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We present the observation of liquid crystals confined in elliptic cylinders. To fabricate the elliptic

cylinder, poly(dimethlysiloxane) micro-channels having circular cross sections are stretched

uniaxially along the direction of the diameter. Upon increasing the aspect ratio of the elliptic cross

section, confined nematic liquid crystals maintain their escaped-radial configuration with

homeotropic anchoring. In smectic-A liquid crystals, defect regions of focal conic domains appear

as a function of the aspect ratio. We propose a model to understand the formation of these defects

in terms of the confinement-induced misorientation, and resultant tilt grain boundaries. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4745773]

Confined liquid crystals (LCs) can have a variety of

structures depending on the balance between bulk elastic

energy and surface anchoring energy.1–3 Cylindrical confine-

ments, a form of symmetric confinement, have been

employed to study these various structures and the properties

of LCs.4–8 For example, an escaped-radial configuration9–12

and beaded-core defects13–15 are observed in cylinders. In

addition, the elastic constants and the anchoring energy of

LCs have been determined from observation of confined

LCs.16–19

Here, we present the observation of LCs confined in

elliptic cylinders with homeotropic anchoring. The cross sec-

tions of the elliptic cylinders are ellipses that have a continu-

ously varying curvature. While controlling the size and

shape of these elliptic cross sections, we demonstrate that ne-

matic LCs maintain the escaped-radial configuration and

smectic-A LCs exhibit the defects of focal conic domains

(FCDs).

Elastomeric microchannels are used as cylindrical con-

finements. We utilize capillaries as scaffolds to make poly

(dimethlysiloxane) (PDMS) micro-channels having circular

cross sections.20 We pour a mixture of a PDMS pre-polymer

and a curing agent (Sylgard 184 kit, Dow Corning, Midland,

MI, USA) in a weight ratio of 10:1 on the scaffolds. The

scaffolds are made of polyimide-coated fused silica capilla-

ries (Polymicro Technologies, Phoenix, AZ, USA)/polycar-

bonate capillaries (Paradigm Optics, Inc., WA, USA) and

double-sided adhesive tape as spacers (3M, St. Paul, MN,

USA).21 Then, as shown in Fig. 1(a), the capillary is pulled

out from the cured PDMS to produce a channel having a cir-

cular cross section. This PDMS slab is mounted on a

custom-built tensile tester that stretches the slab along the

direction of the diameter using a micrometer.

After filling the channel by capillarity with LCs, 40-
octyl-4-biphenylcarbonitrile (8CB), we observe the LC con-

figurations as a function of the strain of the PDMS slab. To

obtain the equilibrium configuration in the circular channel,

the LCs are heated over the nematic-isotropic transition point

and cooled back to the nematic or smectic-A phase. The tem-

perature and the phase of the LCs are then maintained during

stretching of the PDMS slab. As shown in Fig. 2, bright-field

images of the xz-plane are collected according to the LC

phase as a function of the strain of the PDMS slab. Polarized

optical microscopy (POM) images are also taken with two

different directions of crossed polarizers and polychromatic

illumination from a halogen lamp.

When the circular channel is stretched along the direc-

tion of the diameter, the cross section becomes an ellipse, as

shown in Fig. 1(b). These bright-field images of cross sec-

tions are well fitted into ellipses. We define the aspect ratio

as the ratio of the semi-major axis a to the semi-minor axis

b. To estimate this aspect ratio, we employ a model based on

the Poisson’s ratio instead of ex situ measurements of the

cross-sectional axes.21 We assume that the channel can be

considered as a cylindrical hole in an infinite solid under

remote loading along the x-axis.22 In this problem, the dis-

placements u of the boundary along x and y are given by

Eq. (1),

ux ¼ 6
r0ð1þ �ÞR

2E

� �
ð1� �Þcos h

uy ¼ �2
r0ð1þ �ÞR

2E

� �
ð1� �Þsin h:

(1)

FIG. 1. Fabrication of elliptic cylindrical confinement. (a) A schematic dia-

gram of how to fabricate the elliptic cylindrical hole in a PDMS slab. The

arrows in the lower left corner represent the x, y, and z axes of Cartesian

coordinates. (b) Bright-field microscopy images of empty cylindrical holes.

The top row shows xz-plane images of channels. The right column shows

channels that are stretched along the direction of the diameter. The bottom

row shows xy-plane images of the above channels. Note that xy-plane

images are taken at the end of the channel.

a)Author to whom correspondence should be addressed. Electronic mail:

mwkim@kaist.ac.kr.
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R is the radius of the cylindrical hole and r0 is the tensile

stress. E and � are Young’s modulus and Poisson’s ratio for

the solid, respectively. Considering these displacements and

the parametric equation of a circle ðR cos h;R sin hÞ, we

prove that the cross section of a stretched cylindrical

hole is an ellipse, of which the parametric equation is

ðA cos h;B sin hÞ when A and B are numerical constants. In

addition, the effective Poisson’s ratio of the cylindrical hole

�0 ¼ �uy=ux is 1/3 regardless of �.

