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Abstract 

 

The AB-monomer, 3,4-diaminobenzoic acid dihydrochloride, was recrystallized from an aqueous 

hydrochloric acid solution and used to synthesize high molecular weight poly(2,5-benzimidazole) 

(ABPBI). ABPBI/carbon nanotube (CNT) composites were prepared via in-situ polymerization of the 

AB-monomer in the presence of single-walled carbon nanotube (SWCNT) or multi-walled carbon 

nanotube (MWCNT) in a mildly acidic polyphosphoric acid (PPA). The morphology of these 

composite films was studied by x-ray diffraction and scanning electron microscopy. The results 

showed that both types of CNTs were uniformly dispersed into the ABPBI matrix. Tensile properties 

of the composite films were significantly improved as compared to ABPBI and their toughness (~200 

MPa) was close to the nature’s toughest spider silk (~215 MPa). The electrical conductivities of 

ABPBI/SWCNT and ABPBI/MWCNT composite films were 9.10ⅹ10-5 and 2.53ⅹ10-1 S/cm, 

respectively, while that of ABPBI film was 4.81ⅹ10-6 S/cm. Finally, without acid impregnation, 

while the ABPBI film was non-conducting, the SWCNT and MWCNT based composites were 

proton-conducting with maximum conductivities of 0.018 and 0.017 S/cm, respectively. 
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Ⅰ. Introduction 

 

Polymer-matrix composites have been studied for five decades as a special class of high-

performance, light-weight materials that continue to play important roles in the current and emerging 

technologies for application areas ranging from structural, electronic, electromagnetic-shielding, to 

smart materials.1 Typically, they are prepared by dispersing rigid and strong fibers such as glass and 

carbon fibers in a polymer matrix, and their resulting properties (primarily because of the surface area 

and aspect-ratio limitations associated with the reinforcement additive) are greatly dependent on the 

loading amount of a particular filler, which generally requires a significant quantity (~60 vol%).1 On 

the other hand, nanoscale additives such nanoclays,2 nanoparticles,3 nanoplatelets4 and carbon 

nanotubes (CNTs)5 can overcome such limitations, and when dispersed in a polymer matrix, they 

could dramatically change the properties of resultant composite at lower loadings. Among them, 

CNTs such as single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotube 

(MWCNTs) have attracted considerable attention due to expected excellent mechanical, thermal, 

electrical properties attributed to their unique structures that are also amenable to a wide range of 

chemical modification.6 They could be used as reinforcing additives, and thus deliver their 

outstanding properties to the supporting matrices.7 The resultant composites could be utilized in 

application areas, where affordable, lightweight, and multifunctional materials are required. To take 

advantage of their mechanical properties as predicted, several studies have been performed on CNTs 

and reported their reinforcement in various thermoplastics and thermoset matrices.8 However, there 

are two major obstacles for polymer/CNT composites to achieve maximum level of enhanced 

composite properties. First, it is nontrivial to achieve the effective aspect ratio by homogeneous 

dispersion of CNT in polymer matrix.9 This is followed by the necessity to (i) efficiently transfer the 

outstanding properties of CNT to the supporting matrix, and (ii) form effective percolation network at 

low loading. Hitherto, many efforts have been devoted to achieving homogeneous dispersion of CNTs 

in various matrix materials via physical methods aided by sonication,10 chemical methods using strong 

and oxidizing acids, such as sulfuric acid and nitric acid,6, 11
 or procedures combined with applying 

sonication.12 However, applying sonication often results in structural damages such as sidewall 

opening, breaking, and tubes being turning into amorphous carbon.13 Treatment in strong acids, 

specifically in nitric acid as a strong oxidizing agent, turns CNTs into CNT-oxides, which lose not 

only electrical conductivity but also structural integrity.14 Furthermore, even after achieving 

homogeneous dispersion, a strong interfacial adhesion between CNT and polymer matrix is 

required.15 A simple melt or solution mixing of polymer with CNT may not be efficient way for the 

homogeneous dispersion and effective wetting without chemically and/or physically chopping CNTs 

into shorter tubes. This results in reduced aspect ratio.16 Hence, controlled covalent grafting of 



2 
 

polymer onto the surface of CNT without or with minimal damage 17 and/or in-situ polymerization of 

corresponding monomer in the presence of CNT are probably better routes to attaining strong 

interfacial interaction, and thus strengthening the reinforcement effect. 18 

We have developed one-pot purification and functionalization of carbon nanomaterials in a mild 

reaction medium comprising of polyphosphoric acid (PPA) with additional phosphorous pentoxide 

(P2O5).
19 This has been proven to be a non-destructive reaction medium that does not damage CNT 

framework. It is also strong enough to promote efficient Friedel-Crafts-type polycondensation. 

Commercial grade PPA, which contains 83 wt% phosphorous pentoxide, has been optimized and used 

as a superior polymerization medium for the synthesis of high performance polybenzazoles (PBXs) 

such as rigid-rod polymers: polybenzobisthiazole (PBZT), polybenzobisoxazole (PBO), and 

polybenzobisimidazole (PBI), and rigid coil polymers: poly(2,5- or 2,6-benzooxazoles) (ABPBO) and 

poly(2,5-benzimidazole) (ABPBI).20 Although a few PBX/CNT composites derived from in-situ 

polycondensation in PPA have been reported, 21 the one-pot purification of SWCNT and preparation 

of composites via in-situ polymerization has not been reported. Furthermore, all previously reported 

approaches may incur structural damage of CNT framework by applying sonication and/or strong acid 

treatments. As a result, the electrical conductivity of PBX/CNT composites has not yet been 

optimized. 10b
  

Herein, we report an in-situ self-condensation of di-protonated AB-monomer, namely, 3,4-

diaminobenzoic acid dihydrochloride, for the synthesis of ABPBI in the presence of SWCNT or 

MWCNT in an optimized PPA. The composite films were then evaluated for their thermal, 

mechanical, electrical and proton-conducting properties. 

 

Ⅱ. Experimental 

 

2.1. Materials   

 

All reagents and solvents were purchased from Aldrich Chemical Inc. or Tokyo Chemical Inc. 

and used as received, unless otherwise specified. The AB monomer, 3,4-diaminobenzoic acid, was 

recrystallized from 10 vol% (conc. HCl/H2O, v/v) aqueous hydrochloric acid to give 3,4-

diaminobenzoic acid dihydrochloride (HPLC purity > 99.99+%, m.p. > 300 °C dec.). Both single-

walled carbon nanotube (SWCNT, 30-40 wt% purity) and multi-walled carbon nanotube (MWCNT, 

CVD MWCNT 95 with diameter of ~20 nm and length of 10-50 μm) were obtained from Hanhwa 

Nanotech Co., LTD, Seoul, Korea.22 
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2.2 Instrumentations 

 

The melting points (m.p.) were determined on a Mel-Temp melting point apparatus and are 

uncorrected. Intrinsic viscosities were determined using Cannon-Ubbelohde No. 200 viscometer. 

Flow times were recorded for MSA solution and polymer concentrations were approximately 0.5-0.1 

g/dL at 30.0 ± 0.1 °C. Fourier-transform infrared (FT-IR) spectra were recorded on a Jasco FT-IR 480 

Plus spectrophotometer. Solid samples were imbedded in KBr disks. Elemental analyses were 

performed with a CE Instruments EA1110. Thermogravimetric analysis (TGA) was conducted in air 

and nitrogen atmospheres with heating rate of 10 °C/min using a Perkin-Elmer TGA7 

thermogravimetric analyzer with TAC7 controller. UV-vis spectra were obtained from a Perkin-Elmer 

Lambda 35 UV/Vis spectrometer. Fluorescence studies were conducted with a Perkin-Elmer LS 55 

fluorescence spectrometer. Applied excitation wavelength was UV absorption maximum of each 

sample. Wide-angle X-ray scattering (WAXS) patterns were recorded on Scintag DMS2000 

diffractometer. The field emission scanning electron microscopy (FESEM) was done by using LEO 

1530FE. The field emission transmission electron microscope (FETEM) was used a FEI Tecnai G2 

F30 S-Twin. Proton conductivity was evaluated using a two-point probe method with a Solartron 

1260 AC impedance analyzer with amplitude of 10 mV and a frequency range of 1 - 100,000 Hz at 

relative humidity of 50%. Each film sample was fixed in a Teflon conductivity test cell consisted of a 

working and a reference Pt electrodes. The sample conductivity was determined by using s = (1/R) × 

(L/A), where R is the resistance, L is the sample thickness, and A is the cross-sectional area. Surface 

resistivity of films was measured with AIT CMT-SR1000N four-point probe. Average values were 

taken after twenty measurements from different locations. Tensile tests were carried out on a universal 

testing machine (Instron model-UTM, DY-TSM-10). The cross-head speed was 100% of gauge length 

per minute at 20 °C and 50% humidity. Average values of five out of seven tests were taken after the 

highest and lowest results were discarded. The images of atomic force microscope (AFM) were 

obtained from Veeco Multimode V. AFM samples were prepared by spin casting of polymer solution 

(a drop of MSA solution in 10 mL NMP) on silicon wafer. Energy minimized structures were 

performed by CS Chem 3D Std computational package (Version 8.0, Cambridge Soft Corporation, 

Cambridge, MA 02140). 

