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Abstract 

 

Heat shock protein (Hsp90) is an ATP dependent chaperone that regulates folding of a wide range 

of client proteins or substrates, which are involved in cellular signaling pathways for tumorigenesis. 

The most of Hsp90 is localized in cytoplasm but mitochondrial Hsp90 homologue, tumor necrosis 

factor receptor-associated protein 1 (TRAP1), has been reported. The TRAP1 is highly elevated in 

many cancer cell types and human cancer patients compared to normal cells. TRAP1 plays 

important roles in tumorigenesis including the neoplastic metabolic shift to aerobic glycolysis, 

tumor cell invasion and metastatasis, inhibition of cell death and development of drug resistance. 

A class of TRAP1 inhibitors, named gamitrinibs (GA mitochondrial matrix inhibitors), has been 

developed through combinatorial chemistry. Gamitrinib consist of geldanamycin, a competitive 

inhibitor of the ATPase pocket of Hsp90 and TRAP1, conjugated with tandem repeats of tetracyclic 

guanidinium or triphenylphosphonium for mitochondrial targeting. Gamitrinib not only trigger 

massive cell death in cultured cancer cells in vitro but also strongly suppress tumor growth in 

various cancer xenograft or genetic mouse model in vivo. The gamitrinib induced cytotoxicity is 

attributed to the reactivation of cyclophilin D (CypD), an opener of the permeability transition pore 

(PTP) located in the mitochondrial inner membrane. PTP opening by CypD activation is often 

suppressed in cancer cells to avoid cell death by interaction with mitochondrial Hsp90s even under 

stressful cellular environment. Furthermore, gamitrinibs have been shown to induce organelle-

specific stress response and dysregulation of bioenergetics in mitochondria of cancer cells. 

Resistance to cell death in the presence of stressful stimuli is one of hallmarks of cancer cells 

acquired during multistep tumorigenesis, and knowledge of the molecular mechanism of stress 

adaptation can be exploited to develop cancer-selective therapeutics. Mitochondria and the 

endoplasmic reticulum (ER) are physically interconnected organelles that can sense and exchange 

various stress signals. Although there have been many studies on stress propagation from the ER to 

mitochondria, reverse stress signals originating from mitochondria have not been well reported. In 

this study, we showed that mitochondrial heat shock protein 90 (Hsp90) suppresses mitochondria-

initiated calcium-mediated stress signals propagating into the ER in cancer cells. Mitochondrial 

Hsp90 inhibition with gamitrinib triggers the calcium signal by opening the mitochondrial 

permeability transition pore and, in turn, the ER ryanodine receptor, via calcium-induced calcium 

release. Subsequent depletion of ER calcium activates unfolded protein responses in the ER, 

thereby increasing the expression of a pro-apoptotic transcription factor, CEBP homologous 

protein (CHOP). Combined treatment of the ER stressor thapsigargin with the mitochondrial 

Hsp90 inhibitor gamitrinib augments interorganelle stress signaling by elevating CHOP expression, 

and showed synergistic cytotoxic activity exclusively in cancer cells in vitro and in vivo. 
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Collectively, the mitochondrial Hsp90s confer apoptosis resistance to cancer cells by suppressing 

the mitochondria-initiated calcium-mediated interorganelle stress response. Next, the mitochondria 

stress inducer, gamibrinib has been exploited, for combination cancer therapy with clinical cancer 

drug doxorubicin (DOX). DOX, an anthracycline antibiotic with the trade name Adrimycin, is one 

of the most effective anticancer drugs and has been widely used to treat cancer patients in various 

combination chemotherapeutic regimens. The antitumor activities of DOX and closely related 

anthracycline analogs are primarily attributed to DNA damage resulting from the inhibition of 

DNA topoisomearse II. DOX has also been reported to increase oxygen derived free radicals, 

which contributes not only to its anticancer activities but also induce a major side effect, 

irreversible cardiomyopathy in the patients. To mitigate the cardiotoxic side effects of DOX, we 

explored the efficacy of combination treatment of DOX with gamitrinib. The combination 

treatment with DOX and gamitrinib showed synergistically increased anticancer activities at 

suboptimal cytotoxic dose in vitro and in vivo, without augmenting the cardiotoxic side effects. The 

mechanism of the action is involved in stimulation of cellular stress signaling mediating JNK of 

CHOP pathways and activation of proapoptotic protein Bim. Depending on cellular context of 

disparate cancer cell types, the combination treatment induced CHOP and Bim expression and 

phosphorylation of JNK and Bim, which leads to enhance accumulation of Bim and Bad in the 

mitochondria. These mechanisms were independent of ROS production and synergistically 

enhanced apoptosis exclusively in cancer cells in vitro and in vivo. In summary, combined 

treatment of TRAP1 inhibitors can unleash the full potential of the anticancer activity of various 

anticancer drugs.
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Chapter 1. Introduction 

 

1-1. Molecular characteristic of chaperones 

1-1-1. Functions of chaperones 

Molecular chaperones are proteins that assist the disassembly or assembly and the unfolding 

or the non-covalent folding of other molecular structures and described first in the literature 

in 1978 [1]. In the cellular biology, proteins are structurally complex and versatile 

macromolecule which are synthesized on ribosome and folded in their native state [2]. 

Generally the chaperones aid in the co-translational folding of newly synthesized proteins 

and helps the conformational change of macromolecules [3]. Some chaperones are linked to 

remodelling of non-native proteins and other chaperones prevent or slow protein aggregation 

or misfolding. Therefore they are essential for protein quality control network [4, 5]. They are 

not highly expressed in normal biological condition. In non-native state as under cellular 

stress, proteins are easy to aggregate by misfolding, unfolding or disassembly. Since the 

chaperones capture misfolded or unfolded polypeptide and stabilize them, they are strongly 

increased to minimize protein aggregation in stressed cells. The chaperones have been 

reported that have function as foldase, holdase and involved in translocation, protein 

degradation, signal transduction, receptor maturation, protein trafficking, immunity and so on 

[6-10]. 

 

1-1-2. Heat shock proteins  

Many chaperones are heat shock proteins because protein folding is severely affected by 

cellular stresses or temperatures [11]. Upon heat shock response, heat shock proteins are 

dramatically increased in transcriptional level by increased Heat shock factor 1 activity [12-

15]. The heat shock proteins (HSP) are named depending on their molecular weight such as 

Hsp40, Hsp60, Hsp70, Hsp90 and Hsp100. Most of HSPs localized in cytosol or ER but 

Hsp60, Hsp70, Hsp90 are also expressed in mitochondria. Hsp100s are ATP dependent 

proteins and capture misfolded proteins and associated in stress tolerance [16]. Hsp90s has 

ATP binding domain and clamp into their client proteins depend on binding ATP [17, 18]. 

Hsp70s are well characterized 70kDa proteins and assisted by Hsp40s. Their client proteins 

are involved in survival factor therefore decreased Hsp70 results in apoptosis [19, 20]. 
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Hsp40s is also called chaperone DnaJ and is the crucial partner of Hsp70 chaperones 

(Table.1) [21-23]. 

 

 

 

1-2. Heat shock protein 90 (Hsp90) 

 

1-2-1 Transcriptional regulation of Hsp90  

Hsp90 is highly abundant in the cytoplasm, where it occupies 1-2% of total protein level 

and its expression about doubles in response to cellular stress in most eukaryotes. Its 

inducible transcription is regulated by the transcription factor heat shock factor1 (HSF1) [12, 

14, 19], which controls approximately hundreds of target genes in response to cellular stress. 

HSF1 is not only a client protein of Hsp90 but also regulated by complex with Hsp90 and 

Hsp70 negatively [19, 24]. HSF1 monomer held in inactive complex with Hsp90 and Hsp70 

but this interaction is broken under cellular stress. Hsp90 capture misfolded protein and other 

client proteins which is increased in stressed cells and HSF1 can be released from Hsp90 

complex (Fig.1) [14, 24]. Therefore, Hsp90 regulates its own transcription [19] . 

 

1-2-2. Cellular location of Hsp90 

Most of Hsp90 is localized in cytoplasm but some Hsp90 is translocated to the nucleus 

under cellular stress [25-27]. Its translocation occurs by co-transport with its client protein 

because Hsp90 has no a nuclear localization sequences. In addition, it found in mitochondria 

in malignant tumour cells and inhibition of Hsp90 function induces apoptosis [28]. 

 

1-2-3. Structure of Hsp90 

Hsp90 is a dimeric protein and very conserved in evolution. Each monomer consists of three 

part such as amino-terminal domain (NTD), middle domain and carboxy- terminal domain 

(CTD). ATP binds in NTD of Hsp90 and hydrolyzed after interaction with Hsp90 and client 

proteins. The Hsp90 middle domain is connected to the NTD by a charged linker and consists 

of two αβα motif. The middle domain is thought to have essential role in client recognition. 

