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By extending the recently developed generalized Courant-Snyder theory for coupled transverse

beam dynamics, we have constructed the Gaussian beam distribution and its projections with

arbitrary mode emittance ratios. The new formulation has been applied to a continuously rotating

quadrupole focusing channel because the basic properties of this channel are known theoretically

and could also be investigated experimentally in a compact setup such as the linear

Paul trap configuration. The new formulation retains a remarkably similar mathematical structure

to the original Courant-Snyder theory, and thus, provides a powerful theoretical tool to

investigate coupled transverse beam dynamics in general and more complex linear focusing

channels. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819830]

I. INTRODUCTION

The well-known Courant-Snyder (CS) theory1 provides

a fundamental framework for the uncoupled transverse dy-

namics of charged particles in linear focusing lattices. The

CS theory has been extensively used to design and analyze

alternating-gradient focusing systems for more than 50 years.

Various attempts to generalize the CS theory to the case of

coupled transverse dynamics with two or more degrees of

freedom have been made in the past.2–6 The method recently

developed by Qin and Davidson7,8 is particularly noteworthy

because, unlike other methods, it retains mathematical struc-

tures remarkably similar to the original CS theory. The enve-

lope function is generalized into an envelope matrix, and the

phase advance is generalized into a 4D symplectic rotation.

The generalized CS theory was successfully applied to

describe beam envelopes of equal emittances in two normal

planes for the cases of Gaussian9 and Kapchinskij-

Vladimirskij (KV)10 distributions. For the equal emittance

case, the beam matrix (second-order moments of the beam

distribution) is independent of the phase advance, and

becomes a function of the envelope matrix only. These fea-

tures significantly simplify the calculations of the beam

envelopes. Recently, a new class of KV distributions was

found by allowing arbitrary emittance combinations.11 In

this paper, we apply the formulation introduced in Ref. 11

for the description of the Gaussian distribution with unequal

mode emittances. The Gaussian beam distributions with

unequal mode emittances occur commonly in many accelera-

tor systems, and thus, they are of practical importance.

As an illustrative example, we apply this formulation to

the analysis of continuously rotating quadrupole focusing

channels. Rotating quadrupole focusing channels have been

investigated by many authors12–18 as they can potentially

provide stronger focusing than conventional FODO

(Focusing-Off-Defocusing-Off) lattices due to the dense

population of the focusing elements.16 For example, an elec-

trostatic version of a continuously rotating quadrupole focus-

ing channel has been proposed for guiding very heavy

charged particles.14 Strong coupling in the rotating quadru-

pole system often induces beam rotation and reduces the

beam pulsation.18 We also note in this paper that beam prop-

agation thorough a very long, continuously rotating quadru-

pole focusing channel can be studied effectively in the

laboratory frame of a linear Paul trap system with eight elec-

trodes rather than four.

II. CONTINUOUSLY ROTATING QUADRUPOLE
FOCUSING CONFIGURATIONS

In this section, we introduce the field configuration for

continuously rotating quadrupole focusing channels and

derive the transverse orbit equations.

A. Rotating quadrupole magnetic field

Suppose near the beam axis that the quadrupole magnets

generate the following field configuration at z ¼ 0 (see grey

blocks in Fig. 1),

Bqðx; y; 0Þ ¼ B
0

qðyx̂ þ xŷÞ; (1)

where B
0
q is the field gradient. When the quadrupole magnets

are continuously rotating along the beam axis with an angle

hz ¼ 2pz=k (see white blocks in Fig. 1) with respect to the

initial configuration, the magnetic field is given by

Bqðx; y; zÞ ¼ B
0

qcos 2hzðyx̂ þ xŷÞ � B
0

qsin 2hzðxx̂ � yŷÞ: (2)

