
Confinement-Induced Transition of Topological Defects in Smectic Liquid Crystals:
From a Point to a Line and Pearls

Joonwoo Jeong and Mahn Won Kim*

Department of Physics, KAIST, Daejeon, 305-701, Republic of Korea
(Received 17 November 2011; revised manuscript received 1 March 2012; published 18 May 2012)

We report a study on the confinement-induced transition of the topological defects of liquid crystals

(LCs) using smectic-A LCs confined in prolate spheroids with homeotropic anchoring. Upon increasing

the aspect ratio of a LC droplet, dispersed in a stretched elastomer film, the topological defect undergoes a

transition from a point to a line of which the length is a function of the aspect ratio. Additionally, when the

size of a droplet is larger than a certain value, the defect has a pearl-necklace-like texture. We propose a

simple model to understand the formation of these defects in terms of the misorientation and undulation

instability of the smectic layers.
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A balance between bulk elasticity and surface anchoring
usually determines the structure of confined liquid crystals
(LCs) [1].With a typical elasticmodulus of�10�11 N and a
surface anchoring coefficient of �10�5 N=m, confine-
ments on themicron scale affect the structure of LCs greatly
and often produce topological defects [2–4] which can be
observed optically. Understanding and controlling these
defects are related to various topics in condensed matter
physics [5]. They are also important in technological appli-
cations such as quality control of LC-based products and the
recently suggested lithography using LCs [6,7].

The size and shape of the confinements are critical to
obtaining specific topological defects of LCs. For example,
size-dependent changes in LC ordering have been clearly
observed in LC droplets [8,9]. In polymer-dispersed liquid
crystal (PDLC) research, how the shape of LC droplets
dispersed in a polymer matrix affects the electro-optic
properties has been studied [10–12]. Many other geome-
tries with controlled surface polarities have been studied as
confinements [13–23]. However, there has been no system-
atic observation of individual defects in confinements of
low symmetry with continuously varying curvature. In
addition, the transition of topological defects due to con-
tinuous changes in the shape of the confinements has not
been reported.

In this Letter, we observe the transition of topological
defects of smectic-A (Sm-A) LCs confined in prolate sphe-
roids with homeotropic anchoring while controlling sys-
tematically the shape and size of the confinements. We
choose a prolate spheroid in which three radii, a, b, and c,
have a > b ¼ c, because it has a continuously varying
curvature and we can control its shape by the unidirectional
stretching of a spherical droplet [10,24,25]. This simple
but nontrivial geometry can be considered as a type of
intermediate geometry between a sphere (a ¼ b ¼ c) and
a cylinder (a ¼ 1, b ¼ c).

To implement this, we utilize 4’-octyl-4-
biphenylcarbonitrile (8CB) droplets dispersed in

poly(dimethylsiloxane) (PDMS) elastomer, which is
known to induce homeotropic anchoring [11]. The LC-
in-PDMS film of 130 �m thickness is mounted on a
custom-built tensile tester which stretches the film unidir-
ectionally using a micrometer. We track a chosen set of
LC droplets while stretching the film under an optical
microscope. All images are taken with quasimonochro-
matic light (wavelength � 560 nm) from a halogen lamp
using a bandpass filter (BP 545–580, Olympus). To obtain
the equilibrium configurations of the LC droplets, after
being stretched, the film is heated over the smectic
A-nematic transition point and cooled back to the ambient
temperature, at which 8CB is in Sm-A phase. All the
observations in the Sm-A phase are done at the ambient
temperature of 26� 1:5 �C.
As shown in Fig. 1, images from one droplet are col-

lected according to the aspect ratio and the LC phase.
Polarized optical microscopy (POM) images are also taken
with two different directions of crossed polarizers. By
fitting the bright-field images of the droplets into ellipses,
we measure the length of the major and minor axes accord-
ing to the strain of the film. The maximum strain is limited
by the rupture of the film. To quantify this strain in terms of
the droplets’ dimensions, we define the aspect ratio as the
ratio of the major axis to the minor axis. The volume of this
spheroidal cavity in PDMS, which is filled with LCs, is
measured and maintained within 5% experimental error.
This small error is deemed feasible because the Poisson’s
ratio of PDMS is close to 0.5 [26].
It is clear from Fig. 1(a) that the defect of Sm-A LC