The CTD of Hsp90 has less conserved in sequence than NTD or middle domain and it is 

involved in dimerization. It is mixed α and β domain structurally and end of CTD has the 

tetratricopeptide repeat (TRP) motif recognition site [29]. TRP motif consist of 
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MEEVD( Met-Glue-Glue-Val-Asp) residue and is responsible for interaction with many co-

chaperones [30, 31]. 

 

1-2-4. The function of Hsp90  

In normal cells, Hsp90 plays a many roles including in protein folding, maintenance, 

intracellular transport as well as protein degradation. Generally, Hsp90 suppresses 

aggregation of client protein and helps correct conformational changes. Furthermore, Hsp90 

is needed to keep correct structure of 26s proteosome. The 26s proteosome is involved 

protein degradation for polyubiquitinated proteins so Hsp90 can control protein quality in a 

macro aspects.[32] 

Hsp90 has above 20 client proteins and various cellular functions according to client protein 

such as cellular signal transduction, tumorigenesis, protein trafficking, Heat shock response, 

cell mobility, cell cycle and proliferation and immunity [33-36]. 

 

 

 

1-3. Heat shock protein 90 (Hsp90) homologue proteins 

 

1-3-1. Hsp90 homolgues in other cellular compartments 

In mammalians, Hsp90 family can be divided into 3 sub families: cytosolic Hsp90A, 

endoplasmic reticulum (ER) localized Hsp90B and mitochondrial TNF receptor associated 

protein 1(TRAP1) [37-39]. HSP90A is the most studied of the Hsp90 families and consists of 

two sub-family such as inducible expressed HSP90AA and constitutive expressed HSP90 AB. 

They are abundant in cytosol and some HSP90A can be translocated to nucleus under cellular 

stress. The ER localized HSP90B proteins is also known Grp94 in human and controls in ER 

protein quality [40]. The function of TRAP1 is poorly understood of the other families but 

many papers reported that human TRAP1 protect cells from cellular stress (Fig. 2). 

 

1-3-2. Mitochondrial HSP90 homologue (TRAP1) in cancer 

TRAP1is highly up regulated in cancer cells compared to normal cells and protect cells 

against oxidative stress and apoptosis [41, 42]. This pathway is involved in mitochondrial 

permeability transition (MPT). TRAP1 binds to cyclopphilin D (CypD) which is key 

molecule in permeability transition (PT) pore complex and their interaction results to 

inactive CypD so blocked PT pore opening [43]. In addition, TRAP1 may play a role in 
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organelle homeostasis by involving protein folding quality control [44]. TRAP1 preserve 

Hexokinase II (HK II) and stability of succinate dehydrogenase (SDHB) [45-48]. HK II is a 

key mediator of glycolysis and SDHB is associated with oxidative phosphorylation. Both of 

enzymes play important roles in cellular homeostasis and metabolic network. Inhibition of 

TRAP1 by genetically or pharmacologically impairs both oxidative phosphoryalation and 

glycolysis. The TRAP1 has a quite different cellular functions and client proteins from the 

cytosolic Hsp90 protein. Through reprogramming cancer cell metabolism, TRAP1 are 

involved in cytoprotection, tumour progression and multidrug resistance [46-48]. 

 

1-3-3. Inhibitors against TRAP1 

A class of mitochondrotropic Hsp90 inhibitors, named gamitrinibs (GA mitochondrial 

matrix inhibitors), has been developed through combinatorial chemistry. Gamitrinib consist 

of geldanamycin, a competitive inhibitor of the ATPase pocket of Hsp90 and TRAP1, 

conjugated with tandem repeats of tetracyclic guanidinium or triphenylphosphonium for 

mitochondrial targeting (Fig.3). Gamitrinib not only trigger massive cell death in cultured 

cancer cells in vitro but also strongly suppress tumor growth in various cancer xenograft or 

genetic mouse model in vivo. The gamitrinib induced cytotoxicity is attributed to the 

reactivation of cyclophilin D (cypD), an opener of the permeability transition pore (PTP) 

located in the mitochondrial inner membrane. CypD inactivation is often suppressed in 

cancer cells by interaction with mitochondrial Hsp90s because the opening of the PTP can be 

lethal. Furthermore, gamitrinibs have been shown to induce organelle-specific stress 

response and dysregulation of bioenergetics in mitochondria of cancer cells (Fig.4) [49-52]. 
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HSPs family Cellular location Functions 

Small Hsps cytosol Heat inactivation, Suppress aggregation 

Hsp40 Cytosol Crucial co-chaperone activity with Hsp70 

Hsp60 
Mitochondria 

Cytosol 
Refold and prevent aggregation 

Hsp70 
ER, mitochondria 

Cytosol 

Interorganellar transport, 

Antiapoptotic activity 

Autoregulation of the heat shock response 

Hsp90 ER, cytosol 

Signal transduction i cell cycle and 

proliferation 

Refold and regulation client protein 

Protein trafficking 

Hsp100 cytosol Control stress tolerance 

 

 

Table 1-1. Family of Heat shock proteins and their functions 
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family Subcelluar location type 

HSP90A (Hsp90a) Cytosol 
Hsp90AA (inducible) 

Hsp90AB (constitutive) 

HSPB (Hsp90b, Grp94) ER  

TRAP1 mitochondria  

 

 

Table 1-2. Family of Heat shock protein 90 (Hsp90) 
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Figure 1-1. HSF1 activation and attenuation cycle [24] 

             Nature Reviews Drug Discovery 10, 930-944 
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Figure 1-2. Hsp90 homologue proteins 
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Figure 1-3. The structure of Gamitrinib 
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Figure 1-4. Hsp90 and TRAP1 regulates tumour cell survival [43] 

Nature Medicine 13, 1415 - 1417 (2007) 
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Chapter 2. Mitochondrial Hsp90s suppress calcium-mediated stress 

signals propagating from mitochondria to the ER in cancer cells 

 

2-1. Introduction 

 

Molecular chaperones help the conformational changes and correct folding of their substrates, 

called client proteins, and minimize their aggregation and misfolding [1]. Heat shock protein 90 

(Hsp90) is an ATP-dependent molecular chaperone which regulates the function and the 

stability of client proteins which are associated with signal transduction during malignant 

transformation and progression [2, 3]. Organelle-resident Hsp90 family proteins are mainly 

expressed in the endoplasmic reticulum(ER) and mitochondria, where they control protein 

homeostasis [4, 5]. The mitochondrial Hsp90s, tumor necrosis factor receptor-associated protein 

1 (TRAP1), are abundant in the mitochondria of many cancer cells [6, 7], and their client 

proteins, cellular functions and regulation are quite different from the cytoplasmic Hsp90 pool 

[4, 6]. TRAP1 are involved in cytoprotection, tumor progression, and multidrug resistance by 

reprogramming metabolic network of cancer cell [8-12] and sustaining mitochondrial membrane 

integrity [6, 13, 14]. Mitochondria integrate vital and lethal signals emanating from various 

cellular compartments to bring about cell death through inner and outer membrane 

permeabilization [15]. Although the molecular mechanism is not clear, cyclophilin D (Cyp-D) is 

reported to regulate the permeability transition pore (PTP) in the mitochondrial inner membrane 

[16-20]. TRAP1 expression is elevated in cancer cells, which suppresses Cyp-D function to 

suppress the deadly increase of membrane permeability in the organelle [6]. PTP opening upon 

Cyp-D activation increases mitochondrial inner membrane permeability toward small molecules 

(<1,500 Da), resulting in loss of mitochondrial membrane potential (ΔΨm), discharge of matrix 

calcium stores, and swelling and rupture of the mitochondrial outer membrane [15, 21]. 

Calcium, a ubiquitous second messenger, is associated in a broad variety of physiological events 

via its interaction with effectors responsible for calcium-dependent processes [22]. The 

mitochondria and ER are the major intracellular calcium stores, regulating calcium signaling 

and homeostasis [23, 24]. They have a largely interconnected architecture with numerous 

contacts, which facilitates inter-organelle calcium transport by generating calcium hotspots 

proximal to open calcium channels [25-27]. Both the ER and mitochondria contain calcium-

triggered calcium release channels that can activate each other via positive feedback, including 

ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) [15, 28]. There is 



23 

 

a growing consensus that ER-mitochondria calcium crosstalk can coordinate signaling for 

metabolism and cell death between the organelles [24]. Although calcium signaling has been 

intensively studied, reports of “mitochondria-initiated” calcium crosstalk between mitochondria 

and the ER are scarce. Here, we demonstrate a novel function of mitochondrial Hsp90s that 

confers resistance to cancer cell death by inhibiting the propagation of mitochondrial-origin 

calcium signals to the ER. 