 

2.3 Synthesis of Poly(2,5-benzimidazole) (ABPBI)  

 

Into a 250 mL resin flask equipped with a high torque mechanical stirrer, nitrogen inlet and outlet, 

3,4-diaminobenzoic acid dihydrochloride (5g, 22.2 mmol) and PPA (83% P2O5 assay; 50g) were 

placed and stirred under a dry nitrogen purge at room temperature for 24h to prevent drastic foaming 

caused by the release of hydrochloric acid gas. The color of heterogeneous mixture was red in the 
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beginning. After 6 hour, the color of opaque lump was changed to brown. When gas foaming was 

suppressed, the mixture was heated to 60 °C for additional 3h to ensure complete dehydrochlorination. 

During this period, the mixture became transparent and light green colored. Then, the temperature was 

increased stepwise to 100 and 150 °C for 6 and 24h, respectively. To ensure ring closure, the mixture 

was further heated to 175 °C for 3h. Visually, an increase in the viscosity of reaction mixture was 

noted as the polymerization proceeded. At the end of polymerization, the mixture was cooled to room 

temperature and distilled water was added. Big chunks of polymeric product were isolated and 

subjected to Soxhlet extraction. The product was extracted with water for three days to completely 

remove acidic reaction medium, and with methanol for three days to remove other low molar mass 

impurities, and finally freeze-dried under reduced pressure (0.5 mmHg) for 48h: [η] = 5.23 dL/g 

(MSA, 30 ± 0.1 °C). Anal. Calcd. for C7H4N2: C, 72.40 %; H, 3.47 %; N, 24.12 %, O, 0%. Found: C, 

58.43%; H, 4.38%; N, 18.66%; O, 15.29%. The electrical conductivity of solution cast film: 

4.81ⅹ10-6 ± 8.6 × 10-7 S/cm. 

 

2.4 In-situ Polymerization of 3,4-Diaminobenzoic acid Hydrochloride with 10 wt% CNT Load  

 

In the same set-up for ABPBI synthesis, 3,4-diaminobenzoic acid dihydrochloride (4.5 g), as-

received SWCNT (0.5 g) or MWCNT (0.5 g), and PPA (50 g) were placed. The rest of reaction 

sequence and work-up procedure were the same as the synthesis of ABPBI homopolymer. The initial 

color of all reaction mixtures was black because of the SWCNT or MWCNT dispersion. At the end of 

the polymerization, the color of the mixture was dark shinny brown, and the mixture was poured into 

distilled water to form a long single filament. The resulting fibrous bundles were worked up following 

the same procedure for ABPBI homopolymer.  

ABPBI/SWCNT composite: [η] = 6.61 dL/g (MSA, 30 ± 0.1 °C). Anal. Calcd. for C8.08H4N2: C, 

77.29%; H, 2.86%; N, 19.85%; O, 0%.  Found: C, 59.23%; H, 3.48%; N, 15.72%; O, 12.27%. The 

electrical conductivity of solution cast film: 9.10 × 10-5 ± 8 × 10-6 S/cm.  

ABPBI/MWCNT composite: [η] = 5.31 dL/g (MSA, 30 ± 0.1 °C). Anal. Calcd. for C8.08H4N2: C, 

77.29%; H, 2.86%; N, 19.85%; O, 0%.  Found: C, 64.73 %; H, 3.75 %; N, 16.29 %; O, 12.58%. The 

electrical conductivity of solution cast film: 2.53 × 10-1 ± 0.01 S/cm. 

 

2.5 Film casting   

 

Films were cast from each composite sample (1.0 g) dissolved in methanesulfonic acid (MSA, 20 

mL). The resultant homogeneous solutions were cast onto leveled glass plate in a custom-made film 

casting apparatus. MSA was slowly removed by heating the apparatus to 80 °C under reduced 
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pressure (0.5 mmHg). The resultant uniform films were removed from glass plate after immersion in 

distilled water. They were sandwiched between Teflon membranes to them flat, and then kept under 

distilled water for 4 days. The films were further Soxhlet-extracted with water for three days and 

methanol for additional three days to ensure complete removal of residual MSA. FT-IR spectra of the 

films showed there was no trace of residual MSA. The films were cut into size for property evaluation. 

 

Ⅲ. Results and Discussion 

 

Amongst PBXs, PBIs are known for their outstanding thermal stability, mechanical and electrical 

properties, and chemical resistance.23 They are currently used as thermal insulating materials and have 

potential applications as high strength fibers,24 gas-separation and fuel-cell membranes.25 Yet, in spite 

of extensive work in rigid-rod PBI, there are few reports on rigid-coil ABPBI.26 Among the PBI 

family, ABPBI has the simplest structure and can be easily prepared from a single, inexpensive, and 

commercially available AB-monomer, i.e. 3,4-diaminobenzoic acid (DABA), via polycondensation in 

PPA. Hence, it has recently attracted much attention as an emerging material for high temperature fuel 

cell membrane to replace the expensive and electrochemically less stable Nafion family.25 

 

3.1 In-Situ Polymerization  

 

The synthesis of poly(2,5-benzimidazole), which is also known as ABPBI, has been reported in 

early 1960’s.23b, 27 However, the molecular weights of ABPBI, when it is prepared from as-received 

AB monomer, namely 3,4-diaminobenzoic acid available from several commercial sources with 

purity 95-97%, are relatively low with inherent viscosity (1.4 - 2.7 dL/g) in concentrated sulfuric acid 

at 30 °C. 25,
 
28 It is also known that polymerization of rigorously purified 3,4-diaminobenzoic acid in 

either phosphoric acid/P2O5 
29 or methanesulfonic acid/P2O5 

30 mixtures has led to high molecular 

weight ABPBI.  In this study, commercial 3,4-diaminobenzoic acid was recrystallized from an 

aqueous hydrochloric acid solution (water/concentrated hydrochloric acid, 90/10, v/v) to yield highly 

pure 3,4-diaminobenzoic acid dihydrochloride (purity > 99.99+%, HPLC). In fully protonated form, it 

is expected that 3,4-diaminobenzoic acid would have longer shelf-life than in acid-free form. In 

addition, we surmise that hydrochloric acid, which can be in-situ generated at room temperature 

during the slow dehydrochlorination of dihydrochloride monomer, could raise the acidity of the 

reaction medium that might improve both the dispersion and purification of CNTs by optimized PPA.  

Specifically, as-prepared SWCNT contains various impurities such as metallic particles, carbonaceous 

impurities, and amorphous carbons. The acidity of gaseous hydrochloric acid (pKa ~ -8) is many 

orders of magnitude stronger than PPA (pKa of H3PO4 or orthophosphoric acid ~ 2) and thus, the 
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population of protonated on the surface of CNT under such conditions should be higher, making the 

solvation of CNT in PPA more effective.31 After dehydrochlorination is completed by stepwise-

heating from room temperature to 150 °C in PPA, the reaction mixture is further heated to 175 °C for 

3h to ensure complete imidazole ring closure, resulting in high molecular-weight ABPBI (Scheme 

1a).32 
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Scheme 1. (a) Synthesis of poly(2,5-benzimidazole) (ABPBI) in polyphosphoric acid (PPA) at 

175 °C; (b) in situ polymerization of 3,4-diaminobenzoic acid dihydrochloride as an AB 

monomer in the presence of single-walled carbon nanotube (SWCNT) or multiwalled carbon 

nanotube (MWCNT) to generate corresponding ABPBI/CNT composites. 