is strongly affected by the confinement shape. When
the aspect ratio is 1, the dark spot of a point defect in the
bright-field image and the Maltese crosses according to the
direction of the crossed polarizers can be identified. Upon
increasing the aspect ratio of the LC droplet in the Sm-A
phase, the dark spot at the center in the bright-field image
appears to extend into a line. This line corresponds to the
dark line on the major axis in the POM images. The other
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dark regions in the POM images can be matched to regions
where the retardation of quasimonochromatic light is equal
to 2� or where the local director field is aligned parallel to
either the polarizer or analyzer [11]. In the nematic phase
[Fig. 1(b)], we simply observe the point defect, and thereby
the Maltese crosses. The isotropic phase does not show any
defects or birefringence [Fig. 1(c)].

We identify the dark line on the major axis as a line
defect. This line defect always appears dark under the
rotation of crossed polarizers [27]. The length of the line
defect is plotted with points in Fig. 2(a) according to the
aspect ratio and the diameter of an original spherical
droplet. In Fig. 2(b), to compare these lengths regardless
of the sizes of the droplets, the lengths are normalized to
the major axis 2a. We measure the lengths 5 times and omit
error bars because the sample standard deviations of most

data points are less than 4%. We change the phase of
the LC into the nematic phase and cool the sample back
to the Sm-A phase before each measurement.
Under the assumption that smectic layers of the same

thickness are parallel to each other and to the interface,
directors of LC molecules lie on the normal lines to the
nearest boundary due to homeotropic anchoring [28]. If
we consider the first quadrant of a spheroid, as shown in
Fig. 3(a), these normal lines intersect the major axis at
angles � with the x intercepts (x0, 0). From the equation of
the ellipse x2=a2 þ y2=b2 ¼ 1 and the equation of a line
normal to the ellipse at (X, Y), x0 is determined by Eq. (1)
when a2Y=b2X ¼ tan� [27],

x0

a
¼ a=b� b=a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tan2�þ ða=bÞ2p
: (1)

When (x0, 0) moves from (a, 0) to (0, 0), � increases from
0� to 90�. Note that � is 0� from (a, 0) to ðða2 � b2Þ=a; 0Þ,
which is the center of curvature at (a, 0) of the ellipse.
Because of these misorientation angles �, parallel smectic

layers of the same thickness cannot fill the prolate spheroid.
In other words, as shown in Figs. 3(b) and 3(c), smectic
layers around the major axis are bent through 2� and thus
become dilated, dd > d0, or create defects. When K is the
splay modulus and B is the compressional (dilational)

modulus of Sm-A LC, the penetration length � ¼ ffiffiffiffiffiffiffiffiffiffi

K=B
p

is comparable to the thickness of one smectic layer d0 �
2 nm. Then, considering the thickness of the curvature wall
tCW � 2�= tan� [29], we assume that the dilated region is
very small compared to the size of the droplet, tCW � a.
When � � 1 rad, the dilation is also very small. Therefore,
Eq. (1), which assumes parallel smectic layers of the same
thickness, can be valid at the micron scale.
We assume that the dilation of smectic layers in the

misoriented region plays a major role in the formation of
the line defect. As the misorientation angle � increases
from 0�, the elastic free energy of the configuration shown
in Fig. 3(b) increases rapidly due to the dilation [29]. When
� surpasses a critical misorientation angle �, smectic

FIG. 2 (color online). The lengths of line defects and the critical angle � according to the aspect ratios and the diameters of the
original spherical droplets. (a) The lengths of line defects of four representative droplets are plotted with points. (b) The lengths of (a)
are normalized to the major axes at each aspect ratio. Solid lines are fitting results using Eq. (1) when x0 ¼ l=2 and � ¼ �. (c) The
critical angles � are plotted with points according to various diameters of 48 original spherical droplets. Each � is obtained from
the fitting like a solid line in (b).