 

 

 

2-2. Materials and methods 

 

Cells and culture condition 

HeLa, MDA-MB-231, and NCI-H460 cells were purchased from the Korean Cell Line Bank 

and 22Rv1 from the American Type Culture Collection. Cell lines were maintained as 

recommended by supplier. Cells were cultured in DMEM or RPMI medium (Lonza) containing 

10% fetal bovine serum (FBS; GIBCO) and 1% penicillin/streptomycin (GIBCO) at 37°C in a 

5% CO2 humidified atmosphere. 

 

Chemicals, plasmids and antibodies 

Gamitrinib conjugated with triphenylphosphonium was prepared as described previously[29].  

MitoTracker, Fura-2-AM, and tetramethylrhodamine methyl ester (TMRM) were purchased 

from Molecular Probes, Ryanodine was from Santa Cruz Biotechnology. Mn(III) tetrakis 

(1-methyl-4-pyridyl) porphyrin (MnTMPyP) was from Calbiochem. 1,2-bis(o-aminophenoxy) 

ethane-N,N,N’,N’-tetraacetic acid acetoxymethyl ester (BAPTA), cyclosporine A (CsA), 

carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), tetracaine, and 

thapsigargin(Thap), and N-acetylcysteine (NAC) and all other chemicals were from Sigma, 

Anti-CEBP homologous protein (CHOP) antibodies were obtained from Cell Signaling; anti-

RyR, anti-IP3R,anti-eIF2α and anti-cytochrome c antibodies from Santa Cruz Biotechnology; 

anti-cyclopholin D from Calbiochem; anti-eIF2α[pS52] from Invitrogen; anti-β-actin from MP 

Biomedicals; and anti-TRAP1 from BD Biosciences. 

 

Astrocyte preparation 

Primary cultures of astrocytes were prepared as previously described[30]. Briefly, the mouse 

brain cortex, after removing the meninges, was dissected and dissociated with moderate 
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pipetting. Cells were plated on 100-mm dishes coated with 10 μg/ml poly-D-lysine (Sigma) and 

grown to confluence in DMEM supplemented with 10% FBS, 10% horse serum (GIBCO), 100 

units/ml penicillin, and 100 μg/ml streptomycin at 37°C in a 5% CO2 humidified atmosphere. 

Afterward, astrocytes were trypsinized and plated on 6-well plates coated with poly-D-lysine to 

administer drugs. 

 

siRNA treatment 

Small interfering RNAs (siRNA) against TRAP1, RyR2, IP3R, and CHOP were synthesized by 

Genolution (Korea) as follows:  

RyR2-#1, 5′-AAGTGGTTCTGCAGTGCACCG; RyR2-#2,5′-AAGTACGAGTTGGAGATG 

ACC; TRAP1-#1, 5′- AAACATGAGTTCCAGGCCGAG;TRAP1-#2, 5′- CCCGGTCCCTGT 

ACTCAGAAA; IP3R1-#1, 5′-GAGAATTTCCTTGTAGACATCTGCA; IP3R1-#2, 5′-GGCC 

TGAGAGTTACGTGGCAGAAAT; IP3R2, 5′-GAGAAGGCTCGATGCTGAGACTTGA; 

IP3R3, 5′-CCGAGATGACAAGAAGAACAAGTTT;CHOP-#1, 5′-AGAACCAGCAGAGG 

TCACAA;CHOP-#2,5′-AAGAGAATGAACGGCTCAAGC; control, 5′-ACUCUAUCUGCA 

CGCUGAC.  

 

Cells were cultured on 6-well plates at 50–75% confluence, transfected with 20 nM siRNA 

mixed with G-Fectin (Genolution) for 48 hours, and then analyzed or treated with drugs. 

Analysis of cell viability and apoptosis induction Cells (5 × 103 cells/well) were cultured in 96-

well plates overnight and treated with gamitrinib and Thap alone or in combination for 24 hours. 

To determine cell viability, cells were exposed to 3 (4,5-dimethyl-thyzoyl-2-yl)2,5 

diphenyltetrazolium bromide (MTT), and crystallized formazan was quantified by measuring 

the absorbance at 595 nm with an Infinity M200 microplate reader (TECAN). Absorbance data 

were compared with that of vehicle control and expressed as percent viability. Alternatively, 

after treatment with drugs, DNA content (propidiumiodide, red fluorescence) and caspase 

activation (DEVDase activity, green fluorescence) of the cells were analyzed using the 

CaspaTag in situ apoptosis detection kit (Millipore). Labeled cells were analyzed using the 

FACS Calibur™ system (BD Biosciences). Data were processed using FlowJo software 

(TreeStar). 

 

CHOP reporter assay 

To generate a CHOP reporter stable cell line, PC 3 cells were co-transfected with 8 μg of a 

promoter construct (CHOP::GFP)[31] obtained from Addgene (Addgene plasmid 21898) and 
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800 ng of puromycin linearized selection marker (Clontech) using Lipofectamin (Invitrogen) 

per manufacturer’s instructions. Transfected PC3 cells were cultured in RPMI (Lonza) with 1 

μg/ml puromycin (Clontech) for 3 weeks and colonies were picked using cloning cylinders. 

GFP expression was monitored in the IncuCyte™ imaging system (Essen Bioscience) at an 

excitation wavelength of 450–490 nm and an emission of 500–530 nm, and analyzed by Image J 

software (National Institutes of Health).  

 

Live cell imaging for intracellular calcium 

HeLa cells were incubated with 5 μM Fura-2-AM for 30 min at 37°C and 5% CO2. After 

washing with Hank’s Buffer, the cells were incubated with calcium-free Locke’s solution (154 

mM NaCl, 5.6 mM KCl, 3.2 mM MgCl2, 5 mM HEPES, 10 mM glucose, 0.2 mM EGTA; pH 

7.4). Fluorescence changes were monitored every 5 minutes using an IX81 ZDC microscope 

(Olympus) at an emission wavelength of 510 nm with dual excitation at 340 nm and 380 nm. 

Images of the 340/380 fluorescence ratio were generated and analyzed by the Xcellence 

software package (Olympus). Imaging D1ER and mtCameleon Fluorescence resonance energy 

transfer (FRET) measurements were performed using an FV1000 laser confocal scanning 

microsope (Olympus) with a FRET module and a UPLSAPO 100× oil immersion objective with 

a 1.40 numerical aperture. HeLa cells were seeded on a Lab Tek II slide chamber at 40–80% 

confluency in DMEM (Lonza) supplemented with 10% FBS and 1% penicillin/streptomycin at 

37°C and 5% CO2. D1ER or mtCameleon constructs (kind gifts from Dr. R.Y. Tsien, University 

of San Diego) [32] were transfected into HeLa cells using the Lipofectamine transfection 

reagent (Invitrogen) per manufacturer’s instructions. Cells were imaged at 24 or 48 hours after 

transfection. All analyses were performed under the same conditions. D1ER and mtCameleon, 

containing FRET donor (CFP) and acceptor (citrine) components, were excited with a 440-nm 

diode laser source; the emitted fluorescence bands were separated by a grating and detected by 

photomultiplier tubes in the CFP channel (480 nm) and FRET channel (535 nm). The FRET 

ratio (RFRET) was calculated as described previously[33] from confocal images using FV10-

ASW 3.1 software (Olympus) by pixel-by-pixel quantification of fluorescence intensity: 

RFRET = IFRET/ICFP, where IFRET and ICFP represent the fluorescence intensities from the 

FRET and CFP channels, respectively. The FRET ratio (relative units) was plotted after 

comparing RFRET values. 

 

RNA extraction and reverse transcript-PCR 

Total RNA was prepared from cells suspended in cold PBS using the RNeasy mini kit 
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(QIAGEN), and cDNA was synthesized using the ProtoScript®  First Strand cDNA Synthesis 

Kit (New England Biolabs) using an oligo(dT) primer. The PCR reaction was performed in a 

Mastercycler PCR machine (Eppendorf) with the following sets of oligonucleotide primers: 

glyceraldehyde phosphate dehydrogenase (GAPDH), 5′-CGGGAAGCTTGTCATCAATGG-3′ 

and 5′-GGCAGTGATGGCATGGACTG-3′; CHOP, 5′- CTTTCTCCTTCGGGACACTG-3′ and 

5′-AGCCGTTCATTCTCTTCAGC-3′; TRAP1, 5′-ATGGCGCGCGAGCTGCGG-3′ and 5′-

CAGTCGTCCTGCCTGCAA-3′; X-box binding protein 1 (XBP1), 5′-CCTTGTAGTTGAGAA 

CCAGG-3′ and 5′-GGGGCTTGGTATATATGTGG-3′. 

