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We report simultaneous determination of the mass and position of micro-beads attached to a

nanoscale-thickness cantilever sensor by analyzing wave propagations along the cantilever while

taking into account viscous and inertial loading due to a surrounding fluid. The fluid-structure inter-

action was identified by measuring the change in the wavenumber under different fluid conditions.

The predicted positions and masses agreed with actual measurements. Even at large mass ratios

(6%–21%) of the beads to the cantilever, this wave approach enabled accurate determination of the

mass and position, demonstrating the potential for highly accurate cantilever sensing of particle-

based bio-analytes such as bacteria. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4906613]

In the last few decades, a large number of cantilever-

based biosensors have been developed to detect proteins,

deoxyribonucleic acids, cells, bacteria, and viruses for a vari-

ety of applications such as homeland security, clinical diag-

nostics, food safety analysis, and environmental monitoring.1,2

These sensors generally measure either the changes in surface

stress or resonant frequency shifts to find the masses of the

target analytes.1–3

It is well known that the resonant frequency shift due to

the attachment of a target analyte changes with its position

on the cantilever sensor.4 If it is not placed at the tip, its posi-

tion needs to be determined to extract the actual mass from

the measured frequency shift. Although it is critical to find

both the position and the mass for ultrasensitive and highly

accurate detection, only a few studies have been conducted.

An approximate solution based on the Rayleigh-Ritz method

has been developed for a vibrating cantilever with attached

beads, and a perturbation technique has also been used to

find the functional relationship between the frequency

response and the mass at a particular position.5–7 These

methods are based on the assumption that the mass ratio of

the attached beads to the cantilever is small enough not to

change the vibration energy and the mode shape of the

cantilever.

We previously presented the simultaneous measurement

of the mass and position of micro-beads attached to commer-

cially available micro-cantilevers.8 The position of the beads

was identified using their influence on the cantilever kinetic

energy, and the bead mass was then obtained by analyzing

the wave propagations. However, the viscous and inertial

loading effects due to a surrounding fluid were neglected in

this study. Therefore, this method has serious limitations on

the use of nanoscale-thickness cantilevers even in gas media

because the viscous effects due to a surrounding fluid

increase significantly as the cantilever size decreases,9

although the limit of detection (LOD) of a resonant cantile-

ver sensor improves as the cantilever size decreases.1,2

In this paper, we present a modified technique to simulta-

neously detect the position and mass of micro-beads attached

to a nanoscale-thickness cantilever by taking into account the

viscous and inertial loading effects. The fluid-structure interac-

tion between the surrounding fluid and the cantilever was esti-

mated by measuring the change in the wavenumber. Moreover,

the mass ratio of the attached beads to the cantilever was tested

up to 6%–21%. These are quite large ratios compared to those

used in the previous methods, and such large values have never

been studied before. In fact, in the case of a large attached

mass, the standing wave pattern changes considerably due to

the mass discontinuity and fluid loading, resulting in changes

in the mode shapes. If a nanoscale-thickness cantilever is used,

as in the present study, these changes become more significant.

Consequently, the assumption that the mode shapes do not

change with the attached mass yields large identification inac-

curacies. However, this assumption was not made in this study.

For a vibrating cantilever having a small thickness and

width compared to the length, the effects of the shear defor-

mation and rotary inertia are negligible compared to those of

the bending deformation. In this case, the equation of motion

for a cantilever immersed in a fluid is given by10

EI
@4w x; tð Þ
@x4

þMb
@2w x; tð Þ
@t2

¼ F x; tð Þ; (1)

where E is Young’s modulus, I is the moment of inertia, w is

the deflection, x is the lengthwise coordinate along the base,

Mb is mass per unit length of the cantilever, and F is the

force induced by the fluid-structure interaction. The interac-

tion force due to the fluid loading is given by9,11

F x;xð Þ ¼
p
4

qx2b2C xð Þw x;xð Þ; (2)

where q is the density of the fluid, x is the radial frequency,

b is the width, and CðxÞ is the hydrodynamic function of the
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cantilever. The hydrodynamic function can be expressed as