Using the integrated form of the definition of Poisson’s

ratio ð1þ DRx=RÞ��
0
¼ ð1� DRy=RÞ, the aspect ratio of the

deformed channel is given by Eq. (2),

a

b
¼ Rþ DRx

R� DRy
¼ Rþ DRx

R

� �1þ�0

: (2)

DRx and DRy are length changes in the x and y directions,

respectively. Using �0 ¼ 1=3, we can estimate the aspect ra-

tio by measuring R and Rþ DRx ¼ a only in the xz-plane, as

shown in Fig. 2.

In Fig. 2(a), nematic LCs have escaped-radial configura-

tions9–11 in the elliptic cylindrical confinement with homeo-

tropic anchoring. In the POM images with crossed polarizers

in a diagonal direction, we identify two broad dark lines that

are observed typically in the escaped-radial configuration.

Additionally, we frequently observe singular points where

the bend direction changes.21 Note that birefringence of the

highly stretched PDMS results in a bright background in the

POM images with the diagonal crossed polarizers.23

As shown in Figs. 2(b) and 2(c), defect regions of

closely packed FCDs appear in smectic-A LCs.24,25 In

Fig. 2(c), the typical texture of FCDs can be recognized. In

addition, the region near the cylindrical axis also appears to

have defects that are different from FCDs. The structure of

these defects is still under investigation. Note that the width

of a defect-free region is defined by the distance from the

channel wall to the position where the defects start to

appear.21

Fig. 3 shows how the width of the defect-free region

changes as the aspect ratio of the channel increases. In

Fig. 3(a), we concatenate images of a single stretched chan-

nel in the order of the aspect ratio. In Fig. 3(b), to compare

the widths of the defect-free regions regardless of the chan-

nel size, the widths are normalized to the semi-major axis a.

Error bars are the sample standard deviations of five meas-

ured widths, and most of them are smaller than the symbols.

Note that the minimum aspect ratio f where the FCDs start

to appear depends on the size of the channel as shown in

Fig. 3(c).21 Furthermore, the channel of 28 lm in diameter,

FIG. 3. The defect region as a function of the aspect ratio of a channel. (a)

An image sequence of smectic-A LCs confined in an elliptic cylinder in the

order of the aspect ratio. Note that each image is taken in the middle of the

channel and is contrast-enhanced. (b) The normalized width of the defect-

free region as a function of the aspect ratio of the channel. Each symbol rep-

resents the data from 6 channels of different sizes. The legend represents the

diameters of their undeformed circular cross sections. Solid lines are fitting

results obtained using Eq. (4). The inset plots the absolute width of the

defect-free region as a function of the aspect ratio. (c) The minimum aspect

ratio f where FCDs start to appear. The x-axis of (c) is a diameter of a circu-

lar channel. The error bars represent the measured maximum aspect ratio

without FCDs. (d) The width of the defect-free region at f as a function of a

channel size.

FIG. 2. Optical microscopy images of LCs confined in a cylinder according

to LC phase and strain of the PDMS slab. (a) Nematic phase. (b) Smectic-A

phase. The first column shows bright-field images. The second and third col-

umns are POM images. The white arrows in the upper right corners repre-

sent the directions of the crossed polarizer. (c) A magnified bright-field

image of smectic-A LCs confined in an elliptic cylinder. Note that, to

observe the defect region clearly, we enhance the contrast of this image.

061914-2 J. Jeong and M. W. Kim Appl. Phys. Lett. 101, 061914 (2012)
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the smallest one, does not show FCDs in the experimental

range of the aspect ratio.26 Fig. 3(d) shows the width of the

defect-free region at f according to the diameter of the

channel.

In smectic-A LCs, we assume that smectic layers of the

same thickness are parallel to each other and to the interface

due to homeotropic anchoring.27,28 In Fig. 4, the dotted lines

represent the ellipse’s equidistant curves, which are parallel

to the smectic layers. Directors of LC molecules lie on the

normal lines of these curves. The normal lines intersect the

major axis of the ellipse at an angle h with the x-intercept

ðx0; 0Þ. Considering the equation of the ellipse x2=a2 þ
y2=b2 ¼ 1 and the equation of a line normal to the ellipse at

(X, Y), we can get Eq. (3) when a2Y=b2X ¼ tan h,

x0

a
¼ a=b� b=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tan2hþ ða=bÞ2
q : (3)

The major axis of the ellipse can be considered as a tilt grain

boundary of which the misorientation angle h continuously

changes. This non-zero h leads to dilation of the smectic

layers. The inset in Fig. 4 shows that smectic layers around

the major axis are bent through 2h and thus become dilated,

d > d0, where d is the thickness of a single smectic layer on

the major axis and d0 is the undeformed thickness. Equation

(3) implies that the misorientation angle and the dilation

increase when ðx0; 0Þ moves from (a,0) to (0,0). Note that h
is 0� from ða; 0Þ to ðða2 � b2Þ=a; 0Þ, which is the center of

curvature at (a, 0) of the ellipse.