 

Xenograft tumor models 

All experiments involving animals were approved by UNIST (IACUC-12-003-A). 22Rv1 (7 × 

106) cells suspended in sterile PBS (200 μl) were injected subcutaneously into both flanks of 6-

week-old BALB/c nu/nu male mice (Japan SLC Inc.) and allowed to grow to an average volume 

of approximately 100 mm3. Animals were randomly divided into four groups (two 

tumors/mouse, five mice/group). Gamitrinib or vehicle (DMSO) dissolved in 20% Cremophor 

EL (Sigma) in PBS was injected intraperitoneally, and Thap dissolved in 0.9% NaCl in PBS 

intravenously. The mice were administered 10 mg/kg gamitrinib and 0.2 mg/kg Thap twice a 

week. Tumors were measured daily with a caliper, and tumor volume was calculated using the 

formula: V = 1/2 × (width)2 × length. At the end of experiment, animals were euthanized, and 

organs including brain, heart, kidney, liver, lung, spleen, and tumor were collected for histology 

or western blotting. For histological analysis, harvested organs were fixed in 10% formalin and 

embedded in paraffin. Sections (5 μm) were placed on high-adhesive slides, stained with H&E, 

and scanned using the Dotslide system (Olympus) with 10× magnification. For western blot 

analysis, tissue samples were lysed in RIPA buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1% NP-

40, and 0.25% N-deoxycholate) containing protease inhibitor and phosphatase inhibitor 

cocktails (Calbiochem) using a homogenizer (IKA). 

 

Statistical analysis of data 

All MTT experiments were duplicated and repeated independently at least three times. 

Statistical analyses were performed using the software program Prism 5.0 (GraphPad). In an 

unpaired t-test, p < 0.05 was considered significant. 
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2-3. Results 

 

Mitochondrial Hsp90s regulate the mitochondrial calcium store 

To investigate whether mitochondrial Hsp90s regulate mitochondrial calcium stores, we used 

the mitochondriatargeted Hsp90 inhibitor gamitrinib, a conjugated of triphenylphosphonium (a 

mitochondria-targeting moiety) and geldanamycin (an Hsp90 inhibitor) [29, 34]. A cytotoxic 

dose (30 μM) of gamitrinib dramatically increased the intracellular calcium concentration 

within an hour in human cervical (HeLa), prostate (22Rv1), and breast (MDA-MB-231) cancer 

cell lines in calcium-free medium (Fig. 2-1A and B). A non-targeted Hsp90 inhibitor, 17-

allylamino-17-demethoxygeldanamycin (17AAG), did not increase cytosolic calcium (Fig. 2-

1D), consistent with a previous report that gamitrinib is specific to mitochondrial Hsp90 

without affecting cytosolic Hsp90 function [29]. After gamitrinib treatment, PTP opening and 

loss of mitochondrial membrane potential (ΔΨm) occurred within 30 minutes (Fig. 2-2A, 

TMRM staining), whereas cytochrome c release (Fig. 2-2B, cytochrome c staining) were not 

prominent until after 2 hours. Caspase activation and cell death occured after 4 hours (Fig. 2- 

1C, DEVDase activity and PI staining), and it suggested that calcium flux concurs with PTP 

opening, prior to mitochondrial outer membrane permeabilization (MOMP). Consistently, 

cytosolic calcium elevation was inhibited by cyclosporin A (CsA) (Fig. 2-1C), a potent Cyp-D 

inhibitor, blocking PTP opening [15]. Thus, mitochondrial Hsp90 inhibition immediately 

induces PTP opening, loss of ΔΨm, and discharge of the calcium stored in the mitochondrial 

matrix. Thereafter, a cascade of MOMP, cytochrome c release, and caspase activation ensues 

(Fig. 2-2D). 

 

Mitochondrial calcium release results in depletion of ER calcium 

The PTP opening has been shown to immediately discharge calcium stored in the mitochondria 

[35]; however, after mitochondrial Hsp90 inhibition in this study, calcium release continued 

even after a significant drop in ΔΨm (Fig. 2-1A and 2-2A), suggestive of additional sources of 

calcium flux. We postulated that the primary calcium-storing organelle, the ER, contributes to 

the cytosolic calcium increase after gamitrinib treatment. To prove this, we directly measured 

calcium depletion using the calcium sensor protein, Cameleon, targeted to mitochondria and the 

ER (mtCameleon and D1ER, respectively) [32]. Gamitrinib treatment resulted in FRET signal 

loss in both mtCameleon- and D1ER-transfected HeLa cells, comparable to that seen with 

FCCP or Thap treatment (Fig. 2-3A and B), clearly indicating calcium depletion in the ER as 

well as in mitochondria. FCCP is used to observe as positive control which can affect 
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mitochondria specifically and Thapsigargin is used to release stored Calcium as an inhibitor of 

the Ca
2+

 -ATPase of the ER (Fig. 2-3C and D). Consistent with previous reports [29], the non-

targeted Hsp90 inhibitor 17AAG did not affect the mtCameleon FRET signal (Fig. 2-4A and B) 

and gamitrinib has no effect on the ΔΨm of a normal MCF10A breast cell (Fig. 2-5A and B).  

Calcium depletion in the ER evokes the unfolded protein response and induces CHOP activation 

Gamitrinib has been reported to trigger the unfolded protein response in mitochondria, and, 

through unknown mechanisms, to subsequently activate CHOP, the proapoptotic transcription 

factor often induced during unfolded protein responses in the ER (UPRER) [4, 36-38]. siRNA 

knockdown of the mitochondrial Hsp90 homolog TRAP1 results in spliced XBP1 mRNA 

production and eukaryotic translation initiation factor 2α (eIF2α) phosphorylation (Fig. 2-6A 

and B), suggesting activation of UPRER sensor proteins such as inositol-requiring protein1α 

(IRE1α) and PKR-like ER kinase[39, 40]. Consistently, pharmacological inactivation of 

mitochondrial Hsp90s by gamitrinib also triggered eIF2α phosphorylation and XBP1mRNA 

splicing (Fig. 2-6C and 2-7). In addition to UPRER sensor protein activation, CHOP induction 

was clearly seen after both pharmacological and genetic inhibition of mitochondrial chaperones 

(Fig. 2-6D). To investigate the critical involvement of mitochondrial calcium discharge through 

the PTP for the ER stress response, gamitrinib was administered in the presence or absence of 

the PTP inhibitor CsA and the calcium chelator BAPTA. Both substances compromised UPRER 

induction, resulting in a dramatic reduction in eIF2α phosphorylation and CHOP expression 

(Fig. 2-7). 

 

Ryanodine receptors mediate mitochondrial calcium-induced calcium depletion in the ER 

IP3Rs and RyRs are ER membrane channels responsible for calcium release from the organelle 

[22]. Silencing IP3R1, the major isoform in HeLa cells [41] (Fig. 2-8A), did not affect the 

elevation of cytosolic calcium and the induction of CHOP after gamitrinib treatment (Fig. 2-8B 

and C), but was enough to compromise lysophosphatidic acid-induced ER calcium release in 

calcium-free medium (Fig. 2-8D). By contrast, specific RyR inhibitors such as ryanodine (100 

μM) and tetracaine (300 μM)[42] strongly inhibited gamitrinib-induced ER calcium release, 

similar to the PTP inhibitor CsA (Fig. 2-9A). Genetic knockdown of RyR2 the dominant RyR 

isoform in HeLa cells [43-45], also blocked gamitrinib-induced cytoplasmic calcium increase 

(Fig. 2-9B and C). Consistently, ryanodine and RyR2-specific siRNAs inhibited eIF2α 

phosphorylation and the subsequent CHOP induction (Fig. 2-9B and D). Collectively, our data 

suggest that RyR, not IP3R, is the ER sensor that propagates the signal initiated by discharged 

calcium from mitochondria in cancer cells. Although Reactive oxygen species (ROS) has known 
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as a factor to release ER calcium but ROS did not affect gamitrinib-induced calcium release and 

CHOP induction in this mechanism (Fig. 2-10). Mitochondria-initiated calcium signaling plays 

an important role in setting up the cell death threshold impaired mitochondrial function [12] and 

slightly elevated cytoplasmic calcium (Fig. 2-11, Fluo-4 staining) were frequently found in 

gamitrinib-treated cells, even at non-toxic dose of the drug. Therefore, we hypothesized that 

calcium-mediated stress propagation can render cells sensitive to additional stresses, i.e. 

lowering the cell death threshold. A representative UPRER inducer, Thap, was combined with 

gamitrinib to test this hypothesis. Gamitrinib sensitized cancer cells to Thap treatment at various 

concentrations, while the nontargeted Hsp90 inhibitor 17AAG did not (Fig. 2-12A and C). 