 

For the concurrent dispersion and purification of CNT in PPA, and the polymerization of the AB 

monomer in one-pot process to generate in-situ ABPBI/CNT composites, the polycondensation of the 

3,4-diaminobenzoic acid dihydrochloride was carried out in the presence (10 wt% based on the 

monomer feed) of SWCNT or MWCNT (Scheme 1b). The initial color of all reaction mixtures was 

black because of the SWCNT or MWCNT dispersion. The color then became dark, shinny brown as 

polymerization progressed, which was taken as an indication for the homogeneous dispersion of 

CNTs.  In both cases, the reaction mixtures were homogeneous with drastic increase in viscosity, 

when reaction temperature was approaching 150 °C. However, the solution behaviors of final reaction 

mixtures were clearly different between ABPBI and ABPBI/CNT composites. The ABPBI mixture at 

175 °C was too viscoelastic to have efficient flow, and it was difficult to spin a fiber by simply 

pouring its hot polymerization dope into distilled water. On the other hand, both CNT-containing 

reaction mixtures at the similar temperature flowed quite well to yield long fibers upon similar 

workup. All isolated products were then Soxhlet-extracted with water for 3 days to ensure the 
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complete removal of residual PPA. They were further Soxhlet extracted with methanol for 3 days for 

the removal of other low molar mass impurities and then freeze-dried. The intrinsic viscosity of 

resultant ABPBI was ~ 5.23 dL/g (MSA, 30 ± 0.1 °C), which is higher than literature values (1.4-2.7 

dL/g in 96% sulfuric acid at 30 °C).25 The intrinsic viscosities of ABPBI/SWCNT and 

ABPBI/MWCNT composites were 6.61 and 5.31 dL/g (MSA, 30 ± 0.1 °C), respectively, and these 

values are higher than that of ABPBI. It is important to point out that the dilute solutions, in terms of 

reduced and inherent viscosities, of both ABPBI/SWCNT and ABPBI/MWCNT composites have 

behaved very similar to that of ABPBI. This comparison not only implicates that the 

polycondensation of the AB-monomer was not affected by the presence of CNTs, but also a strong 

polymer-CNT interaction (i.e. polymer wrapping) exists for these composites. 

In all cases, final yields were higher than maximum calculated yields even after complete work-

up procedures. This discrepancy might be related to the hygroscopic nature of ABPBI. Likewise, the 

large discrepancy between theoretical and experimental CHN contents in elemental analysis (Table 1) 

should also be attributed to bounded water in. ABPBI/SWCNT composite showed relatively larger 

discrepancy of C content and it was presumably due to the low carbon content of as-received SWCNT 

(see Table 1). 

 

Table 1. Thermogravimetric (TGA) and Elemental Analysis (EA) Data 

Sample 

TGAa Elemental Analysis 

In Air In N2  C H N 

Td5% 

(°C) 

Char 

800 °C 

(%) 

Td5% 

(°C) 

Char 

800 °C 

(%) 

 (%) (%) (%) 

ABPBI 611 42.3 656 86 
Calcd 72.40 3.47 24.12 

Found 57.01 4.58 19.07 

SWCNT 371 57 623 71.0 
Calcd 100.00 0.00 0.00 

Found 82.84 0.74 -b 

MWCNT 574 ~0 789 94.6 
Calcd 100.00 0.00 0.00 

Found 97.81 0.30 -b 

ABPBI/SWCNT 578 11.2 658 88 
Calcd 77.29 2.86 19.85 

Found 61.56 3.86 16.88 

ABPBI/MWCNT 607 26.6 668 88 
Calcd 77.29 2.86 19.85 

Found 64.80 3.84 15.87 

a The temperature at which 5% weight loss (Td5%) occurred on TGA thermogram obtained with 
heating rate of 10 °C/min.  
b Below detection limit. 
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3.2 FT-IR Study 

 

The transmittance of CNT samples was very poor due to the fact that CNTs strongly absorb 

infrared light (Figure 1a and 2b). They did not show comparable peaks at the same degree of 

magnification, while ABPBI, ABPBI/SWCNT and ABPBI/MWCNT displayed a strong and broad 

(OH) around 3500 cm-1, which is attributed largely to the bounded water in hygroscopic ABPBI. 

There are characteristic C=N and C-N stretching bands at 1628 and 1287 cm-1, respectively (Figure 1), 

which are assignable to the imidazole moiety of ABPBI polymer. The peaks from 3500 to 3300 cm-1 

were attributed to the isolated N-H stretch of the imidazole ring, whereas the broad band near 3300-

3150 cm-1 is due to intermolecular hydrogen-bonded H∙∙∙N∙∙∙H structures, and it becomes broader in 

the presence of moisture. The only difference between ABPBI and ABPBI/CNT composites was the 

relative intensity of respective peaks. There were no discernable characteristic peaks among samples 

(Figure 1). 

 

Figure 1. FTIR (KBr pellet) spectra: (a) SWCNT; (b) MWCNT; (c) ABPBI/SWCNT composite; 

(d) ABPBI/MWCNT composite; and (e) ABPBI. 

 

3.3 Thermal Properties 

 

The thermograms obtained from differential scanning calorimetry (DSC) characterization are not 

included because ABPBI has expectedly its transition temperature higher than its degradation 

temperature.23b In all cases, the thermograms showed featureless traces, except for a broad 
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endothermic peak around 150 °C, which is caused by the release of polymer-bounded water from the 

sample.  

To minimize effect from the contribution of bounded water, all samples were annealed in the 

chamber of thermogravimetric analyzer (TGA) at 300 °C for 10 min prior to analysis. After cooled 

down to room temperature, the samples were heated to 800 °C with the ramping rate of 10 °C/min for 

experiments conducted in both air and nitrogen. The ABPBI, SWCNT, MWCNT, ABPBI/SWCNT, 

and ABPBI/MWCNT samples showed that the temperature at which 5% weight loss (Td5%) in air 

occurred at 574, 371, 611, 607, and 578 °C, in that order (Figure 2a and Table 1). Among these 

samples, SWCNT started to decompose at the lowest temperature, presumably because of the thermo-

oxidative instability (combustion) of amorphous carbon. It should be noted that the char yield of as-

received SWCNT at 800 °C was 57%, while that of MWCNT was practically 0%. The high-residue 

yield of SWCNT at 800 °C in air is most probably due to more combustion-resistant impurities, such 

as metallic catalyst particles and crystalline carbonaceous impurities.33 Surprisingly, ABPBI 

homopolymer displayed the highest thermo-oxidative stability among the samples in air (Td5%=611 

°C), which is 240 °C and 37 °C higher than those of as-received SWCNT (Td5%=371 °C) and 

MWCNT (Td5%=574 °C), respectively. In contrast to the expectation, ABPBI turned out to be the 

component that had improved thermo-oxidative stability of the ABPBI/CNT composites. The 

comparison of char yields at 800 °C in air could be considered as a qualitative assessment of SWCNT 

purity. Taking into account of the loaded SWCNT amount (10 wt%), ABPBI/SWCNT was expected 

to display higher char yield (11.2%) at 800 °C than those of ABPBI (42.3%) and ABPBI/MWCNT 

(26.6%). However, the amount of residues was the lowest among them, implying that the tenacious 

(and thermo-oxidatively stable) impurities present in as-received SWCNT were almost all removed 

during the polymerization and work-up stages. This rationalization implicated that a mildly acidic 

PPA medium with additional hydrochloric acid, which was in-situ generated from AB monomer, 

might be an efficient way for the purification of as-received SWCNT.19c  

Under nitrogen atmosphere, as-received MWCNT apparently was the most stable with Td5% at 

789 °C and char yield at 800 °C was 94.6 wt% (Figure 2b). Unlike in air atmosphere, as-received 

SWCNT displayed better thermal stability in nitrogen. It had Td5% at 623 °C and its char yield at 800 

°C was 71.0 wt%. The Td5% of ABPBI, ABPBI/SWCNT, and ABPBI/MWCNT at 800 °C was similar 

at 656, 658, and 668 °C, corresponding to char yield of 86, 88 and 88 wt%, respectively.  
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Figure 2. TGA thermograms obtained with a heating rate of 10 °C/min after annealing samples 

at 300 °C for 10 min: (a) in air and (b) in nitrogen. 

 

3.4 Scanning Electron Microscopy (SEM) 

 

A small portion of warm ABPBI dope at the end of polymerization was placed in a petri dish, 

which was then placed on a leveled hot plate to form uniform film. After cooled to room temperature, 

the dish was immersed in distilled water to let PPA diffuse out from the dope into the water to result 

in a coagulated, porous ABPBI film. This film was further Soxhlet-extracted with water and methanol. 

The SEM images of the resulting ABPBI film show that the surface texture consists of uniformly 

distributed fibrils (Figure 3a), indicating that high molecular weight ABPBI has been indeed obtained. 

Similarly, the porous films of ABPBI/SWCNT and ABPBI/MWCNT were also prepared, and their 

SEM images obtained from fracture surfaces are quite different from that of ABPBI. The 

ABPBI/SWCNT shows relatively round-shaped morphology (Figure 3c), while ABPBI/MWCNT 

shows relatively sharp fibril structure (Figure 3e). In both cases, the degree of CNT dispersion cannot 

be judged, since CNTs are well blended in ABPBI matrix and the presence of CNTs cannot be clearly 

discerned with SEM images.  