FIG. 1. Optical microscopy images of an identical LC droplet
according to the aspect ratio and LC phase. (a) Smectic-A phase.
The first column contains the bright-field images. The second
and third columns show the POM images. The directions of
crossed polarizers are shown as arrows in the upper right corners.
The same format applies to (b) and (c). (b) Nematic phase.
(c) Isotropic phase. POM images of the isotropic phase are
omitted due to the lack of birefringence.
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layers can lower the elastic free energy by creating defects.
In other respects, when (x0, 0) moves from (a, 0) to (0, 0),
the dilation dd � d0 increases and accumulates. When
this integrated dilation becomes comparable to the critical
thickness [30,31], smectic layers can break into the
defects [32].

Assuming that � is mainly determined in the misor-
iented region localized around the major axis, we reason
that � is independent of the shape of the droplet, in other
words, the aspect ratio. Then, using Eq. (1), we estimate
the critical misorientation angle �, where the line defect
starts to appear. When l is the length of the line defect and
x0 ¼ l=2, � ¼ �, Eq. (1) becomes the relation between the
aspect ratio (a=b) and the normalized length of the line
defect (l=2a) with only one parameter, the critical misor-
ientation angle �. The solid lines in Fig. 2(b) are the fitting
results to provide � using this relation.

It is worthwhile to note that � depends on the size of the
original spherical droplets. As shown in Fig. 2(c), � lies
between 50� and 70� depending on the size of the original
spherical droplets. In Fig. 2(c), the error bars are from the
standard errors of fittings. We cannot measure reliably the
length of the line defect when the diameter of the droplet is
smaller than 6 �m. On the other hand, when droplets
exceed 20 �m in diameter, the data start to deviate re-
markably from the fitting function, as shown with inverse
triangles in Fig. 2(b). Our model seems to be invalid for
large droplets. When the diameter is as large as 40 �m, a
line defect even evolves into a complex periodic texture,
resembling a pearl necklace, as shown in Fig. 4.

In fact, similar misoriented regions have been studied as
singular lines in focal conic domains [33–35]. Only
de Gennes calculated the approximate elastic free energy
per unit length of this singular line with a very small and
constant misorientation angle [2,33]. In addition,
de Gennes suggested the configuration of a large ��
1 rad, which we draw explicitly in Fig. 3(c). It consists
of an array of edge dislocations with axial symmetry. One
edge dislocation decomposes into a pair of circular

disclination lines, as represented by circular and triangular
dots. In addition, the dashed line along the rotational axis
represents the singular disclination. However, calculating
the elastic free energy of these configurations of arbitrary �
is a challenging problem.
To gain insight into the formation of the line defects, we

introduce a simplified two-dimensional (2D) elastic free
energy model in the cross sections, as shown in Figs. 3(b)
and 3(c) This is very similar to the calculations in the
literature which compared the elastic free energy of a
curvature wall and a dislocation wall [36,37]. Assuming
a slowly varying � along the major axis, the elastic free

FIG. 3 (color online). Schematic diagrams of smectic layers in the cross section of a prolate spheroid. (a) The first quadrant of the
cross section that shows parallel smectic layers with homeotropic anchoring. Cigar-shaped rods represent LC molecules. The thickness
of the smectic layers is not in the actual scale. (b) The dilated smectic layers when � < �. A magnified view of one misoriented region
on the x axis of (a). The thick rotating arrow represents the axial symmetry. d0 is the thickness of one smectic layer without dilation, dd
the thickness of one smectic layer with dilation, and tCW the thickness of the dilated region. (c) The smectic layers with defects when
� > �. The dashed line and the circular and triangular dots represent disclinations. The shaded area around the dashed line emphasizes
the undulation of layers. dB is the size of the Burgers vector, and ld is the distance between two edge dislocations.