Here, k is the periodicity of the pole configuration, which is

twice the periodicity of the focusing field L, i.e., k ¼ 2L. In

this channel configuration, the transverse orbit equations for

a continuous beam propagating with average axial velocity

Vb ¼ bbc ¼ const: are given bya)On leave from Handong Global University, Pohang, Korea.
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d2x

dz2
þ jqm cosð2pz=LÞxþ jqm sinð2pz=LÞy ¼ 0; (3)

d2y

dz2
þ jqm sinð2pz=LÞx� jqm cosð2pz=LÞy ¼ 0; (4)

where jqm ¼ ebB
0
q=cbmbbbc. Here, cb ¼ ð1� b2

bÞ
�1=2

is the

relativistic mass factor, ebðmbÞ is the charge (rest mass) of a

beam particle, and c is the speed of light in vacuo. In prac-

tice, the continuously rotating quadrupole focusing configu-

ration can be realized by winding four wires (by alternating

the current polarity from the adjacent wires) with helical

symmetry.12

B. Rotating quadrupole electric field

By noting the well-known analogy between an intense

ion beam propagating in a periodic focusing quadrupole

magnetic field and a non-neutral single component charge

bunch confined in a linear Paul trap,19 we can also realize

the continuously rotating quadrupole focusing configuration

by means of time-varying electric fields. First, we consider

an applied potential /qðr; h; tÞ that satisfies the boundary

conditions at r ¼ rw as follows (see black plates in Fig. 2):

/qðrw; h; tÞ ¼

þVðtÞ; 0 � h <
1

8
p;

0;
1

8
p � h <

3

8
p;

�VðtÞ; 3

8
p � h <

5

8
p;

0;
5

8
p � h <

7

8
p;

þVðtÞ; 7

8
p � h � p:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(5)

We note that /qðrw; hþ p; tÞ ¼ /qðrw; h; tÞ. Neglecting end

effects (@=@z ¼ 0), it is readily shown that the solution to

r2
?/qðx; y; tÞ ¼ 0 with boundary conditions (5) is given by

/q ¼
4VðtÞ

p

X1
l¼1

sin ðlp=2Þ
l

cos ðlp=4Þ r

rw

� �2l

cos ð2lhÞ; (6)

for 0 � r � rw and 0 � h � 2p. Near the cylinder axis

(r � rw), Eq. (6) readily gives to lowest order

/qðx; y; tÞ ¼
1

2

m

q
jqecos

2pt

T

� �
ðx2 � y2Þ: (7)

Here, we assume VðtÞ ¼ V0 cosð2pt=TÞ and the quadrupole

focusing coefficient is defined by

jqe ¼
4
ffiffiffi
2
p

qV0

mpr2
w

; (8)

where T is the period of the applied voltage and qðmÞ is the

charge (rest mass) of a trapped ion. Now, we rotate the con-

figuration described in Eq. (5) by an angle p=4 in the coun-

terclockwise direction (see gray plates in Fig. 2), and apply

VðtÞ ¼ V0 sinð2pt=TÞ. This gives the skew component

/sqðx; y; tÞ ¼
m

q
jqe sin

2pt

T

� �
xy: (9)

The single-particle equations of motions in the combination

of both the quadrupole and skew-quadrupole potential con-

figurations are

d2x

dt2
þ jqe cosð2pt=TÞxþ jqe sinð2pt=TÞy ¼ 0; (10)

d2y

dt2
þ jqe sinð2pt=TÞx� jqe cosð2pt=TÞy ¼ 0; (11)

which are identical in functional form to the transverse orbit

equations in Eqs. (3) and (4). We note that the Paul Trap

Simulator Experiment (PTSX) device20 at the Princeton

Plasma Physics Laboratory (PPPL) could be easily converted

into a dedicated experimental facility for studying coupled

transverse dynamics in rotating quadrupole channels by sub-

dividing its four electrodes into eight.

FIG. 1. Top view of the continuously rotating quadrupole focusing channel.

Initial positions of the quadrupole magnets at z ¼ 0 are indicated by gray blocks.

As the axial position along the z–axis increases, the initial quadrupole configura-

tion rotates by an angle hz ¼ 2pz=k in the counterclock-wise direction.