All SEM images obtained from the fracture surfaces of sample films cast from MSA solutions 

(see Experimental section) display similar morphology (Figure 3b, 4d and 3f). ABPBI shows dense 

fibril surface (Figure 3b). Due to the diameter dimension of individual SWCNT (< 2 nm), the 

presence of SWCNT from the fracture surface is inconclusive by SEM at this magnification (Figure 

3d). On the other hand, the fractured surface of ABPBI/MWCNT composite film shows that MWCNT 

is well dispersed in the ABPBI matrix (Figure 3f). Upon greater magnification, it is quite clear that the 

interface between ABPBI and MWCNT is not discernable (Figure 3f, inset), indicating that ABPBI 

and MWCNT are well bounded to each other.  
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Figure 3. SEM images of samples: (a) the fracture surface of ABPBI film directly cast from 

reaction mixture (ⅹ300, scale bar is 20 lm); (b) the fractured surface of ABPBI film cast from 

MSA solution (ⅹ10,000, scale bar is 600 nm); (c) the fracture surface of ABPBI/SWCNT 

composite film directly cast from reaction mixture (ⅹ33, scale bar is 200 lm); (d) the fractured 

surface of ABPBI/SWCNT composite film cast from MSA solution (ⅹ10,000, scale bar is 600 

nm); (e) the fracture surface of ABPBI/MWCNT composite film directly cast from reaction 

mixture (ⅹ3000, scale bar is 2 lm); and (f) the fractured surface of ABPBI/MWCNT composite 

film cast from MSA solution (ⅹ10,000, scale bar is 600 nm). The scale bar for the inset is 100 

nm. 
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3.5 WAXS Patterns  

 

To assess the dispersion quality of CNTs in ABPBI matrix, wide-angle x-ray scattering (WAXS) 

patterns were obtained from powder samples without applied strain. In the case of ABPBI 

homopolymer, two characteristic peaks at 2θ’s = 11.0 and 25.91° with respective to d-spacings = 8.03, 

and 3.46 Å were detected (Figure 4 and Table 2). The characteristic peak centered at about 25.91°, 

which corresponds to a d spacing of 3.46 Å, is the stacking of ABPBI chains.34 Detected side-by-side, 

the inter-plane distance was slightly increased from the literature value at 3.39 to 3.41 Å because the 

polymer chains in powder sample was less tightly packed (Figure 4a). Interestingly, the ABPBI 

homopolymer prepared for this study displayed an additional strong peak that appeared at 2θ’s = 

11.00 ° (8.03 Å). It was an indication of more ordered structure, since the sample work-up procedure 

was done thoroughly, and the residual reaction medium should have been completely removed (see 

Experimental section). On the basis of peak width and sharpness reported in the literature,35 it 

appeared that a significant amount of residual phosphoric acid still remained in ABPBI, and it could 

play as an extraneous agent to disturb molecular orientation.  

ABPBI/SWCNT composite displayed similar WAXS pattern to that of ABPBI (Figure 4b). The 

2θ (d-spacing) values for both inter-plane π-π distance and oriented structure were slightly shifted to 

10.76 (8.22 Å) and 26.01° (3.42 Å), respectively. In the case of ABPBI/MWCNT composite, a typical 

2θ (d-spacing) from inter-plane π-π distance attributed to both ABPBI and MWCNT was 25.72° (3.46 

Å), which was shifted by 0.19° (0.01 Å) as compared to that from ABPBI homopolymer (Figure 4c). 

The two peaks appeared from ABPBI homopolymer at 9.05° (9.77 Å) and 20.85° (4.26 Å) had 

merged into a single peak at 13.9° (6.36 Å). The metal of XRD peaks at 43.87° (2.06 Å), which would 

be attributed to the detachment of carbonaceous impurities and metallic particles from the SWCNT 

walls. 
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Figure 4. XRD patterns of samples: (a) ABPBI; (b) ABPBI/SWCNT; and (c) ABPBI/MWCNT. 

 

Table 2. XRD Analysis Data of Film Samples 

 i  ii  iii 

Sample 2θ (°) d-Spacing (Å)  2θ (°) d-Spacing (Å)  2θ (°) d-Spacing (Å) 

ABPBI 11.00 8.03  25.91 3.46  - - 

ABPBI/SWCNT 10.76 8.22  26.01 3.42  43.87 2.06 

ABPBI/MWCNT - -  25.72 3.46  - - 

 

3.6 UV-Absorption and Emission Spectra 

 

The photograph shown in Figure 5a is a visual demonstration as an additional support for our 

claim of the homogeneous dispersion of CNTs in ABPBI matrix. The ABPBI, ABPBI/SWCNT, and 

ABPBI/MWCNT samples were completely soluble in MSA (no CNT agglomerates visually 

detectable in the composite samples). They emitted strong blue light when exposed to a UV light (365 

nm) from a hand-held lamp from approximately 1 foot away (Figure 5a, i-iii). The composite 

solutions were homogeneous and optically clear, while MWCNT and SWCNT solutions contained 

CNT agglomerates that were easily seen by a naked eye (Figure 5a, iv and v). To further substantiate 

the homogeneous dispersion of CNTs in the composite samples, UV-absorption curves were obtained 

from their basic solutions in N-methyl-2-pyrrolidinone (NMP). Since ABPBI is only soluble in strong 
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acids such as sulfuric acid, MSA and trifluoromethanesulfonic acid (TFMSA), UV-absorption was 

measured by adding a drop of MSA into its NMP solution. The absorption spectrum of protonated 

ABPBI consists of a strong band at 415 nm with a shoulder at 382 nm (Figure 5b). ABPBI/SWCNT 

and ABPBI/MWCNT composites display very similar spectra, indicating that the ground state band 

structure of ABPBI in composites is almost identical as that of a free ABPBI.  

The emission spectra of the ABPBI and its CNT composite solutions were given in Figure 5c. 

The maximum emission wavelength (lmax) of ABPBI was 518 nm. In the case of composites, the 

emission spectra with different intensities, which were dependent on the concentration of ABPBI, 

were almost identical to that of neat ABPBI, implying that the excited state properties of ABPBI in 

the presence of CNT is also more or less unaffected. Overall, these results may also be taken as a 

support for our belief that the dispersion of CNTs is uniform in ABPBI matrix. 

 

 

Figure 5. (a) Digital photograph of sample solutions in MSA under 365 nm UV light; (b) UV-

absorption spectra of samples in NMP with a drop of MSA; and (c) emission spectra of samples 

in NMP with a drop of MSA. Excitation wavelength was 415 nm: (i) ABPBI; (ii) 

ABPBI/SWCNT; (iii) ABPBI/MWCNT; (vi) SWCNT; and (v) MWCNT. 
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3.7 Mechanical Properties 

 

Cast films were cast from MSA solution and cut into specimens with size 5×70 mm and thickness 

0.35-0.45 mm. Representative stress-strain curves of samples are presented in Figure 6 and the data 

are summarized in Table 3. The tensile strength, modulus, elongation and toughness of ABPBI film 

were 25 MPa, 0.88 GPa, 490% and 101.0 MPa, respectively. These values are very much different 

from the semi-rigid PBI prepared from AA+BB polymerization.36 Specifically, elongation value was 

increased by almost one order of magnitude compared to the literature value.36 The result could be 

due to the much higher molecular weight ([η] = 5.23 dL/g) and polymer-bounded water in ABPBI.  

Although the former would mainly contribute to high strain-to-break value, but the influence of 

trapped moisture (plasticizing effect) could not be excluded. Tensile test results are generally quite 

subjective to the sample conditions, and therefore, the amount of bound water in the hygroscopic 

ABPBI sample could be another significant factor for the tensile properties measured, since the bound 

water can act as a plasticizer making ABPBI softer. The amount of trapped moisture can be 

determined by TGA. Although the residual water could be removed at elevated temperatures 

with/without applying vacuum, it is known that atmospheric moisture could be easily absorbed by 

hygroscopic ABPBI during sample preparation. Hence, all films were cast and dried at the same 

conditions so that the test results could be reasonable for meaningful comparison. Relative to ABPBI 

film, the tensile strengths of ABPBI/SWCNT and ABPBI/MWCNT composite films were 

significantly increased by as much as 60 and 84%, respectively. The tensile moduli of the composite 

films were also improved by as much as 61 and 74%, respectively. The elongation values of 

ABPBI/SWCNT and ABPBI/MWCNT were improved by 61 and 25%, respectively. Toughness was 

calculated from the area under the stress-strain curve. The ABPBI/SWCNT and ABPBI/MWCNT 

films had the average toughness of 210 and 200 MPa, respectively, which were increased by 108 and 

98% as compared to that of ABPBI film (101 MPa). Although film and fiber properties could not be 

directly compared, the values are close to the nature’s toughest spider silk (~215 MPa).37 Thus, this 

notable improvement of tensile properties could be attributable to not only the higher molecular 

weight of ABPBI attained in this work, but also the strong interactions between ABPBI and CNT (see 

SEM images in Figure 3).  