CðxÞ ¼ CrðxÞ þ iCiðxÞ, where i is the imaginary number,

assuming that the deflection of the cantilever has the form

wðx; tÞ ¼ RealfŵðxÞe–ixtg. The hydrodynamic function

depends on the Reynolds number,12 Re ¼ qxb2=4g, where g
is the viscosity of the fluid. The hydrodynamic function for a

rectangular cross-section cantilever, CrectðxÞ, can be numeri-

cally calculated in the range of Re 2 ½10�6; 104� by using the

theoretical solution derived for a circular cross-section canti-

lever and the correction function, X, in the following

equation:9

Crect xð Þ ¼ X xð ÞCcirc xð Þ ¼ X xð Þ 1þ 4iK1 �i
ffiffiffiffiffiffiffi
iRe
p� �

ffiffiffiffiffiffiffi
iRe
p

K0 �i
ffiffiffiffiffiffiffi
iRe
p� �

" #
;

(3)

where K0 and K1 are the modified Bessel functions of the

third kind, and the correction function is expressed as frac-

tional polynomial functions of log10Re.9

Assuming harmonic vibration, the cantilever response

can be expressed as

ŵðxÞ ¼ Â1 sin k̂bxþ Â2 cos k̂bxþ Â3ek̂bðx�LÞ þ Â4e�k̂ bx; (4)

where Âj are the coefficients to be determined by boundary

conditions, L is the cantilever length, and k̂b is the wavenum-

ber. The fluid-structure interaction has a relationship with

the wavenumber, which is given by

k̂b ¼ fx2ð4Mb þ pqb2Cr � ipqb2CiÞ=4D̂g1=4; (5)

where D̂ is the complex stiffness of the cantilever, and it is

introduced to model both the vibration dissipation and the

elasticity. Applying the boundary conditions, the vibration

response can be computed. The transfer function between

the input excitation and the resulting cantilever displace-

ments can now be exactly determined by

Kei/ ¼ ŵðx1Þ=w0; (6)

where x1 is the measurement position, w0 is the input deflec-

tion at the base, and K and / are the amplitude and phase of

the transfer function, respectively.13,14 If the transfer func-

tion for a bare cantilever is measured, Eq. (6) is a function of

the wavenumber, k̂b, and can be solved using the Newton-

Raphson method. The detailed procedure for determining the

mass and position is shown in Fig. 1.

Bead attachment also changes the vibration characteris-

tics of the cantilever, and hence the wavenumber changes

due to the mass discontinuity and mass increase. If the wave-

number is determined from the measured transfer function

for a bead-attached cantilever in a fluid, the equivalent canti-

lever mass, M0b, can be obtained by

M0b ¼ k̂b
4D̂=x2 � pqb2Cr=4þ ipqb2Ci=4; (7)

where the complex stiffness and the hydrodynamic function

are obtained before the bead attachment. The imaginary com-

ponent of the equivalent mass in Eq. (7) turned out to be negli-

gibly small, and the effects of the mass attachment dominated

the real component. Therefore, the imaginary equivalent mass

terms calculated from Eq. (7) were neglected.

The sensitivity of the equivalent mass to the bead posi-

tion depends on the relative magnitude of the kinetic energy

at the bead position compared to the average kinetic energy,

and it is used to find the position indicator, PI, which is com-

puted using the correlation as

PIðxÞ ¼ covðDM0b; SÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðDM0bÞvarðSÞ

p
; (8)

where DM0b ¼ M 0b �Mb and S is the sensitivity.8 The maxi-

mum value of PI shows the bead position, xa. The bead mass

m can then be determined by analyzing the boundary condi-

tion at x¼ xa, which is given by

EI
dŵ2 xað Þ

dx3
�

dŵ1 xað Þ
dx3

� �
¼ mx2ŵ2 xað Þ; (9)

where w1 and w2 are the cantilever responses for x< xa and

x� xa, respectively. As the bead position and wavenumber

for the cantilever immersed in a fluid are pre-determined, the

bead mass is determined from Eq. (9).

The fabrication of the nanoscale-thickness cantilevers

was started using silicon-on-insulator wafers (SOI, P-type

h100i, Shanghai Simgui Technology, China). The cantilevers

were patterned on the top silicon layer (nominal thickness:

200 nm) using reactive ion etching. After dicing a wafer into

chips, about 35 lm of the bulk silicon below the buried oxide

layer was isotropically etched by XeF2 gas. The remaining

buried oxide underneath the patterned cantilevers was

removed by buffered oxide etching, and the photoresist on

top of the cantilevers was removed to release the cantilevers.

The cantilever chips were then piranha cleaned, mildly rinsed

with deionized water, and dipped in deionized water for 1 h,

followed by air-drying for 1 h. Commercially available thick

cantilevers (TL-CONT, Nanosensors, Switzerland) were also

used for comparison.