FIG. 2. Top view of the long (@=@z ¼ 0) linear Paul trap configuration with

eight electrodes. For the black (gray) plates, cosine (sine) voltage waveforms

are applied with alternating polarity on adjacent black (gray) segments.
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III. GENERALIZED COURANT-SNYDER THEORY

The general form of the Hamiltonian for the coupled

transverse dynamics with quadrupole and skew-quadrupole

focusing lattices is given by

Hc ¼
1

2
XTAcX;Ac ¼

jðsÞ RðsÞ
RðsÞT I

� �
; (12)

where X ¼ ðx; y; px; pyÞT . Here, the 2� 2 matrix jðsÞ is time-

dependent and symmetric, and I is the unit matrix. The vari-

able s plays the role of a time-like variable. For a beam propa-

gating in a quadrupole magnetic focusing channel, we set

s ¼ z, while for the trapped single-component plasma confined

in a linear Paul trap we set s ¼ t. The prime denotes a deriva-

tive with respect to s and the superscript “T” denotes the trans-

pose operation of a matrix. When there is a solenoidal field

component, the 2� 2 matrix R is non-zero and defined by

RðsÞ ¼ 0 �XðsÞ
þXðsÞ 0

� �
; (13)

where XðsÞ is the normalized Larmor frequency. Indeed, con-

figurations with both axial magnetic fields and rotating quadru-

pole fields have been investigated for the modified betatron21

and the spiral line induction accelerator (SLIA).15 In this paper,

we consider only the case with R ¼ 0, for simplicity. Then, for

the pure rotating quadrupole configuration, we have

jðsÞ ¼ jq0
cosð2ps=LÞ sinð2ps=LÞ
sinð2ps=LÞ �cosð2ps=LÞ

� �
; (14)

where L is the periodicity of the focusing field and jq0 is the

maximum quadrupole focusing strength, which is jq0 ¼ jqm

for magnetic focusing, and jq0 ¼ jqe for electric focusing.

The stability condition for the particle motion can be derived

from an eigenvalue analysis,16 which gives

0 � jq0 L2 � p2: (15)

Based on the generalized Courant-Snyder theory devel-

oped in Refs. 7 and 8, we obtain the solution for the trans-

verse dynamics governed by the Hamiltonian (12) in the

form of a linear map

XðsÞ ¼ McX0; (16)

where X0 is the initial condition and Mc is the transfer matrix

given by

Mc ¼ Q�1P�1P0Q0: (17)

Here, P and Q are 4� 4 symplectic matrices defined by

P�1 ¼ PT ¼
PT

1 �PT
2

PT
2 PT

1

 !
; P0 ¼

I 0

0 I

� �
; (18)

P0 ¼ P/0;/0 ¼ 0 �ðwwTÞ�1

ðwwTÞ�1
0

� �
; (19)

and

Q�1 ¼ wT 0

w
0T w�1

� �
; Q0 ¼

ðw�1ÞT 0

�w0 w

 !
0

; (20)

where the subscript “0” denotes initial conditions at s ¼ 0.

The symplectic matrix P corresponds to a rotation in the 4D

phase space (PPT ¼ PTP ¼ I and detðPÞ ¼ 1), and thus,

P � Spð4Þ \ SOð4Þ ¼ Uð2Þ. The 2� 2 envelope matrix w

¼ w1 w2

w3 w4

� �
is determined from the matrix envelope

equation

w00 þ wj ¼ ðw�1ÞTw�1ðw�1ÞT : (21)

This equation is the generalization of the familiar 1D enve-

lope equation for an uncoupled focusing lattice. To make Q
symplectic, we require the following initial condition for w:

ðw0wT � ww0
TÞ0 ¼ 0: (22)

For the uncoupled case, on the other hand, the initial condi-

tion (22) holds for any w. By solving the matrix envelope

equation (21) numerically, one can describe the coupled

transverse dynamics in a manner remarkably similar to the

original Courant-Snyder theory.

IV. BEAM DISTRIBUTION WITH TWO EMITTANCES

To describe a beam distribution f(X) in 4D phase-space,

we make the usual assumption that the phase-space density

is a function of an invariant of motion IC which is expressed

in the quadratic form:6,22

IC ¼ XTNX: (23)

Here, N is a real, symmetric, and positive-definite matrix.

Equation (23) represents a hyperellipsoid in 4D phase-space.

To describe two independent normal modes and their emit-

tances, it is desirable to diagonalize N. Elementary linear

algebra provides a simple way to transform a symmetric ma-

trix into a diagonal form by solving an eigenvalue problem.