 



16 
 

 

Figure 6. Representative stress–strain curves of samples, which were tested at 20 °C and relative 

humidity of 50%. The crosshead speed was 100% of gauge length per minute. 

 

Table 3. Tensile Properties and Electrical Conductivity of Film Samples 

 

Sample 

Tensile Propertiesa 

 

 

Strength 

(MPa) 

Modulus 

(Gpa) 

Strain 

(%) 

Toughness 

(MPa) 

Electricalb conductivity 

(S/cm) 

ABPBI 25 ± 2 0.88 ± 0.1 490 ± 44 101.0 ± 13.8 4.81 ⅹ 10-6 ± 8.6 ⅹ 10-7 

ABPBI/SWCNT 40 ± 3 1.42 ± 0.2 788 ± 80 210.0 ± 23.0 9.10 ⅹ 10-5 ± 8.0 ⅹ 10-6 

ABPBI/MWCNT 46 ± 4 1.53 ± 0.2 611 ± 58 200.0 ± 19.6 2.53 ⅹ 10-1 ± 1.0 ⅹ 10-2 

a Tensile properties were averaged values of five tests out of seven samples after the best and worst 
tests were discarded. Toughness was calculated from the area under the stress–strain curve in tensile 
test. Samples are tested at 20 °C with 50% relative humidity. The crosshead speed was 100% of gauge 
length per minute.  

b Electrical conductivity is an average value of 20 measurements at 20 °C with 50% relative humidity. 
 

3.8 Electrical Conductivity of Films 

 

The dc electrical conductivity of ABPBI homopolymer film was 4.81 ´ 10-6 S/cm, which was 

close to being an insulating material (Table 3). The ABPBI/SWCNT and ABPBI/MWCNT composite 

films showed 9.10 ´ 10-5 and 2.53 ´ 10-1 S/cm, respectively. ABPBI/SWCNT composite film was 
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expected to display the better electrical conductivity, since SWCNT has the higher aspect ratio.  

Surprisingly, it was several orders of magnitude lower than that of ABPBI/MWCNT, which was in 

the semiconducting region. The higher electrical conductivity of ABPBI/MWCNT could be because 

of following reasons: (1) SWCNT bundles might not be well exfoliated into individual tubes; (2) the 

purity of as-received SWCNT was only 30-40 wt%, and thus, the actual amount of SWCNT in the 

ABPBI/SWCNT composite would be much lower (approximately 3-4 wt%) after in-situ purification 

in PPA (see Figure 2a); (3) another possibility is that the template polymerization of AB monomer 

onto the surface of SWCNT provided higher wrapping coverage, and thus insulating it because of the 

comparable SWCNT radius (~ 1 nm) and coil radius of ABPBI (~ 2.1 – 2.7 nm).  

 
3.9 Proton Conductivity of Films 
 

The proton conductivity was determined with two-point probe conductivity measurement at the 

relative humidity of 50% (Figure 7). For benchmarking, Nafion 115 was also evaluated under the 

same measuring conditions, and found to display higher proton conductivity (maximum 2.95 ´ 10-2 

S/cm at 70 °C). However, the conductivity of Nafion 115 began to drop drastically when the 

temperature was raised near and above 70 °C. On the other hand, ABPBI showed an initial value of 

3.75 ´ 10-5 S/cm at 22 °C, which gradually increased as the temperature was increased, up to 1.42 ´ 

10-4 S/cm at 140 °C before the conductivity decay started. Expectedly, the low proton conductivity of 

ABPBI as compared to Nafion 115 could be explained in terms of their acidity difference. The pKa 

values of Nafion 115 and ABPBI are ca. ~ 6 38 and 12.75 (for benzimidazole, but for ABPBI, pKa 

value is expected to be lower because of conjugative effect in the polymer backbone),39 respectively.  

Thus, their pKa difference is approximately ~18 orders of magnitude, but the difference in their 

maximum proton conductivities is only two orders of magnitude. It appears that in ABPBI, there is a 

non-linear relationship between the acidity (at the molecular level) and proton conductivity (in the 

bulk state), and rather surprisingly at first, there is less temperature dependence in its proton 

conductivity as well. We suspect that the unique features of ABPBI, namely (i) large number of 

benzimidazoles per polymer chain, (ii) most of benzimidazole protons should be aligned along the 

ABPBI chain (see Scheme 1) may, and (iii) the extended conjugation in ABPBI chain that could 

induce high proton mobility via tautomerization across repeat units, may be the contributing factors.  

Further, since the dissociation of proton from benzimidazole is a function of temperature as opposed 

to the complete ionization of sulfonic group at room conditions (provided that enough water are 

present), it is reasonable to assume that the concentration of mobile protons in ABPBI would increase 

with an increase in the surrounding temperature. Still, the proton conductivity of ABPBI is too low to 

be used as fuel cell membrane. To improve its proton conductivity, phosphoric acid or other mineral 
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acids are impregnated into ABPBI matrix, which results in not only the poor mechanical properties of 

ABPBI membrane, but acid migration to the surface of the membrane.37  

The maximum proton conductivity of ABPBI/SWCNT is 0.018 S/cm. The value is slightly higher 

than that (0.017 S/cm) of ABPBI/MWCNT. However, the proton conductivities of ABPBI/CNT films 

without acid doping are improved by approximately two orders of magnitude over that of ABPBI film 

(see Table 3). We suspect that the relatively high proton conductivity of ABPBI/CNT composite films 

could be originated from the proton channels along the interface of ABPBI and CNT and/or inner 

channel of CNT. Although further study is necessary to prove this speculation, the ABPBI/SWCNT 

composite film could be a good candidate for proton conducting membranes without the need for acid 

impregnation. 

 

Figure 7. Proton conductivity of sample films, which was measured at relative humidity of 50%. 

 

Ⅳ. Conclusions 

 

Multifunctional ABPBI/CNT composites were prepared via in-situ polymerizations of 

“protonated” AB monomer. CNTs did not affect the polymerization of AB monomer to yield high 

molecular weight ABPBI in a mildly acidic PPA medium at 175 °C for 3h. CNTs remained 

structurally intact during in-situ polycondensation process, and under subsequent work-up conditions. 

It could be concluded that the reaction condition was indeed feasible for the purification (more so for 

SWCNT than MWCNT) and dispersion of CNTs as well as polymerization of the AB monomer in a 

one-pot process. The homogeneous dispersion of CNTs in ABPBI matrix was visually confirmed by 
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SEM imaging experiments. As a result, considerable improvement of mechanical properties of 

ABPBI/CNT films over ABPBI film could be achieved. Based on SEM data, we interpret that the 

surfaces of SWCNT and MWCNT have been decorated well with ABPBI, and since the boundary 

between ABPBI and CNT phases could not be discernable, homogeneous CNT dispersion in the 

ABPBI matrix has been achieved. Thus, load transfer from ABPBI to CNT should be efficient to 

result in the enhanced mechanical properties of composite films, especially the toughness. Amongst 

these films, ABPBI/MWCNT displayed the best electrical conductivity. ABPBI/CNT composites also 

showed proton conductivities without acid impregnation. Thus, electrically conducting, proton 

conducting, thermally stable and tough multifunctional materials were prepared. Subject to further 

improvement, they are potentially useful for various applications for areas, where require affordable, 

lightweight and high performance materials. 

  



20 
 

References 

 

1.  KELLER, T. 2001. Recent all-composite and hybrid fibre-reinforced polymer bridges and 

buildings. Progress in Structural Engineering and Materials, 3, 132-140. 

2.  SINHA RAY, S. & OKAMOTO, M. 2003. Polymer/layered silicate nanocomposites: a review 

from preparation to processing. Progress in Polymer Science, 28, 1539-1641. 

3.  BALAZS, A. C., EMRICK, T. & RUSSELL, T. P. 2006. Nanoparticle polymer composites: 

Where two small worlds meet. Science, 314, 1107-1110. 