These cantilevers were fixed onto a PZT sheet (lead-zircon-

ate-titanate; 10� 10� 0.5 mm, Physik Instrumente Corporation,

FIG. 1. The procedure of determining the mass attached to a nanoscale-

thickness cantilever in a viscous fluid and its position using the vibration

approach considering the fluid-structure interaction.
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Germany) and placed in a vacuum chamber. Polystyrene micro-

beads (78462, Sigma-Aldrich, UK) were then positioned on the

cantilevers using a micro-positioner. The masses and diameters

of the beads were 188.6 6 16.6 pg and 7 6 0.2lm, respectively.

Random signals with 1 MHz bandwidth generated by a function

generator (33500B, Agilent, USA) were applied to the PZT,

resulting in an rms velocity input of 0.49 mm/s. The vibration

velocities of the excited cantilevers were measured at x1¼L/5,

where the first four bending modes of the cantilever vibration are

measurable, via a single-point laser Doppler vibrometer (Polytec,

Germany). It should be noticed that the sensitivity of the wave-

number determined from the transfer function to experimental

uncertainties depended on the measurement location, x1.
13 For

the current cantilever and measurement set-up, the sensitivity

was small enough when the vibration measurement location was

close to the base, and the location x1¼L/5 was determined

empirically. The vibration velocities at x¼ 0 were also measured

using the amplitude of the signals entering the PZT. These two

velocities were measured before and after positioning the beads

(Fig. 2).8

As the cantilever becomes smaller or the viscous effects

become larger, the fluid-structure interaction becomes more

important in determining the vibration characteristics. Figure

3(a) shows the viscosity effects of the surrounding fluid on

the wavenumber of the flexural vibration for the fabricated

(thin 1, 150� 10� 0.20 lm, 0.70 6 0.20 ng) and commercial

(thick, 458� 51� 2.0 lm, 109 6 58 ng) cantilevers. As fluid

viscosity increased, the wavenumber increased, suggesting

that the wave propagation speed along the cantilever

decreased due to the interaction with the enclosing fluid.

This change was more pronounced in thin 1 cantilever. In

fact, the commercial cantilevers in air exhibited a shift in the

wavenumber by less than 0.5%, whereas the wavenumbers

of the thin cantilevers varied by more than 5% in the real

component, showing a significant fluid-structure interaction.

The imaginary wavenumber components, which are associ-

ated with the damped vibration, also showed significant

increases as the fluid viscosity increased.

The fluid-structure interaction must be analyzed prior to

the identification of an attached mass and its position. Figure

3(b) shows the measured transfer functions when thin 1 can-

tilever was surrounded by air at different pressures. The pre-

dicted behaviors showed excellent agreement with the

measured ones. With increasing air pressure, the measured

resonant frequency and magnitude decreased due to inertial

loading. This behavior was observed across the entire

frequency range rather than only at frequencies close to the

natural modes. Therefore, the transfer function (both magni-

tude and phase) and the wavenumber showed important in-

formation over a wide range of frequencies which contrast

with the shift in the natural frequencies as used in most of

the studies. This is a definite advantage of this method.

To estimate the influence of pressure on the fluid-

structure interaction, the differences in the wavenumbers

between given and reference pressures were measured.

Although the wavenumbers in a vacuum are usually required

for comparison, the wavenumbers at atmospheric pressure

were used in this study. Figures 3(c) and 3(d) show the meas-

ured wavenumber deviations at different air pressures and

FIG. 2. A schematic of the experimental

set-up, which consisted of a microfabri-

cated nanoscale-thickness cantilever in a

fluid chamber, a single-point laser

Doppler vibrometer, a function genera-

tor, and a PZT. The vibration velocity of

the cantilever was measured at x¼ x1 via

the laser Doppler vibrometer. The inset

shows an image of a 7lm polystyrene

micro-bead attached to the nanoscale-

thickness cantilever.