Consistent with pharmacological data, TRAP1knockdown also sensitized cancer cells to Thap 

treatment (Fig. 2-12B and D). The combination drug treatment of gamitrinib and Thap elevate 

time dependent CHOP expression and the CHOP expression induced by combination treatment 

was faster and higher compared to single-agent treatment (Fig. 2-13A). A cell-based reporter 

assay also showed elevated CHOP transcription activity following combination treatment (Fig. 

2-13B). siRNA-mediated knockdown of either CHOP significantly suppressed this increased 

cytotoxic activity, but did not affect the toxicity seen with single agent treatment (Fig. 2-13C). 

The combination drug induced CHOP expression was a RyR-dependent manner and siRNA-

mediated knockdown of RyR significantly suppressed the CHOP expression and the cytotoxic 

activity (Fig. 2-14A and B). It suggests important roles of RyR and CHOP in the drug 

combination effect (Fig. 2-13C and 14A) and RyR opening is an essential upstream event in the 

stress response elevating CHOP expression. The combination of gamitrinib and Thap 

synergistically induced apoptotic cell death, causing a dramatic increase in caspase activity (Fig. 

2-15A). CHOP-dependent death receptor 5 (DR5) expression [46] has been reported before, but 

was not involved in the drug combination, considering marginal elevation of DR5 expression 

and no activation of caspase-8 (Fig. 2-15B and C) [47]. Collectively, our data argue that 

gamitrinib lowers the cellular threshold against ER stresses by increasing CHOP expression in 

an RyRdependent manner. 

 

Combined synergistic anticancer activities in vivo  

The mitochondrial Hsp90 pool is dramatically elevated in many cancer cells to cope with 

various stresses, but expression is very low or undetectable in most normal tissues except brain 

and testis [6, 7, 48-50]. To test whether mitochondrial Hsp90-regulated interorganelle calcium 

signaling is functional in normal cells, we examined primary astrocytes from mouse brain, 

where Hsp90 expression in mitochondria is higher than in other tissues [6]. Gamitrinib did not 
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affect CHOP induction and eIF2α phosphorylation (Figure 2-16A), whereas Thap increased 

CHOP expression in astrocytes (Fig. 2-16C). Gamitrinib treatment in combination with Thap 

did not sensitize astrocytes (Fig. 2-16B), possibly due to very low expression of both TRAP1 

and Cyp-D in astrocytes compared to cancer cells (Fig. 2-16D). Collectively, gamitrinib does 

not affect the cell death threshold in astrocytes, probably due to the limited contribution of the 

chaperones to PTP opening in normal cells; this is in stark contrast with data from cancer cells 

(Fig. 2-12A and C). Next, the gamitrinib and Thap combination was further examined using a 

xenograft of relapsed prostate cancer cells (22Rv1) [51], to test whether the cancer cell-specific 

lowering of the cell death threshold occurs in vivo. Because Thap has been reported to be highly 

toxic in vivo [52], we administered a very low dose of the drug. Suboptimal individual doses of 

Thap and gamitrinib did not result in significant inhibition of tumor growth, whereas combined 

treatment inhibited tumor growth (Fig. 2-17A) without remarkable histological abnormalities 

and body weight changes (Fig. 2-18A and B). Individual treatment with either gamitrinib or 

Thap slightly elevated CHOP expression, whereas combined treatment further elevated CHOP 

expression synergistically in cancer cells, but not in the brain or liver (Fig. 2-17B and 18C). 

Therefore, similar to the in vitro data, mitochondrial Hsp90 inhibition lowers the cell death 

threshold of cancer cells to Thap treatment in vivo (Fig. 2-19). 

 

 

 

2-4. Discussion 

 

Mitochondria are integrators of various cellular stress signals that eventually make life-or-

death decisions. We show here that mitochondria can also produce calcium mediated stress 

signals and propagate them to neighboring organelles. For calcium signaling, interplay between 

the permeability transition pore (PTP) in mitochondria and ryanodine receptor (RyR) in ER was 

essential, and the mitochondrial Hsp90 pool negatively modulates signal commencement in 

cancer cells to protect them from cellular stresses. TRAP1 knockdown by siRNA showed a 

similar phenotype to simultaneous inactivation of both Hsp90 and TRAP1 by gamitrinib. 

Considering functional overlap between Hsp90 and TRAP1 in the regulation of PTP in cancer 

cells [6, 53], the lack of functional compensation by the mitochondrial Hsp90 is quite 

unexpected, and may suggest different protein interaction networks between Hsp90 and TRAP1, 

or alternatively, that TRAP1 functionally dominates over Hsp90 in cancer mitochondria. There 

is growing consensus that mitochondrial Hsp90 and TRAP1 play important roles in neoplastic 
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progression by modulating a variety of mitochondrial pathways: metabolic reprogramming, 

mitochondrial dynamics, reactive oxygen species, autophagy, and cell death [53, 54]. Thus, to 

clearly address their roles in mitochondrial homeostasis and tumorigenesis, the relative 

contribution of the chaperones to the mitochondrial signal pathways and the functional 

relationship between them should first be discovered. 

Calcium, in such stress signaling, does not merely mediate mitochondria-ER communication, 

but is also critical for PTP and RyR calcium channel opening. Calcium released through one of 

the channels can trigger the opening of the other through calcium-induced calcium release 

(CICR) [15, 28], which can eventually amplify signals even with minute perturbation of 

mitochondrial chaperone functions. 

Interestingly, IP3Rs, major ER calcium channels allegedly requiring the ligand IP3 as well as 

calcium for CICR [42], are not involved in mitochondria-initiated calcium signaling, which 

further argues that the mitochondria-initiated pathway occurs through genuine CICR that is 

solely dependent on discharged calcium. Interplay and subsequent signal amplification between 

the calcium channels are crucial to signaling, as inhibition of either the PTP or RyR blocked 

calcium signaling. The unknown mechanism of CHOP induction after inactivation of 

mitochondrial Hsp90s in previous reports[4, 36-38] can be explained by this interplay. 

Furthermore, local calcium increases, seen as calcium hot-spots after low-dose gamitrinib 

treatment (Fluo-4 staining in Figure 2-5A), seem to be the consequence of the calcium channel 

interplay, which is sufficient to provoke global mitochondrial membrane potential reduction and 

UPR ER induction. Without a large increase in cytoplasmic calcium concentration, this is 

sufficient to propagate the stress response, probably due to the closely apposed architecture of 

the mitochondria and ER [23, 26, 27]. Thus, mitochondriainitiated calcium signaling might be 

further supported by the physical interconnection between mitochondria and the ER, which 

forms a specialized microdomain of transient calcium [24, 55] and can facilitate reciprocal PTP 

and RyR activation via CICR. Target-centered anticancer drugs often show limited efficacies, 

poor safety, and resistance profiles due to complicated signaling networks in many cancer cells 

[56, 57]. Multicomponent and system-oriented therapeutics development approaches could 

provide a solution [58, 59]. The target proteins of gamitrinib and Thap have fundamentally 

different functions in distinct organelles [6, 60, 61]. When combined, their anticancer activities 

were enhanced and non-toxic doses of the drugs were sufficient in vitro and in vivo to kill 

cancer, but not normal cells, through calcium-mediated coordination of compartmentalized 

signaling networks and synergistic elevation of CHOP expression. These pharmacological data 

further support the function of mitochondrial Hsp90s as important regulators of inter organelle 
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crosstalk, increasing the stress threshold, and identify these proteins as drug targets for the 

development of novel combination cancer therapy. Thus, we believe that mitochondrial Hsp90 

inhibitors require further system-oriented investigation to facilitate the development of an 

effective and better multi component anticancer regimen by combining antitumor drugs or even 

non-antitumor drugs capable of inducing organelle stress. 