4.  RAMANATHAN, T., ABDALA, A. A., STANKOVICH, S., DIKIN, D. A., HERRERA-

ALONSO, M., PINER, R. D., ADAMSON, D. H., SCHNIEPP, H. C., CHEN, X., RUOFF, R. S., 

NGUYEN, S. T., AKSAY, I. A., PRUD'HOMME, R. K. & BRINSON, L. C. 2008. 

Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3, 327-331. 

5.  THOSTENSON, E. T., REN, Z. & CHOU, T. W. 2001. Advances in the science and technology 

of carbon nanotubes and their composites: A review. Composites Science and Technology, 61, 

1899-1912. 

6.  TASIS, D., TAGMATARCHIS, N., BIANCO, A. & PRATO, M. 2006. Chemistry of Carbon 

Nanotubes. Chemical Reviews, 106, 1105-1136. 

7. (a) FIEDLER, B., GOJNY, F. H., WICHMANN, M. H. G., NOLTE, M. C. M. & SCHULTE, K. 

2006. Fundamental aspects of nano-reinforced composites. Composites Science and Technology, 

66, 3115-3125. (b) GAO, J., ZHAO, B., ITKIS, M. E., BEKYAROVA, E., HU, H., KRANAK, V., 

YU, A. & HADDON, R. C. 2006. Chemical engineering of the single-walled carbon nanotube-

nylon 6 interface. Journal of the American Chemical Society, 128, 7492-7496. (c) LI, N., HUANG, 

Y., DU, F., HE, X., LIN, X., GAO, H., MA, Y., LI, F., CHEN, Y. & EKLUND, P. C. 2006. 

Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy 

Composites. Nano Letters, 6, 1141-1145. (d) MONIRUZZAMAN, M. & WINEY, K. I. 2006. 

Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules, 39, 5194-5205. 

8. (a) SANDLER, J., WINDLE, A. H., WERNER, P., ALTST DT, V., ES, M. V. & SHAFFER, M. S. 

P. 2003. Carbon-nanofibre-reinforced poly(ether ether ketone) fibres Journal of Materials Science, 

38, 2135-2141. (b) KUMAR, S., DOSHI, H., SRINIVASARAO, M., PARK, J. O. & SCHIRALDI, 

D. A. 2002. Fibers from polypropylene/nano carbon fiber composites. Polymer, 43, 1701-1703. (c) 

ZENG, J., SALTYSIAK, B., JOHNSON, W. S., SCHIRALDI, D. A. & KUMAR, S. 2004. 

Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites. Composites 

Part B: Engineering, 35, 173-178. (d) UCHIDA, T., DANG, T., MIN, B. G., ZHANG, X. & 

KUMAR, S. 2005. Processing, structure, and properties of carbon nano fiber filled PBZT 

composite fiber. Composites Part B: Engineering, 36, 183-187. (e) MA, H., ZENG, J., REALFF, 

M. L., KUMAR, S. & SCHIRALDI, D. A. 2003. Processing, structure, and properties of fibers 



21 
 

from polyester/carbon nanofiber composites. Composites Science and Technology, 63, 1617-1628. 

(f) KUMAR, S., DANG, T. D., ARNOLD, F. E., BHATTACHARYYA, A. R., MIN, B. G., 

ZHANG, X., VAIA, R. A., PARK, C., ADAMS, W. W., HAUGE, R. H., SMALLEY, R. E., 

RAMESH, S. & WILLIS, P. A. 2002. Synthesis, Structure, and Properties of PBO/SWNT 

Composites&. Macromolecules, 35, 9039-9043. 

9.  SONG, Y. S. & YOUN, J. R. 2005. Influence of dispersion states of carbon nanotubes on physical 

properties of epoxy nanocomposites. Carbon, 43, 1378-1385. 

10. (a) HAGGENMUELLER, R., GOMMANS, H. H., RINZLER, A. G., FISCHER, J. E. & WINEY, 

K. I. 2000. Aligned single-wall carbon nanotubes in composites by melt processing methods. 

Chemical Physics Letters, 330, 219-225. (b) L. JIN, C. B. & ZHOU, O. 1998. Alignment of 

carbon nanotubes in a polymer matrix by mechanical stretching. Applied Physics Letters, 73, 1197. 

(c) CHEN, G. Z., SHAFFER, M. S. P., COLEBY, D., DIXON, G., ZHOU, W., FRAY, D. J. & 

WINDLE, A. H. 2000. Carbon Nanotube and Polypyrrole Composites: Coating and Doping. 

Advanced Materials, 12, 522-526. (d) ZHANG, W. D., SHEN, L., PHANG, I. Y. & LIU, T. 2003. 

Carbon Nanotubes Reinforced Nylon-6 Composite Prepared by Simple Melt-Compounding. 

Macromolecules, 37, 256-259. (e) SANDLER, J., SHAFFER, M. S. P., PRASSE, T., 

BAUHOFER, W., SCHULTE, K. & WINDLE, A. H. 1999. Development of a dispersion process 

for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 40, 5967-

5971. (f) PARK, C., OUNAIES, Z., WATSON, K. A., CROOKS, R. E., SMITH, J., LOWTHER, 

S. E., CONNELL, J. W., SIOCHI, E. J., HARRISON, J. S. & CLAIR, T. L. S. 2002. Dispersion 

of single wall carbon nanotubes by in situ polymerization under sonication. Chemical Physics 

Letters, 364, 303-308. (g) SHAFFER, M. S. P. & WINDLE, A. H. 1999. Fabrication and 

Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites. Advanced Materials, 11, 

937-941. (h) QIAN, D., DICKEY, E. C., ANDREWS, R. & RANTELL, T. 2000. Load transfer 

and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, 

76, 2868-2870. (i) LIU, PHANG, I. Y., SHEN, L., CHOW, S. Y. & ZHANG, W.-D. 2004. 

Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 

Composites. Macromolecules, 37, 7214-7222. (j) ANDREWS, R., JACQUES, D., RAO, A. M., 

RANTELL, T., DERBYSHIRE, F., CHEN, Y., CHEN, J. & HADDON, R. C. 1999. Nanotube 

composite carbon fibers. Applied Physics Letters, 75, 1329-1331. 

11. (a) BANERJEE, S. & WONG, S. S. 2002. Synthesis and Characterization of Carbon 

Nanotube−Nanocrystal Heterostructures. Nano Letters, 2, 195-200. (b) DAI, L. & MAU, A. W. H. 

2001. Controlled Synthesis and Modification of Carbon Nanotubes and C: Carbon Nanostructures 

for Advanced Polymeric Composite Materials. Advanced Materials, 13, 899-913. (c) HIRSCH, A. 

2002. Functionalization of Single-Walled Carbon Nanotubes. Angewandte Chemie International 

Edition, 41, 1853-1859. (d) MITCHELL, C. A., BAHR, J. L., AREPALLI, S., TOUR, J. M. & 



22 
 

KRISHNAMOORTI, R. 2002. Dispersion of Functionalized Carbon Nanotubes in Polystyrene. 

Macromolecules, 35, 8825-8830. (e) SUN, Y.-P., FU, K., LIN, Y. & HUANG, W. 2002. 

Functionalized Carbon Nanotubes:  Properties and Applications. Accounts of Chemical Research, 

35, 1096-1104. 

12. (a) HUANG, W., LIN, Y., TAYLOR, S., GAILLARD, J., RAO, A. M. & SUN, Y.-P. 2002. 

Sonication-Assisted Functionalization and Solubilization of Carbon Nanotubes. Nano Letters, 2, 

231-234. (b) ZHANG, Y., SHI, Z., GU, Z. & IIJIMA, S. 2000. Structure modification of single-

wall carbon nanotubes. Carbon, 38, 2055-2059. 

13.  HELLER, D. A., BARONE, P. W. & STRANO, M. S. 2005. Sonication-induced changes in 

chiral distribution: A complication in the use of single-walled carbon nanotube fluorescence for 

determining species distribution. Carbon, 43, 651-653. 

14. (a) HU, H., ZHAO, B., ITKIS, M. E. & HADDON, R. C. 2003. Nitric Acid Purification of Single-

Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 107, 13838-13842. (b) 

HUMMERS, W. S. & OFFEMAN, R. E. 1958. Preparation of Graphitic Oxide. Journal of the 

American Chemical Society, 80, 1339-1339. 

15. (a) WEI, C. 2006. Adhesion and reinforcement in carbon nanotube polymer composite. Applied 

Physics Letters, 88, 93108–93110. (b) BARBER, A. H., COHEN, S. R., EITAN, A., SCHADLER, 

L. S. & WAGNER, H. D. 2006. Fracture Transitions at a Carbon-Nanotube/Polymer Interface. 

Advanced Materials, 18, 83-87. (c) WONG, M., PARAMSOTHY, M., XU, X. J., REN, Y., LI, S. 