However, the orthogonal matrices used in this diagonaliza-

tion procedure are not generally symplectic. Therefore, they

do not contain any physics principles of Hamiltonian dynam-

ics. Note that the symplectic condition is a necessary and

sufficient condition for a canonical transformation.23 On the

other hand, Williamson’s theorem shows that any real, sym-

metric, and positive-definite matrix can be diagonalized in

terms of a symplectic matrix S (Ref. 24) according to

N ¼ ST K 0

0 K

� �
S; (24)

where

K ¼ k1 0

0 k2

� �
(25)

and the diagonal elements kj > 0 are calculated from the

characteristic equation, detðJN� ikjIÞ ¼ 0, where J is the

unit symplectic matrix. The symplectic matrix S allows a ca-

nonical transformation of coordinates into the normal forms,
�X ¼ SX. Using the usual convention, we define the mode

emittances as �1 ¼ 1=k1 and �2 ¼ 1=k2.

There are several ways to find the symplectic transfor-

mation S. One is to construct S using eigenvectors of the

transfer matrix, which is well-established, for example in

Ref. 6. Another method, which is adopted here, is to use the

083121-3 Chung et al. Phys. Plasmas 20, 083121 (2013)
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generalized CS theory introduced in Sec. III. In the general-

ized CS theory, a remarkable canonical transformation �X
¼ SX ¼ PQX is constructed in such a way that �X ¼ �X0

¼ const: during the linear coupled motion. Therefore, for

any constant and real 4� 4 matrix n, which is symmetric

and positive definite, an invariant in quadratic form can be

constructed as �X
Tn �X ¼ XTSTn SX ¼ const:

To obtain the desired forms assumed in Eqs. (23) and

(24), we consider the special case with

n ¼ e�1 ¼ ��1 0

0 ��1

� �
; � ¼ �1 0

0 �2

� �
¼ K�1: (26)

This choice of n allows �X ¼ ð �X1; �X2; �X3; �X4ÞT to become

normalized coordinates describing a hyperellipsoid in 4D

phase-space with rotational symmetry in each normal plane

IC ¼
�X

2
1 þ �X

2
3

�1

þ
�X

2
2 þ �X

2
4

�2

: (27)

This is consistent with the basic assumption in beam physics

that due to phase mixing caused by unavoidable nonlinear-

ities, the beam distribution in each normal plane becomes

rotationally symmetric. For �1 ¼ �2, we have a hypersphere

with full rotational symmetry.

The question may arise regarding the uniqueness of the

canonical transformation S giving the same emittances. It

has been proven in Ref. 24 that the symplectic matrix S diag-

onalizing N in Williamson’s theorem [i.e., Eq. (24)] is

unique up to a symplectic rotation. In other words, there is

another symplectic matrix ~S ¼ CS which satisfies Eq. (24)

with the same emittances, in which C is an arbitrary constant

4� 4 matrix in the unitary group Uð2Þ ¼ Spð4Þ \ SOð4Þ.
This property can be easily checked from Eq. (19) as well. If

we multiply by the matrix C on both sides of Eq. (19), note

that ~P ¼ CP satisfies _~P ¼ ~P _/ with the new initial condition
~P0 ¼ CP0 ¼ C. Of course, ~P is symplectic and ~P � SOð4Þ.
Therefore, ~PQ ¼ CPQ ¼ CS becomes another canonical

transformation. This is consistent with the notion that the

normalized coordinates in Eq. (27) admit the rotational sym-

metry in each normal plane.

It is worthwhile to note that the matrix envelope equa-

tion (21) admits an orthogonal symmetry. If w is a solution

of the Eq. (21), then ~w ¼ ~cw becomes a solution as well with

~c being an arbitrary constant 2� 2 orthogonal matrix,

~cT ~c ¼ I. With the new envelope matrix ~w, we obtain the cor-

responding ~P and ~Q as

~P ¼ P
~cT 0

0 ~cT

� �
; ~Q ¼ ~c 0

0 ~c

� �
Q: (28)

Therefore, we obtain ~P ~Q ¼ PQ, and thus, the canonical

transformation S is independent of ~c.

Let us consider the case of a multivariate Gausssian

distribution

f ðXÞ ¼ 1

ð2pÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRÞ

p exp � 1

2
XTR�1X

� �
; (29)

where R ¼ N�1 ¼ hXXTi is a covariance matrix (or the beam

matrix in beam physics) and h� � �i denotes the statistical

average over the distribution. We assume hXi ¼ 0 for sim-

plicity. By comparing with Eq. (24), the expression for the

beam matrix is given by

R�1 ¼ QTPTnPQ (30)

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
detðeÞ

p
¼ �1�2 � �2

?. The distribution

function f(X) is normalized according to
Ð
� � �
Ð

f ðXÞ
dX1 � � � dX4 ¼ 1, which is a trivial result of the multivariate

Gaussian integral. Often, it is important to project the beam

distribution onto the spatial plane z ¼ ðX1;X2ÞT ¼ ðx; yÞT .