In conclusion, Mitochondria-initiated and calcium-mediated propagation of the stress signal 

plays an important role in coordinating ER and mitochondrial stress responses, and is implicated 

in lowering the cell death threshold in cancer cells. Therefore, targeting the coordinated calcium 

stress signaling pathway often suppressed in cancer cells might be a feasible and effective 

strategy for the rational development of cancer therapeutics. 
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Figure 2-1. Mitochondrial Hsp90s modulate the mitochondrial calcium store  

(A) Time course of cytosolic calcium increase. The ratio of the emission fluorescence intensities 

at 340 and 380 nm excitation of Fura-2 labeled HeLa cell in calcium-free medium was 

measured after 30 μM gamitrinib treatment as described in Materials and Methods. (B) Increase 

of cytosolic calcium in 22Rv1 and MDA-MB-231 cells. Fura-2 fluorescence ratio after 30 μM 

gamitrinib (Gami) treatment for 1 hour was calculated. Data are the mean ± SEM of duplicated 

experiments and collected from 40 regions of interest (ROIs). (C) Cyclosporin A (CsA) blocks 

cytosolic calcium increase. Cytosolic calcium changes in Fura-2-labeled HeLa cells treated for 1 

hour with 5 μM CsA and/or 30 μM gamitrinib were analyzed. Bar, 50 μm. (D) No elevation of 

cytosolic calcium on 17AAG treatment. Fura-2 loaded HeLa cells were treated with a non-

targeted Hsp90 inhibitor, 17AAG, and analyzed using a fluorescence microscope.  
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Figure 2-2. Mitochondrial Hsp90s regulate PTP opening , caspase activation and cell death  

(A) Mitochondrial membrane permeabilization. TMRM-loaded HeLa cells were imaged to 

measure mitochondrial membrane potential depolarization (ΔΨm). *, p< 0.0001. (B) 

Cytochrome c redistribution was analyzed (right) at the indicated times after 30 μM gamitrinib 

treatment as previously described [62]. White bar, 20 μm. (C) Caspase activation and cell death 

induction. After 30 μM gamitrinib treatment, HeLa cells were labeled with FITC-DEVD-fmk 

(left, DEVDase activity) or propidium iodide (right, PI staining) and analyzed by flow 

cytometry at the selected time points. (D) Summary of sequential events following 

mitochondrial Hsp90 inhibition. PTP opening is directly linked with the loss of ΔΨm and 
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increase of cytosolic calcium. The calcium flux occurs prior to mitochondrial outer membrane 

permeabilization (MOMP) and cytochrome c release.  
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Figure 2-3. Inhibition of mitochondrial Hsp90s depletes stored calcium in both 

mitochondria and the ER  

(A) Mitochondrial calcium depletion. After 30 μM gamitrinib and 10 μM FCCP treatment, 

confocal FRET images of mtCameleon-expressing HeLa cells were reconstructed from their 

emission fluorescence ratios at 535/480 nm with excitation at 440 nm (left). FRET ratios at the 

indicated time intervals were averaged and plotted (right). (B) ER calcium depletion. FRET 

images of HeLa cells transiently expressing D1ER were acquired at the indicated time points 

after gamitrinib treatment (left) and analyzed to plot the FRET ratio (right). Selected ROIs are 

indicated as white circles. Bar, 10 μm. Data in (A) and (B) are mean ± SEM collected from 30 

ROIs. R.U., relative units. (C-D) Organelle specific effect of FCCP and Thap (C) TMRM loaded 

HeLa cells were treated with 10 μM FCCP or 10 μM Thap for 30 mins and analyzed by 

confocal microscope (left). Quantitation of the confocal microscope images (right). Data are 

mean ± SEM from 30 ROIs. #, not significant; *, p<0.0001. (D) HeLa cells were treated with 

the drugs for 2 hours and analyzed by western blotting (right).  
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Figure 2-4. Effect of 17AAG on the mitochondrial calcium store  

(A) mtCameleon was transiently expressed in HeLa cells. FRET images were acquired after 30 

μM 17AAG treatment at the indicated time intervals. (B) FRET ratio was calculated and plotted 

(right). Data are the mean ± SEM calculated from 30 cells in two independent experiments. Bar, 

10 μm. R.U., relative units.   
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Figure 2-5. Gamitrinib effect on normal cells 

(A) TMRM loaded MCF10A cells (breast normal cell line) were treated with 30 μM gamitrinib 

as indicated and analyzed by confocal microscope. (B) Quantitation of the images (right). Data 

are mean ± SEM from 40 ROIs. #, not significant; *, p<0.0001.  
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Figure 2-6. Inhibition of mitochondrial Hsp90s activates ER stress sensors  

(A) XBP1 splicing by silencing TRAP1. HeLa cells were treated with two different TRAP1 

siRNAs for 24 hours. mRNA expression levels of XBP1 splicing variants, TRAP1, and GAPDH 

were analyzed by RT-PCR. (B) eIF2α phosphorylation upon TRAP1 silencing. After treatment 

of HeLa cells with two different TRAP1 siRNAs, the expression levels of eIF2α, phospho-eIF2α 

(p-eIF2α), TRAP1, and β-actin were analyzed by western blotting. (C) XBP1 splicing upon 

mitochondrial Hsp90 inhibition. After treatment with 30 μM gamitrinib for 2 hours, mRNA 

expression levels of XBP1 splicing variants, TRAP1, and GAPDH mRNAs were analyzed by 

RT-PCR. (D) Analysis of CHOP mRNA. HeLa cells were treated with 30 μM gamitrinib or 

TRAP1 siRNAs as indicated. CHOP and GAPDH mRNAs were analyzed by RT-PCR. 
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Figure 2-7. Inhibition of mitochondrial Hsp90s induce ER stress depending on calcium  

CHOP induction and eIF2α phosphorylation. HeLa cells were treated with 30 μM gamitrinib, 5 

μM CsA, and 10 μM BAPTA as indicated and analyzed by western blotting.  
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Figure 2-8. Gamintrinib induced cytosolic calcium elevation is not involved in IP3 receptor  

(A) Silencing of IP3R isotypes. HeLa cells were treated with IP3R1-, IP3R2-, and IP3R3-

specific siRNAs, and analyzed by Western blotting. (B) IP3R silencing. After IP3R siRNA 

treatment, Fura-2 labeled HeLa cells were treated with 30 μM gamitrinib for 1 hour. The 

fluorescence ratio (340/380) was plotted. The data are mean ± SEM collected from 30 ROIs in 

two independent experiments. (C) IP3R knockdown effect on CHOP expression. Control or 

IP3R1 siRNA-transfected HeLa cells were incubated with or without 30 μM gamitrinib for 2 

hours. Cell extracts were analyzed by western blotting. (D) IP3R1 silencing blocked LPA-

induced calcium flux. HeLa cells were treated with IP3R1 siRNA and labeled with Fura-2. After 

LPA treatment, cytoplasmic calcium flux was monitored. Data are the mean ± SEM calculated 

from 20 ROIs in two independent experiments.  
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Figure 2-9. Ryanodine receptor (RyR)-mediated cytosolic calcium elevation  

(A) RyR inhibitors compromise cytosolic calcium increase. Fura-2 labeled HeLa cells were 

treated with 30 μM gamitrinib for an hour in the presence or absence of 300 μM tetracaine, 100 

μM ryanodine, and 5 μM CsA, and emission fluorescence intensity ratios (340/380 nm 

excitation) were measured. Data are mean ± SEM calculated from 40 ROIs in two independent 

experiments. (B) Fura-2 imaging and RyR2 silencing. Control or RyR2-#2 siRNA-treated HeLa 

cells were labeled with Fura-2 and imaged after 30 μM gamitrinib treatment for an hour (left). 

The fluorescence ratio (340/380) was plotted (middle). Knockdown efficiency of RyR2-#2 

siRNA by western blotting (right). The data are mean ± SEM collected from 30 ROIs in two 

independent experiments. Bar, 50 μm. (C) Inhibition of CHOP induction by RyR inactivation. 

HeLa cells were treated with 30 μM gamitrinib in the presence or absence of 100 μM ryanodine. 

Cell extracts were analyzed by western blotting. (D) RyR2 silencing and CHOP expression. 

HeLa cells were treated with two different RyR2 siRNAs, incubated with 30 μM gamitrinib, for 

2 hours and analyzed by western blotting.  
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Figure 2-10. Reactive oxygen species (ROS) does not affect gamitrinib-induced calcium 

release and CHOP induction 

(A) ROS do not affect gamitrinib-induced calcium release. Fura-2 loaded 22Rv1 cells were 

incubated with 30 mM N-acetylcysteine (NAC) or 30 μM MnTMPyP for 1 hour and then 

treated with 30 μM gamitrinib for 2 hours and analyzed by the fluorescence microscope. (B) A 

mitochondrial ROS scavenger effect on CHOP induction. 22Rv1 cells were treated with 20 μM 

gamitrinib in the presence or absence of 20 μM MnSOD for 4 and 8 hours and analyzed by 

western blotting. (C) A various ROS scavenger effect on CHOP induction. 22Rv1 cells were 

treated with 20 μM gamitrinib in the presence or absence of 0.5 mM ascorbic acid, 0.5 mM 

2,2,6,6 tetramethylpiperidine 1-oxyl (TEMPO), and 20 μM pyrollidine dithiocarbamate (PDTC) 

for 8 hours and analyzed by western blotting. 
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Figure 2-11. Cytoplasmic calcium and mitochondrial membrane potential by noncytotoxic 

dose of gamitrinib 

Calcium indicated Fluo-4 or TMRM/MitoTracker-labeled HeLa cells were incubated with 5 μM 

gamitrinib for 24 hours and analyzed by confocal microscope. Bar, 20 μm. 
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Figure 2-12. Inhibition of mitochondrial Hsp90s sensitizes HeLa cells toward thapsigargin  

(A) Combination effect in HeLa. HeLa cells were treated with various concentrations of Thap in 

the presence of 5 μM of either 17AAG or gamitrinib, and analyzed by MTT assay (left). 