FIG. 3. (a) Wavenumbers (k̂b ¼ kbr � ikbi) for vibrations of the fabricated

(thin 1) and commercial (thick) cantilevers as a function of frequency at sev-

eral ratios of fluid viscosity. The dimensionless wavenumber determines the

effects of the fluid-structure interaction on the cantilevers. (b) Transfer func-

tion of thin 1 cantilevers under the fluid-structure interaction in air

(760 mmHg, 290 mmHg, and 100 mmHg). (c) Real part and (d) imaginary

part of the difference between the wavenumbers at various pressures and the

wavenumber at atmospheric pressure (Dk̂b ¼ k̂b;fluid � k̂b;airð760mmHgÞ).
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those predicted by Eq. (5) and the fluid properties reported in

the literatures.15,16 The deviations were almost constant

across the measured frequency range and showed excellent

agreement with the predictions, demonstrating that the trans-

fer function measurements were in good agreement with the

theoretical values even at higher resolution. It was also

observed that the wavenumber decreased with decreasing air

pressure, meaning that wave propagation along the cantilever

increased.

After identifying the fluid-structure interaction of the

bare cantilevers, beads were attached at several locations

along the cantilevers. Figure 4(a) shows the measured and

predicted transfer functions for different numbers of beads.

The measured resonant frequencies decreased with number

of attached beads. From the vibration responses, the equiva-

lent mass was computed (Fig. 4(b)). The bead attachments

increased the equivalent mass with a cyclic, frequency-

dependent variation.

To determine the exact position of the beads, the PI was

obtained using Eq. (8) (Fig. 4(c)). The optically measured

and predicted bead positions are shown in Table I, and they

have relative differences of 0.4%–10.1%. After determining

the position of the beads, the mass of the beads was found

(Fig. 4(d)). The measured bead mass changed with the fre-

quency, but its variation was small. The predicted mass was

in agreement with the measured one within one standard

deviation, and the relative differences between the two

values were observed to be 3.1%–8.5%. If the fluid-structure

interaction is neglected, the difference increases up to

28.8%–69.6%. The maximum measured difference for one

bead attachment was �16 pg, where the mass ratio of the

beads to the cantilever was 12%. The currently proposed

method can provide quite accurate mass detection consider-

ing that the smallest masses (LOD) that resonant sensors can

detect are 381 and 146 pg when thin 2 (242� 24� 0.20 lm,

2.8 6 0.20 ng) and 3 (146� 24� 0.20 lm, 1.7 6 0.13 ng)

cantilevers are used, respectively. These minimum masses

are based on the fundamental frequency shifts under

thermal-noise excitation, which has been a commonly used

method.17 The mass ratio was quite large compared to the

previous methods. In fact, the maximum mass ratio of the

beads to the cantilever was almost 20% in the present study,

and the previous approaches utilizing the Rayleigh quotient

and assuming unaffected vibration mode shapes would result

in large inaccuracies at such mass ratios.

In conclusion, we have presented an experimental

method to identify the position and the mass of beads

attached to a nanoscale-thickness cantilever immersed in a

viscous fluid by analyzing the effects of the fluid-structure

interaction caused by the surrounding fluid on the cantilever

vibration. The interaction was identified by measuring the

change in the wavenumber due to the fluid for a cantilever

without beads. Based on this acquired information, the posi-

tion and mass of the beads were determined by measuring

changes in the wave propagation due to the attached beads,

and the predicted positions and masses agreed well with

actual values. This method accurately determined both the

fluid-structure interaction and the mass, even for heavy

beads, by using wavenumber information at each frequency

across a wide frequency range, unlike the previous studies

that utilized only the natural frequencies and damping ratio.

Moreover, this method can be quite independent of spurious

peaks, a forest of peaks commonly observed in the frequency

response when a cantilever is excited in liquid using a piezo-

material, by using the transfer function between two vibra-

tion measurements.
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(NRF) funded by the Ministry of Education, Science and
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FIG. 4. (a) Transfer functions of thin 2 cantilever when the number of beads

is increased. (b) Comparison of the sensitivity and DMb calculated when the

number of beads is increased for xa¼ 95 lm. (c) Position indicators (PI) cal-

culated by using the correlation between DMb and the sensitivity function

for beads located at xa¼ 95 lm and (d) measured bead masses at different

frequencies.

TABLE I. Identified position and mass of the beads attached to thin 2 and 3

cantilevers in atmospheric air for different positions and numbers of beads,

along with the theoretical predictions.

Measured values Predicted values (in air)

No. of beads x/L Beads mass (pg) x/L Beads mass (pg)

1 0.40 189 6 17 0.36 183 6 8

2 0.39 377 6 33 0.36 365 6 19

3 0.39 566 6 50 0.36 593 6 35

1 0.32 189 6 17 0.32 205 6 3

1 0.55 189 6 17 0.55 200 6 4

1 0.65 189 6 17 0.68 183 6 7
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