To perform the partial Gaussian integral, we express Eq.

(30) in the following block form:

QTPTnPQ ¼ U0 V
VT W0

� �
: (31)

Based on the procedure in Ref. 25, it follows that

1

ð2pÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRÞ

p ð ð
exp � 1

2
XTR�1X

� �
dX3dX4

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðUÞ

p
2p

exp � 1

2
zTUz

� �
;

(32)

where

U ¼ U0 � VW�1
0 VT : (33)

Since the expression for Q is known explicitly from Eq. (20),

it is sometimes more convenient to express U in terms of the

block matrix elements of PTnP

PTnP ¼ A B
BT D

� �
: (34)

Direct matrix manipulations that make use of Eqs. (31) and

(34) show that

U ¼ w�1½A� BD�1BT 	w�T � w�1 �Dw�T : (35)

The �D matrix is known as the Schur complement of D.11

The 4D rms hyperellipsoid is projected onto a tilted ellipse

given by

zTUz ¼ zTw�1 �Dw�Tz ¼ 1: (36)

For the case of the equal emittances �1 ¼ �2 ¼ �?, the

phase advance terms in Eqs. (30) and (34) cancel out. Hence,

the projection becomes

zTb�1z ¼ �?; (37)

and the beam matrix becomes

R ¼ �?
b �a
�aT c

� �
; (38)

where a, b, and c are the generalized Twiss parameters

defined as

a ¼ �wTw0; (39)
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b ¼ wTw; (40)

c ¼ ðwTwÞ�1 þ w
0Tw0: (41)

Note that the familiar relation between a, b, and c holds in

the matrix form

bc ¼ I þ a2: (42)

V. NUMERICAL EXAMPLES

In this section, we present numerical solutions of the

matched beam envelopes in a continuously rotating quadru-

pole focusing channel. Matched solutions are found by

imposing periodic boundary conditions. First, we consider

the case of equal mode emittances. As mentioned in

Secs. I–IV, in this case we do not need to solve the phase

advance equation (19). Plotted in Fig. 3 is the evolution of

the matched beam cross-section as a function of the time-

like variable s for several different normalized focusing

strengths jq0L2. The beam cross-section is the projection of

the 4D rms hyperellipsoid, which is determined by the

exp½�1=2	 contour of the Gaussian beam distribution. It is

clear that the matched beam cross-section rotates with the

same periodicity as the focusing channel. This result is

indeed the limiting case (N !1) of our previous work on

the N–rolling lattice, which is a configuration with N equally

spaced quadrupole magnets, each of which rotates by an

angle p=N relative to its preceding magnet configuration.18

As the values of jq0L2 increases, the beam cross-section

becomes more elongated. Obviously, the rotation direction

of the beam cross-section will reverse when the quadrupole

configuration rotates in the opposite direction. Here, all the

transverse dimensions are normalized by
ffiffiffiffiffiffiffiffi
�?L
p

.

The elongation, which is the ratio between the major

axis (a) and the minor axis (b) of the beam cross-section,

can be expressed analytically for the case with equal emit-

tances as16

a=b ¼ ð2p=LÞ2 þ 4jq0

ð2p=LÞ2 � 4jq0

" #1=4

; (43)

which is independent of s. This expression is derived from

the eigenvalue analysis given in Ref. 16. It is clear in Fig. 4

that the numerical values calculated from the generalized CS

theory match almost perfectly with the analytical expression

given in Eq. (43), which confirms the validity of the general-

ized CS theory.

Now we consider the cases of unequal mode emittances.