Alternatively, HeLa cells were treated with 5 μM gamitrinib and/or 0.06 μM Thap for 24 hours 

and analyzed by the MTT assay. ***, p < 0.0001. (B) Knockdown of TRAP1 by siRNA. After 

silencing of TRAP1 in HeLa with TRAP1-#1 siRNA, cells were treated with various 

concentrations of Thap for 24 hours and analyzed by the MTT assay.  Data are from three 

independent duplicate experiments; data are given in terms of mean ± SEM. (C) Combination 

effect in 22Rv1. 22Rv1 cells were treated with various concentrations of thapsigargin in the 

presence of 2.5 μM of either 17AAG or gamitrinib for 24 hours, and analyzed by the MTT assay 

(left). Alternatively, 22Rv1 cells were treated with 2.5 μM gamitrinib (Gami) and 0.06 μM Thap 

as indicated for 24 hours and analyzed by the MTT assay. **, p = 0.0006. (D) Knockdown of 

TRAP1 by siRNA. After silencing of TRAP1 in 22Rv1 cells with TRAP1-#1 siRNA, cells were 

treated with various concentrations of Thap for 24 hours and analyzed by the MTT assay.  Data 

are from three independent duplicate experiments; data are given in terms of mean ± SEM. 
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Figure 2-13. Gamitrinib and Thap combination treatment elevates CHOP expression  

(A) Synergistic increase in CHOP induction. 22Rv1 and H460 cells were treated with 5 μM 

gamitrinib and 0.06 μM Thap as indicated and analyzed by western blotting. (B) CHOP reporter 

assay. PC3 cells stably transfected with a CHOP::GFP reporter plasmid were incubated with 2.5 

μM gamitrinib and/or 0.02 μM Thap as indicated and analyzed as described in Materials and 

Methods (left). Cells with more than twice the background fluorescence intensity were 

considered as positive cells (right). Bar, 100 μm. Mean ± SEM. **, p = 0.0036. (C) Silencing 

CHOP expression. Control or CHOP siRNA-transfected HeLa cells were treated with 0.06 μM 

Thap and 5 μM gamitrinib for 24 hours, and analyzed by MTT assay. Knockdown efficiency 

analyzed by western blotting (bottom right). Mean ± SEM. *, p < 0.05.  
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Figure 2-14. Silencing RyR expression 

(A) Control or RyR siRNA-treated HeLa cells were incubated with 0.06 μM Thap and 5 μM 

gamitrinib for 24 hours, and analyzed by MTT assay. Knockdown efficiency analyzed by 

western blotting (bottom right). Mean ± SEM. *, p < 0.05. (B) Knockdown of RyR2 by siRNA. 

Control or RyR2 siRNA-transfected 22Rv1 cells were incubated with 2.5 μM gamitrinib and/or 

0.06 μM Thap as indicated and analyzed by western blotting.  
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Figure 2-15. Apoptosis induction on combination drug treated HeLa cells 

(A) Combination treatment induces apoptosis. HeLa cells were treated with 10 μM gamitrinib 

and 0.5 μM Thap as indicated, labeled with FITC-DEVD-fmk and propidium iodide, and 

analyzed by flow cytometry. (B) DR5 expression on combination drug treatment. 22Rv1 cells 

were treated with 2.5 μM gamitrinib and 0.06 μM Thap as indicated for 24 hours, then analyzed 

by reverse transcription (RT)-PCR. (C) caspase-8 activation on combination drug treatment. 

22Rv1 cells were treated with 2.5 μM gamitrinib and 0.06 μM Thap as indicated for 24 hours, 

then analyzed by western blotting. 
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Figure 2-16. CHOP induction and cytotoxicity in astrocytes  

(A) Astrocytes treated with 30 μM gamitrinib for 2 hours were analyzed by western blotting. 

(B) Thap in combination with gamitrinib. Astrocytes were treated with various concentrations of 

Thap in the presence of 0, 2.5, 5, or 10 μM gamitrinib and the cell viability was analyzed by 

MTT assay. Data are from three independent experiments. (C) Gamitrinib and Thap treatment in 

astrocytes. Astrocytes were treated with 10 μM Thap or 30 μM gamitrinib for 4 hours and 1 μM 

Thap or 2.5 μM gamitrinib for 24 hours, and analyzed by western blotting. (D) TRAP1 

expression in astrocytes. TRAP1 and cyclophilin D (Cyp-D) expression in astrocytes isolated 

from mouse brain was compared with cancer cell lines by western blotting.  
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Figure 2-17. Synergistic cancer-specific cytotoxicity in vivo  

(A) Tumor xenograft experiment. Subcutaneous 22Rv1 xenografts were established as described 

in Materials and Methods. At the end of the experiment, final tumor volumes were plotted 

(right). We used five mice per group and two tumors per animal. (B) Analysis of CHOP 

expression in liver and tumor. Liver and tumor samples from three randomly selected mice for 

each treatment (total 12 mice) were analyzed by western blotting (left). After normalization of 

CHOP band intensities with β-actin, relative CHOP intensities were calculated (right). ***, p= 

0.0003; *, p = 0.039; #, p> 0.1. 
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Figure 2-18. Side effect on combination drug administration in vivo  

(A) Mouse body weight change. Prior to sacrificing the animals in the xenograft experiment, 

their body weights were measured. Data are mean ± SEM. (B) Hematoxylin and eosin staining. 

The animals were sacrificed at the end of the experiment, and organs were collected, fixed, 

stained, and analyzed under a light microscope. (C) Analysis of CHOP expression in mouse 

brain. Brain samples from sacrificed mice (total 8 mice) were analyzed by western blotting. 
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Figure 2-19. Schematic diagram of the mitochondria-initiated stress signal 

Chemical inhibitors are indicated in red. 
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Chapter 3. Combination treatment with doxorubicin and 

gamitrinib synergistically augments anticancer activity 

through enhanced activation of Bim. 

 

3-1. Introduction 

Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that controls folding 

of a wide range of protein substrates, or clients, many of which are involved in signal pathways 

crucial for tumorigenesis [1, 2]. The primary cellular location of Hsp90 is the cytoplasm, but a 

pool of Hsp90 and its isoform, tumor necrosis factor receptor-associated protein 1 (TRAP1), has 

been reported in mitochondria [3, 4]. The mitochondrial expression of Hsp90 and TRAP1 is 

often elevated in many cultured cancer cells and human cancer patients tumorigenic processes 

including the neoplastic metabolic shift to aerobic glycolysis [5-7] and inhibition of cell death 

[3]. A class of mitochondriotropic Hsp90 inhibitors, named gamitrinibs (GA mitochondrial 

matrix inhibitors), has been developed through combinatorial chemistry [8]. Gamitrinibs consist 

of geldanamycin, a competitive inhibitor of the ATPase pocket of Hsp90 and TRAP1, 

conjugated with tandem repeats of tetracyclic guanidinium tumor triphenylphosphonium for 

mitochondrial targeting [8, 9]. Gamitrinibs not only trigger massive cell death in cultured cancer 

cells in vitro but also strongly suppress tumor growth in various xenograft and genetic mouse 

cancer models in vivo [8, 10, 11]. The gamitrinib-induced cytotoxicity is attributed to the 

reactivation of cyclophilin D (Cyp-D), an opener of the permeability transition pore (PTP) 

located in the mitochondrial inner membrane [3, 12]. Because such opening of the PTP can be 

lethal, Cyp-D activation is often suppressed in cancer cells by interaction with mitochondrial 

Hsp90s, which increase resistance to various cellular stresses [3]. In addition, gamitrinibs have 

been shown to induce organelle-specific stress responses and dysregulation of bioenergetics in 

mitochondria of cancer cells, concomitantly compromising neoplastic growth [7, 13-15]. 