& LIAO, K. 2003. Physical interactions at carbon nanotube-polymer interface. Polymer, 44, 7757-

7764. 

16.  TRAN, M. Q., CABRAL, J. T., SHAFFER, M. S. P. & BISMARCK, A. 2008. Direct 

Measurement of the Wetting Behavior of Individual Carbon Nanotubes by Polymer Melts: The 

Key to Carbon Nanotube−Polymer Composites. Nano Letters, 8, 2744-2750. 

17. (a) OH, S.-J., LEE, H.-J., KEUM, D.-K., LEE, S.-W., WANG, D. H., PARK, S.-Y., TAN, L.-S. & 

BAEK, J.-B. 2006. Multiwalled carbon nanotubes and nanofibers grafted with polyetherketones in 

mild and viscous polymeric acid. Polymer, 47, 1132-1140. (b) JEONG, W. & KESSLER, M. R. 

2008. Toughness Enhancement in ROMP Functionalized Carbon 

Nanotube/Polydicyclopentadiene Composites. Chemistry of Materials, 20, 7060-7068. 

18.  SAEED, K., PARK, S.-Y., HAIDER, S. & BAEK, J.-B. 2009. In situ Polymerization of Multi-

Walled Carbon Nanotube/Nylon-6 Nanocomposites and Their Electrospun Nanofibers. Nanoscale 

Research Letters, 4, 39-46. 

19. (a) BAEK, J.-B., LYONSB, C. B. & TAN, L.-S. 2004. Covalent modification of vapour-grown 

carbon nanofibers via direct Friedel–Crafts acylation in polyphosphoric acid. Journal of Materials 

Chemistry, 14, 2052. (b) LEE, H.-J., HAN, S.-W., KWON, Y.-D., TAN, L.-S. & BAEK, J.-B. 

2008. Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids 



23 
 

in mild polyphosphoric acid/phosphorous pentoxide. Carbon, 46, 1850-1859. (c) HAN, S.-W., OH, 

S.-J., TAN, L.-S. & BAEK, J.-B. 2008. One-pot purification and functionalization of single-

walled carbon nanotubes in less-corrosive poly(phosphoric acid). Carbon, 46, 1841-1849. 

20. (a) WOLFE, J. E. 1988. J. E. In Encyclopedia of Polymer Science and Technology, New York, 

Wiley-Interscience. (b) ADAMS, W. W., EBY, R. K. & MCLEMORE, D. E. Year. The Materials 

Science and Engineering of Rigid-Rod Polymers. In:  Symposium Proceedings Materials 

Research Society, 1989 Pittsburgh, PA. 351-359. 

21.  EO, S.-M., OH, S.-J., TAN, L.-S. & BAEK, J.-B. 2008. Poly(2,5-benzoxazole)/carbon nanotube 

composites via in situ polymerization of 3-amino-4-hydroxybenzoic acid hydrochloride in a mild 

poly(phosphoric acid). European Polymer Journal, 44, 1603-1612. 

22.  http://www.hanhwananotech.co.kr.  

23. (a) BROCK, T. & SHERRINGTON, D. C. 1992. Preparation of spherical polybenzimidazole 

particulates using a non-aqueous suspension methodology. Polymer, 33, 1773-1777. (b) 

CASSIDY, P. E. 1980. Thermally Stable Polymers., New York, Marcel Dekker. (c) CHUNG, T. S. 

1997. Handbook of Thermoplastics, New York, Marcel Dekker. MILFORD, J. & GEORGE, N. 

1981. Bead polymerization process for preparing polybenzimidazole 

. MILFORD, J. & GEORGE, N. 1984. Preparation of small particle polybenzimidazole. 

24. (a) AFSHARI, M., SIKKEMA, D. J., LEE, K. & BOGLE, M. 2008. High Performance Fibers 

Based on Rigid and Flexible Polymers   Polymer Reviews, 48, 230 - 274 . (b) CHAE, H. G. & 

KUMAR, S. 2006. Rigid-rod polymeric fibers. Journal of Applied Polymer Science, 100, 791-802. 

25. (a) ASENSIO, J. A., BORROS, S. & GOMEZ-ROMERO, P. 2004. Polymer Electrolyte Fuel Cells 

Based on Phosphoric Acid-Impregnated Poly(2,5-benzimidazole) Membranes. Journal of The 

Electrochemical Society, 151, A304-A310. (b) ASENSIO, J. A., BORR S, S. & G MEZ-

ROMERO, P. 2003. Enhanced conductivity in polyanion-containing polybenzimidazoles. 

Improved materials for proton-exchange membranes and PEM fuel cells. Electrochemistry 

Communications, 5, 967-972. (c) WAINRIGHT, J. S., LITT, M. H. & SAVINELL, R. F. 2003. 

Handbook of Fuel Cell, John Wiley & Sons, Inc. 

26.  ASENSIO, J. A. & G MEZ-ROMERO, P. 2005. Recent Developments on proton conducting 

poly(2,5-benzimidazole)(ABPBI)membranes for high temperature polymer electrolyte membrane 

fuel cells. Fuel Cells, 5, 336-343. 

27.  IMAI, Y., UNO, K. & IWAKURA, Y. 1965. Polybenzazoles. Die Makromolekulare Chemie, 83, 

179-187. 

28.  ASENSIO, J. A., BORR S, S. & G MEZ-ROMERO, P. 2002. Proton-conducting polymers based 

on benzimidazoles and sulfonated benzimidazoles. Journal of Polymer Science Part A: Polymer 

Chemistry, 40, 3703-3710. 



24 
 

29.  LITT, M., AMERI, R., WANG, Y., SAVINELL, R. & WAINWRIGHT, J. Year. 

Polybenzimidazoles/phosphoric acid solid polymer electrolytes: mechanical and electrical 

properties. In, 1999. 313-323. 

30.  KIM, H.-J., CHO, S. Y., AN, S. J., EUN, Y. C., KIM, J.-Y., YOON, H.-K., KWEON, H.-J. & 

YEW, K. H. 2004. Synthesis of Poly(2,5-benzimidazole) for Use as a Fuel-Cell Membrane. 

Macromolecular Rapid Communications, 25, 894-897. 

31.  STRANO, M. S., HUFFMAN, C. B., MOORE, V. C., O'CONNELL, M. J., HAROZ, E. H., 

HUBBARD, J., MILLER, M., RIALON, K., KITTRELL, C., RAMESH, S., HAUGE, R. H. & 

SMALLEY, R. E. 2003. Reversible, Band-Gap-Selective Protonation of Single-Walled Carbon 

Nanotubes in Solution. The Journal of Physical Chemistry B, 107, 6979-6985. 

32.  CHENG, J., ZHANG, X., LUO, Z., LIU, F., YE, Y. & YIN, W. 2006. Excited state proton 

transfer in the S1 state of 2-allyphenol, 2-propenylphenol, and 2-propylphenol and their van der 

Waals clusters with water and ammonia. Mater Chem Phys 95, 3290–3301. 

33.  ITKIS, M. E., PEREA, D. E., JUNG, R., NIYOGI, S. & HADDON, R. C. 2005. Comparison of 

Analytical Techniques for Purity Evaluation of Single-Walled Carbon Nanotubes. Journal of the 

American Chemical Society, 127, 3439-3448. 

34.  JR., A. W., GEHATIA, M. T. & WIFF, D. R. 1978. Morphological and physical property effects 

for solvent cast films of poly-2, 5(6) benzimidazole. Polymer Engineering & Science, 18, 204-209. 

35.  ASENSIO, J. A., BORR S, S. & G MEZ-ROMERO, P. 2004. Proton-conducting membranes 

based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting. 

Journal of Membrane Science, 241, 89-93. 

36.  KIM, T.-H., LIM, T.-W. & LEE, J.-C. 2007. High-temperature fuel cell membranes based on 

mechanically stable para-ordered polybenzimidazole prepared by direct casting. Journal of Power 

Sources, 172, 172-179. 

37.  VOLLRATH, F. & KNIGHT, D. P. 2001. Liquid crystalline spinning of spider silk. Nature, 410, 

541-548. 

38. (a) RYDER, A. G. P., SARAH; GLYNN, THOMAS J. 2003. Evaluation of Acridine in Nafion as 

a Fluorescence-Lifetime-Based pH Sensor  Applied Spectroscopy, 57, 73-79. (b) KREUER, K. D. 

2001. On the development of proton conducting polymer membranes for hydrogen and methanol 

fuel cells. Journal of Membrane Science, 185, 29-39. 