Maintaining the 4D emittance �2
? constant, we vary the ratio

between the two mode emittances �1=�2. This means that the

volume of a hyperellipsoid in 4D phase-space remains the

same, whereas the shape changes according to the emittance

ratio. As depicted in Figs. 5 and 6, the evolution of the

matched beam cross-section becomes more complicated

when the two mode emittances are different. The dynamics

of the beam is not a simple rotation, but exhibits pulsation

(periodic change in a and b) as well. This results in a nonlin-

ear increase of the tilt angle with time. The tilt angle is

defined as the rotation angle of the major axis with respect to

its initial position at s ¼ 0. For the case where �1=�2 ¼ 2

(Fig. 5), the beam cross-section becomes more elongated in

the x–direction. On the other hand, the beam cross-section

becomes more elongated in the y–direction for �1=�2 ¼ 1=2

FIG. 3. Evolution of the matched beam cross-section for 0 � s=L � 1 with

several different normalized focusing strengths jq0L2. The transverse dimen-

sions are normalized by
ffiffiffiffiffiffiffiffi
�?L
p

. Colors of the boundary of the beam cross-

section are blended according to s/L from red (s=L ¼ 0) to green (s=L ¼ 0:5)

and blue (s=L ¼ 1). The time step between two consecutive ellipses is

Ds=L ¼ 1=16.

FIG. 4. Elongation of the matched beam cross-section plotted as a function

of the normalized focusing strength jq0L2. The line is obtained from the ana-

lytical expression in Eq. (43) and the symbols represent numerical values

calculated from the generalized Courant-Snyder theory.

083121-5 Chung et al. Phys. Plasmas 20, 083121 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Wed, 24 Dec 2014 00:57:39



(Fig. 6). The case of equal emittances corresponds to Figs.

3(a) and 3(b). Since the numerical matching algorithm now

involves solutions of both the envelope and phase advance

equations, which are highly nonlinear, errors can accumulate

as we calculate the beam envelopes by numerical integration

along s. For example, the tilt angle plotted in Fig. 5(d) does

not return to its initial value but rather shows a slight offset

at s ¼ L. An improvement of the matching algorithm is

being investigated for the case of unequal mode emittances.

VI. CONCLUSIONS

In this paper, we have constructed the Gaussian beam dis-

tribution with two mode emittances in the context of the

recently developed generalized CS theory of the coupled

transverse dynamics. The formulation retains the elegant

mathematical structure of the original CS theory with remark-

ably similar physical interpretations, and therefore, can be

viewed as complementary to other approaches such as the one

based on eigenvectors of the transfer matrix.6 As a numerical

example, we apply this formulation to the case of a continu-

ously rotating quadrupole focusing channel. Since some of the

beam characteristics are known in terms of the analytical

expressions for this channel, the formulation can be success-

fully benchmarked. The numerical calculations based on the

present formulation not only agree very well with the results

in Ref. 16, but also provide comprehensive information about

the rotating beam. Furthermore, it has been demonstrated that

the beam propagation through a very long, continuously rotat-

ing quadrupole focusing channel can be studied equivalently

in an experimental setup such as the linear Paul trap with 8-

segmented electrodes. Finally, we emphasize that the formula-

tion introduced in this paper can be readily applied to arbitrary

(and more complex) linear, coupled focusing lattices other

than continuously rotating quadrupole channels.
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FIG. 5. Evolution of the matched beam cross-section for 0 � s=L � 1 with

�1 ¼
ffiffiffi
2
p

�? and �2 ¼ ð1=
ffiffiffi
2
p
Þ�?. Here, we fix the normalized focusing

strength jq0L2 to be 4. The transverse dimensions are normalized by
ffiffiffiffiffiffiffiffi
�?L
p

.

Colors of the boundary of the beam cross-section are blended according to s/

L from red (s=L ¼ 0) to green (s=L ¼ 0:5) and blue (s=L ¼ 1). The time step

between two consecutive ellipses is Ds=L ¼ 1=16.

FIG. 6. Evolution of the matched beam cross-section for 0 � s=L � 1 with

�1 ¼ ð1=
ffiffiffi
2
p
Þ�? and �2 ¼

ffiffiffi
2
p

�?. Here, we fix the normalized focusing

strength jq0L2 to be 4. The transverse dimensions are normalized by
ffiffiffiffiffiffiffiffi
�?L
p

.

Colors of the boundary of the beam cross-section are blended according to s/

L from red (s=L ¼ 0) to green (s=L ¼ 0:5) and blue (s=L ¼ 1). The time step

between two consecutive ellipses is Ds=L ¼ 1=16.
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