electrolyte. In contrast, this 

electrocatalyst did not show the cathodic current in nitrogen saturated electrolyte. Furthermore, in 

single cell PEMFC test, the maximum power density of W2N/C cathode loaded on carbon paper  

(0.644 mg/cm
2
) was ~40 mW/cm

2
 under cell temperature of 80 °C. In this single cell test, the anode side 

employed 46.2 wt% Pt/C catalyst with loading of 0.3 mgPt/cm
2
. For long-term stability, the 

chronopotentiometry in single cell condition displayed stable potential for 80 hrs without deactivation 

under fixed current density of 120 mA/cm
2
.  

The electroactivity for oxygen reduction reaction (ORR) of carbon supported MoN (with no other 

metal electrocatalyst) was reported as shown in Figure 15 [113]. MoN/C showed the high cathodic 

current corresponding to ORR in half cell test carried out in 5 M methanol + 0.5 M H2SO4 electrolyte. 

This result indicates that MoN/C electrocatalyst might show the high reactivity for oxygen reduction in 

cathode side. Also, 18 wt% Mo2N/C electrocatalyst was evaluated for ORR in real PEMFC  

system [114]. The single cell evaluation was carried out at 80 °C with 46.2 wt% Pt/C catalyst  

(0.3 mgPt/cm
2
)

 
at anode side. The maximum power density was 65 mW/cm

2
 and 50 mW/cm

2
 for  

0.609 mg/cm
2
 and 1.165 mg/cm

2
 loading of Mo2N/C on carbon paper, respectively. The long-term 

stability was also studied by chronopotentiometric results recorded in single cell condition at a fixed 

current density of 200 mA/cm
2
. There was no deactivation of cell performance for 60 hrs. The results 

are encouraging considering no other additional metals have been added, and further study is warranted.  
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Figure 14. (a) Polarization curves at different cell temperatures of the single cell with the 

W2N/C as the cathode catalyst. (b) Stability test at the constant current density (Reprinted 

from Reference 112 with permission). 

 

 

Figure 15. (A) Cell polarization curves of single cells with different cathode catalysts 

cathode: (a) 18 wt% Mo2N 0.609 mg/cm
2
; (b) 18 wt% Mo2N 1.165 mg/cm

2
. (B) Stability 

study for the Mo2N/C electrocatalyst cathode: 18 wt% Mo2N 0.609 mg/cm
2
. (Reprinted 

from Reference 113 with permission). 

 

 

4. Conclusions  

Transition metal carbides (TMCs) and nitrides (TMNs) have been extensively investigated for 

applications in energy devices as electrode materials such as low temperature fuel cells. TMCs seem to 
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suit for low temperature fuel cell application according to the results of such studies as well as their 

electrocatalytic properties. TMCs have desired properties as electrodes for low temperature fuel cells 

like surface reactivity resembling Pt, electrochemical stability, high CO resistance and interaction with 

metals. Yet its own activity is low by itself. Therefore, TMCs are employed as support or second active 

component combining with other metals such as Pt, Ru and Pd for high electrochemical activities. When 

TMCs is combined with other metals, the electrocatalytic synergistic phenomena are often observed. 

The new electrocatalysts based on TMCs combined with non-Pt and minute amount of Pt for low 

temperature fuel cells could give new materials combinations of high performance and low cost. Further 

extension to single metal/bimetal/ternary metals including the structural and electronic modification 

could be a fruitful approach together with the modification of TMCs itself such as bimetallic carbides.  

TMNs have attracted attention in the field of ORR for low temperature fuel cell. TMNs has been 

also utilized for ORR in combination with other metals such as Pt and Pd with effective half and single 

cell performances. Actually, the possibility of TMNs for ORR seems to be higher than TMCs. TMNs 

has been known for promotion of the 4-electron pathway, and enhancement of stability via strong 

interaction with various metals. Furthermore, the long-term stabilities are already demonstrated in some 

cases. Like TMCs, modification and variation of metals as well as nitrides could provide opportunity to 

find new electrode materials.  
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