39.  CATALAN, J., CLARAMUNT, R. M., ELGUERO, J., LAYNEZ, J., MENENDEZ, M., ANVIA, 

F., QUIAN, J. H., TAAGEPERA, M. & TAFT, R. W. 1988. Basicity and acidity of azoles: the 

annelation effect in azoles. Journal of the American Chemical Society, 110, 4105-4111. 

 

  

  



25 
 

Appendix 

 

Concentration (%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

V
is

c
o

s
it

y
 (

d
L

/g
)

2

3

4

5

6

7

8

y = 2.992x + 5.570 (Reduced)

y = -3.857x + 4.894 (Inherent)

(a)

 

Concentration (%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

V
is

c
o

s
it

y
 (

d
L

/g
)

2

4

6

8

10

12

14

16

y = 17.194x + 6.710 (Reduced)

y = -4.502x + 6.513 (Inherent)

(b)

 

Concentration (%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

V
is

c
o

s
it

y
 (

d
L

/g
)

3

4

5

6

7

8

9

10

y = 8.447x + 5.538 (Reduced)

y = -3.224x + 5.088 (Inherent)

(c)

 

 

Figure S1. Solution viscosity behaviors of samples as a function of concentration in 

MSA: (a) ABPBI; (b) ABPBI/SWCNT; (c) ABPBI/MWCNT. 

  



26 
 

Temperature (
oC)

0 100 200 300 400 500 600 700 800

W
e

ig
h

t 
(%

)

0

10

20

30

40

50

60

70

80

90

100

110

ABPBI

ABPBI/SWCNT
ABPBI/MWCNT

(a)

Temperature (
oC)

0 100 200 300 400 500 600 700 800

W
e

ig
h

t 
(%

)

50

60

70

80

90

100

110

ABPBI

ABPBI/SWCNT

ABPBI/MWCNT

(b)

 

 

Figure S2. TGA thermograms of as-prepared sample films. 

 

To obtain the amount of moisture in the samples, TGA analysis of ABPBI, 

ABPBI/SWCNT and ABPBI/MWCNT films were conducted (Figure S2). The results are 

summarized in Table S1. The amount of bounded water in the ABPBI film, which was 

determined on the basis of residual weight at 300 °C in air, was 16.4 wt%. Those of 
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ABPBI/SWCNT and ABPBI/MWCNT films were 11.9 and 11.1 wt%, respectively. The 

result implied the ABPBI/CNT composite films became less hygroscopic after incorporation 

of CNT. Similarly, the results obtained under nitrogen atmosphere displayed similar trend, 

reassuring hygroscopic behaviors of the sample films.  

The sample films were further heated to 800 °C with ramping rate of 10 °C/min under air 

atmosphere during TGA data collection (Figure S2). The char yields of ABPBI, 

ABPBI/SWCNT and ABPBI/MWCNT at 800 °C in air were 36.0, 10.3 and 24.4 wt%, 

respectively. The results were agreed well with heat TGA results of treated samples (see 

Figure 3a). Again, the least char yield of ABPBI/SWCNT indicated that SWCNT was 

purified during polycondensation. Hence, we could conclude that PPA is an efficient medium 

to remove the undesired carbonaceous impurities (i.e. unstable carbonaceous fragments and 

amorphous carbons; see XRD discussion below) as well as catalytic residues (Ni, Fe, Co, and 

etc). The residual amounts of ABPBI, ABPBI/SWCNT and ABPBI/MWCNT at 800 °C in 

nitrogen were 72.0, 77.9 and 77.6 wt%, respectively. Not like in air, ABPBI/CNT composite 

films displayed the higher char yields in nitrogen, indicating that ABPBI had better thermo-

oxidative stability than CNT in air. 

 

Table S1. TGA analysis of ABPBI, ABPBI/SWCNT and ABPBI/MWCNT films  

Sample 

Residue at 300 °C Char yield at 800 °C 

In Air 

(%) 

In N2 

(%) 

In Air 

(%) 

In N2 

(%) 

ABPBI 83.6 83.1 36.0 72.0 

ABPBI/SWCNT 88.1 87.6 10.3 77.9 

ABPBI/MWCNT 88.9 87.6 24.4 77.6 

 



28 
 

 

 

Figure S3. TEM images: (a) pristine SWCNT; (b) ABPBI/SWCNT; (c) ABPBI/SWCNT; 

(d) ABPBI/SWCNT; (e) ABPBI/MWCNT; (f) ABPBI/MWCNT. 

 

For the FE-TEM analysis, ABPBI/CNT samples were dissolved in MSA. A drop of each 

solution was added into 10 mL NMP and the solution was drop-coated on TEM grid. The 

TEM image of the as-received SWCNTs shows that there are large portions of carbonaceous 

and metallic impurities (Figure S3a). On the other hand, the samples ABPBI/SWCNT shows 

that most of those impurities were removed (Figure S3b-d). The TEM images display clear 

stripes, which are related to crystalline structure of SWCNT, indicating that the stable 

crystalline carbon species are survived in the medium. Thus, it is fair to say that the PPA used 

in this study for the purification of SWCNT and polymerization of AB monomer selectively 

destroys the amorphous carbons and metallic impurities. Unlike SWCNTs that have 

(e) 

(a) (b) 

(c) (d) 

(f) 
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undergone hydrochloric acid and nitric acid/sulfuric acid treatments, there were no broken 

SWCNTs in bundles observed here. On the basis of these observations, PPA with or without 

additional P2O5 is indeed a mild and arguably non-destructive medium for the purification of 

as-received SWCNTs, and thus, SWCNTs could preserve their structural integrity, at least in 

a better extent than with regular acid-based purification procedures. Actually, sidewall 

openings could be present without being seen in TEM. In addition, ABPBI is well coated on 

the surface of SWCNT. For example, ABPBI is coated onto the surface of SWCNT bundle 

(Figure S3b), two SWCNTs (Figure S3c) and single SWCNT (Figure S3d). The images 

implicated that ABPBI and SWCNT are well interacted each other. Both components are 

conjugated structures to have strong lateral π-π interaction.  

In the case of ABPBI/MWCNT sample (Figure S3e and S3f), ABPBI is coated on the 

surface of individual MWCNT. The concentric hallow of MWCNT can be clearly seen, but 

the interface between ABPBI and MWCNT cannot be clearly discerned due to the similar 

electron density of ABPBI and MWCNT.   
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Figure S4. AFM images of ABPBI/SWCNT film cast on silicon wafer: (a) topological 

image; (b) height image. 

 

AFM image obtained after ABPBI/SWCNT was dissolved in MSA. A drop of the solution 

was added into 10 mL NMP and the solution was spin cast on silicon wafer. The image was 

obtained from tapping mode, showing that the diameter of ABPBI/SWCNT is approximately 

50 nm (Figure S4). On the basis of the diameter dimension of individual SWCNT (0.7-3.0 

nm), ABPBI should be coated on the surface of SWCNT bundle instead of individual tube. 

Otherwise, the thickness of ABPBI coat onto the surface of individual SWCNT must be 24-

25 nm at each side. Since the shape of tube alignment is zigzag, the template polymerization 

of ABPBI on the surface of individual SWCNT can be conceived (see Figure S5). In this case, 

ABPBI wrapped SWCNT could form bundles. Further detailed study has to be done before 

concluding the polymerization pattern on the surface of SWCNT. 

 

 

(b) 

100 nm 

(a) 

100 nm 
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Figure S5. Structures of ABPBI coil after energy minimization with 30 repeating units: 

(a) cis-ABPBO coil; (b) trans-ABPBO coil shows. Both cases have interplaner π-π 

distance of 0.34 nm and inner diameter of cis-ABPBI is slightly larger than that of 

trans-ABPBI. 

 

When ABPBI is complete cis-conformation, it forms well-defined coils with 12 repeating 

units in a period. The inner and outer diameters of the coil are approximately 21.0 (2.10 nm) 

and 26.6 Å (2.66 nm), respectively (Figure S5a). When ABPBI is complete trans-

conformation, it also forms coils with 11 repeating units in a period. The inner and outer 

diameters of the coil are approximately 19.3 (1.93 nm) and 24.4 Å (2.44 nm) (Figure S5b), 

respectively, which are slightly less than its cis-form (Figure S5a). Interestingly, the inner 

diameter dimension of ABPBI is well accord with the outer diameter dimension of SWCNT 

(see Figure S3 in Supplementary Information). As preformed helical starch molecules could 

wrap SWCNT and disperse into individual tube, SWCNT could potentially be a template for 

the synthesis of helical cis- and trans-ABPBI depending upon diameter dimension. Thus, the 

complete exfoliation of SWCNT bundles into individual SWCNT is currently being 

investigated.  

 

(b) (a) 
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