From the perspective of the tilt grain boundary, the

region of small h corresponds to a curvature wall.29 The elas-

tic free energy per unit area of the curvature wall30 is a

monotonically increasing function of h, which is propor-

tional to cos hðtan h� hÞ. Then, if h exceeds a critical misor-

ientation angle c, smectic layers can lower the elastic free

energy by creating defects such as FCDs or dislocations.

These defects compose FCD walls or dislocation walls at the

tilt grain boundary.25,29

Under the assumption that the critical misorientation

angle c is mainly determined in the misoriented region local-

ized around the major axis, we hypothesize that c is inde-

pendent of the shape of the channel, the aspect ratio. Using

Eq. (3), we estimate the critical misorientation angle c,

where the FCDs start to appear. Equation (4) gives the rela-

tion between the normalized width of the defect-free region

(W/a) and the aspect ratio (a/b) with a single parameter c,

when W is the width of the defect-free region and x0=a ¼
1�W=a; h ¼ c in Eq. (3),

W

a
¼ 1� a=b� b=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tan2cþ ða=bÞ2
q : (4)

The solid lines in Fig. 3(b) are the fitting results to provide

the value of c using this relation. Note that data from the

channels of 355 lm, 259 lm, and 156 lm diameter almost

overlap,21 and they are fitted best by the curves of

c ¼ 1163
�
. The data from the 122 lm channel are fitted by

the curve of c ¼ 2662
�
. The data from the 94 lm and 50 lm

channel also overlap, and they are described well by the

curve of c ¼ 3962
�
.

To gain insight into this critical misorientation angle in

terms of elastic free energy, we employ a model that com-

pares the elastic free energy per unit area of the curvature

wall and the FCD wall. Equation (5) gives the ratio between

the energy of the curvature wall Ecurv and the energy of the

FCD wall Ecurv
FCD in which the residual areas are relaxed by

the curvature walls,25

Ecurv

Ecurv
FCD

� L

k

� �2�n

h7�3n: (5)

L is the size of the largest circles of toric FCDs, when we pro-

ject the observed FCDs into the plane which is perpendicular

to the asymptotic direction. From the region where the defects

start to appear in Fig. 2(c), we estimate L is of the order of

1 lm, which is the optically observed minimum size of FCDs

in our experiment.21 k is the penetration length, which is of

the order of 1 nm. In addition, the exponent n is approximately

1.3 by numerical calculations.31 Then, h ¼ c where Ecurv is

comparable to Ecurv
FCD is roughly 10

�
. It is worthwhile to note

that this theoretical estimation is quite similar to the fitted c of

larger channels such as the 355 lm diameter channel.

The observed size-dependency may result from the fact

that the defects of micron sizes are forbidden in a small h
region of small channels. In Eq. (3), Dx0 over a constant Dh
depends on the size of the channel. For example, when the as-

pect ratio of the 94 lm channel is the minimum aspect ratio for

FCD f ¼ 1:18, x0ðh ¼ 10
� Þ � x0ðh ¼ 20

� Þ is only about

0:5 lm from Eq. (3). This Dx0 is too small to make FCDs of

micron size. In other words, the defects of L � 1 lm are for-

bidden in this small h region of the 94 lm channel, and they

appear at a larger h. On the other hand, because Dx0 is propor-

tional to R, the 355 lm channel can have the defects at this

small h. For this reason, as shown in Fig. 3(c), the minimum as-

pect ratio f where the FCDs start to appear depends on the size

of the channel.21 To fully understand this size-dependency, we

FIG. 4. A schematic diagram of smectic layers in the elliptic cross section.

The ellipse of a solid line represents the boundary of the confinement. The

dotted lines are equidistant curves of the ellipse, and are parallel to the smec-

tic layers. The dotted lines in the inset, which magnifies the region around

ðx0; 0Þ, represent the smectic layers of thickness d0. d is the thickness in the

dilated region.
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need an elastic free energy model that considers continuously

varying misorientation angle and the size of FCDs.

In summary, by introducing a method to fabricate chan-

nels of elliptic cross sections, we have observed nematic/

smectic-A LCs confined in elliptic cylinders. The configura-

tions of the nematic and smectic-A LCs can be described as

an escaped-radial configuration and tilt grain boundaries,

respectively. Our understanding of properties and defects of

LCs may benefit from further analysis of these configura-

tions. In addition, these LC configurations controlled by the

shape of confining boundaries may be utilized in LC applica-

tions such as lithographies using LCs32,33 and LC lenses.34,35

The elliptic confinement is applicable also to other organic

and soft materials for the study of the effect of confinement

on their structures.
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