FIG. 4. Optical microscopy images of one large LC droplet.
(a) A bright-field image of an elongated large LC droplet in the
Sm-A phase. (b) Bright-field and POM images of the magnified
central region of (a). The first row is the bright-field image. The
second and third rows show the POM images. The black arrows
show the directions of the crossed polarizers.
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energy per unit area of the curvature wall in Fig. 3(b) is
given by Eq. (2) [29],

ECW ¼ 2
ffiffiffiffiffiffiffiffi

KB
p

cos�ðtan�� �Þ: (2)

The elastic free energy per unit area of the configuration
shown in Fig. 3(c) can be estimated as the elastic free
energy per unit length of an isolated edge dislocation
divided by the distance between dislocations ld [38]. The
elastic free energy per unit length of an isolated edge
dislocation is given by Eq. (3) [2], where dB is the size
of the Burgers vector of the edge dislocation and d0 is the
thickness of one smectic layer,

W ¼ B�d2B
2�

þ �K

2
ln
dB
2d0

þ �c: (3)

�� dB=2 is the radius of the core, which is used as the
cutoff length during the integration of the elastic free
energy. �c is the core energy that cannot be described using
the continuum elastic free energy model; it is of the order

ofK [1]. Equation (3) can bewritten as�B�dB, where� ¼
½1þ ��

2dB
lnð dB2d0

Þ þ �
dB
�. We have the numerical constant

� � 1 for dB � � and � � 1:5 for dB � 2�. Because
there are two edge dislocations (y > 0 or y < 0) along
ld ¼ dB= cos�, the elastic free energy per unit area is
finally given by Eq. (4) when dB � � [39],

EDW ¼ 2W=ld � 2
ffiffiffiffiffiffiffiffi

KB
p

cos�: (4)

By equating Eq. (2) with (4), we can estimate the critical
misorientation angle � � 65� at which the elastic free
energy of these two configurations becomes comparable
in 2D. Although it is notable that the theoretical estimation
lies within the range of experimental data, this model does
not explain the size dependency of � shown in Fig. 2(c).
This is probably because this simplified estimation in 2D
does not consider the 3D aspects of defects such as the axial
disclination and the negative Gaussian curvature in Fig. 3(c).
The contribution of 3D defects to the simple 2D model is
roughly estimated in the Supplemental Material [27].

To explain the unique structure of large droplets, the
undulation of the smectic layers with axial symmetry needs
to be considered [40–43]. Cladis first observed a beaded
texture induced by the undulation instability of Sm-A LCs
in a cylindrical confinement. In Fig. 4, this pearl-necklace-
like defect is similar to the beaded texture. Even the repeat
period of the texture is similar to the reported theoretical

estimation 2�
ffiffiffiffiffiffiffiffiffi

2R�
p � 1:8 �m, where the radius R of a

cylindrical confinement is about 20 �m and the penetra-

tion length � ¼ ffiffiffiffiffiffiffiffiffiffi

K=B
p

of a typical Sm-A LC is about
2 nm.

We propose that the undulation in our experiment results
from the periodic defect structure shown in Fig. 3(c). The
shaded cylindrical core undergoes periodic dilation be-
tween the edge dislocations. If the size of the Burgers
vector and the misorientation angle are large enough, the

largely undulated cylindrical core may break into the
periodic defects. This is supported by our observation of
these defects shown only in the central region, where the
misorientation angle is close to 90�. To confirm this defect
structure, we are planning additional experiments such as
electron microscopy of cross-sectioned samples.
In summary, we observe the transition of the topological

defects of LC while controlling the shape of confinements
in situ with different confinement sizes. This system offers
an unprecedented example which will enhance our under-
standing of defects due to continuously varying misorien-
tations imposed by confinement. Simultaneously, our
results show that we can expand the controllability of the
structure of LCs using simple but nontrivial confinement
types such as a prolate spheroid. The line defects or peri-
odic textures tunable by the shape and size of the confine-
ment may offer intriguing possibilities for applications.
Additionally, this type of spheroidal confinement, even
with other surface anchoring options, is applicable not
only to other LCs but also to other organic and soft
materials.
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