Doxorubicin (DOX), an anthracycline antibiotic with the trade name Adriamycin, is one of the 

most effective anticancer drugs and has been widely used in various chemotherapeutic regimens 

to treat patients with cancer [16]. The antitumor activities of DOX are primarily attributed to 

DNA damage resulting from the inhibition of DNA topoisomerase II [16, 17]. The clinical use 

of DOX, however, has been limited by the risk of cardiotoxicity, which is dependent on the 

cumulative dose/treatment schedule, typically refractory to common medications, and can be 

fatal [17-19]. Here, we examined whether a combination of two cytotoxic drugs with unrelated 
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action mechanisms, DOX (genotoxic) and gamitrinib (mitochondriotoxic), would exhibit 

enhanced anticancer activity without aggravating unwanted side effects. This drug combination 

showed synergistically increased anticancer activities in vitro and in vivo, without augmenting 

cardiomyocyte toxicity. The underlying mechanism of action involved the activation of a 

proapoptotic Bcl-2 protein following the stimulation of CHOP and JNK pathways in cancer 

cells. 

 

 

 

3-2. Materials and methods 

 

Chemicals and antibodies 

Gamitrinib conjugated with triphenylphosphonium was prepared as described previously [10]. 

MitoTracker, JC- 1, and tetramethylrhodamine methyl ester (TMRM) were purchased from 

Molecular Probes. All other chemicals were purchased from Sigma. The following antibodies 

were used in this study: anti- JNK, anti-phospho-JNK (Thr183/Tyr185), anti-COX-IV, and anti-

CHOP from Cell Signaling Technology; anticytochrome c, anti-Bim, and anti-PARP from Santa 

Cruz Biotechnology; anti-β-actin from MP Biomedicals; and anti-TRAP1, anti-Bax, anti-

caspase-8, and anti-caspase-3 from BD Biosciences. 

 

Cells and cell culture 

Human cancer cell types that originated from ovary (SKOV3), prostate (22Rv1 and PC3), 

cervix (HeLa), breast (MDA-MB-231), liver (SK-HEP-1), brain (A172), kidney (ACHN), and 

lung (NCI-H460) were purchased from the Korean Cell Line Bank. Cells were cultured in 

DMEM or RPMI (GIBCO) medium containing 10% FBS (GIBCO) and 1% 

penicillin/streptomycin (GIBCO) at 37°C in a 10% CO2 humidified atmosphere. 

 

siRNA treatment 

Small interfering RNAs (siRNAs) against JNK and CHOP were synthesized by Genolution Inc 

(Korea). siRNA sequences used in this study were as follows: 

JNK1-#1, 5′-AAAGAATGTCCTACCTTCTCT-3′; JNK1-#2, 5′-AAGCCCAGTAATATAGTA 

GTA-3′; CHOP-#1, 5′-AGAACCAGCAGAGGTCACAA-3′; CHOP-#2, 5′-AAGAGAATGA 
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ACGGCTCAAGC-3′; Bim-#1, 5′-GCAACCTTCTGATGTAAGT-3′; Bim-#2, 5′-GACCG 

AGAAGGTAGACAATT-3′ and control, 5′-ACUCUAUCUGCACGCUGAC-3′. 

 

Cells were cultured on 6-well plates to 50–75% confluence, transfected with 40 nM siRNA 

mixed with G-Fectin (Genolution) for 48 hours, and then analyzed or treated with drugs. 

 

Analysis of cell viability and apoptosis induction 

Cell viability was determined using 3(4,5-dimethyl-thyzoyl-2-yl)2,5 diphenyltetrazolium 

bromide (MTT) and quantified by absorbance at 595 nm. Percent viability was determined by 

comparison with vehicle-treated control samples. To measure apoptosis, DNA content 

(propidium iodide or sytox staining), externalized phosphatidylserine (Annexin V) and caspase 

activation (DEVDase activity) of the cells were determined using the CaspaTag in situ apoptosis 

detection kit (Millipore) and Dead Cell Apoptosis Kit with Annexin V APC and SYTOX®  

Green (Molecular probes). Labeled cells were analyzed using a FACS Calibur™ flow cytometer 

(BD Biosciences). Data were processed using FlowJo software (TreeStar).  

 

Western blot analysis and mitochondrial fractionation 

Mitochondrial fractionation from cultured cells was performed with a Mitochondrial Isolation 

kit (Thermo Scientific) as described in the manufacturer’s instructions. For western blot analysis, 

proteins were separated on 8-12% SDS-polyacrylamide gels and transferred to polyvinyl 

difluoride membranes (Millipore). Primary antibodies were diluted 100–5,000-fold, and 

horseradish peroxidase-conjugated mouse or rabbit secondary antibodies (KLP Inc.) were 

diluted 5,000-fold. The ECL reagent (GE Healthcare) was used for chemiluminescence 

detection with a LAS 4000 imager (GE Healthcare). Tumor xenograft experiment All 

experiments involving animals were approved by the Ulsan National Institute of Science and 

Technology Animal Care and Use Committee (approval number:UNISTIACUC-12-003-A). 

Cancer cells (7 × 10
6
 22Rv1 or 1 × 10

7
 MDA-MB-231) were suspended in sterile 200 μl PBS. 

22Rv1 cells were injected subcutaneously into both flanks of 8-week-old BALB/c nu/nu male 

mice (Japan SLC Inc.). MDA-MB-231 cells were orthotopically injected into the mammary fat 

pad of 8-week-old BALB/c nu/nu female mice. Gamitrinib or vehicle (DMSO) dissolved in 

20% Cremophor EL (Sigma) in PBS was injected intraperitoneally (i.p.), and DOX diluted in 

PBS was injected intravenously (i.v.). The mice were treated with 10 mg/kg gamitrinib and/or 3 

mg/kg DOX twice a week according to the group. Tumors were measured daily with a calliper 

and tumor volume was calculated using the formula V =1/2 × (width)
2
 × length. At the end of 
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the experiment the animals were euthanized, and organs including brain, heart, kidney, liver, 

lung, spleen, stomach, intestine, and testis, and tumors were collected for histologic or western 

blot analyses. Blood was also collected for measurement of serum creatine phosphokinase 

activity using the Indiko and Konelab System CK (Thermo Scientific) according to the 

manufacturer’s instructions. 

 

RNA extraction and reverse transcript-PCR  

Total RNA was prepared from cells suspended in cold PBS using the RNeasy mini kit 

(QIAGEN), and cDNA was synthesized using the ProtoScript®  First Strand cDNA Synthesis 

Kit (New England Biolabs) using an oligo(dT) primer. The PCR reaction was performed in a 

Mastercycler PCR machine (Eppendorf) with the following sets of oligonucleotide primers: 

 NOXA, 5′-GTGCCCTTGGAAACGGAAGA-3′ and 5′-CCAGCCGCCCAGTCTAATCA-3′; 

PUMA, 5′-CAGACTGTGAATCCTGTGCT-3′ and 5′-ACAGTATCTTACAGGCTGGG-3′; 

DR5,5′-TGCAGCCGTAGTCTTGATTG-3′ and 5′-GAGTCAAAGGGCACCAAGTC-3′; Bcl-2, 

5′-TTTTAGGAGACCGAAGTCCG-3′ and 5′-AGCCAACGTGCCATGTGCTA-3′;Bim, 5′- 

ATGGCAAAGCAACCTTCTGA-3′ and 5′-GGAAGCCATTGCACTGAGA-3′; CHOP, 5′-

CTTTCTCCTTCGGGACACTG-3′ and 5′-AGCCGTTCATTCTCTTCAGC-3′ GAPDH, 5′-

GGGAAGCTTGTCATCAATG-3′and 5′-GCAGTGATGGCATGGACT-3′. 

 

Statistical analyses 

Data from MTT assay (triplicate experiments independently repeated at least two times) were 

averaged and statistically analyzed by unpaired t-test using Prism 5.0 (GraphPad). A p-value 

less than 0.05 was considered significant. To investigate the synergistic efficacy of the drug 

combination, the combination index (CI) was determined according to the Chou-Talalay method 

using CalcuSyn software version 2.1 (Biosoft)[20]. 
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3-3. Results 

 

Gamitrinib-doxorubicin combination treatment showed synergistic enhancement of 

cytotoxicity in various cancer cell lines 

To investigate the effect of combination treatment with DOX and gamitrinib, cancer cell lines 

originating from cervix (HeLa), ovary (SK-OV3), and prostate (22Rv1) were treated with the 

drugs as single agents or in combination. Gamitrinib sensitized HeLa, SK-OV3, and 22Rv1 

cells to a wide range of DOX concentrations (Fig. 3-1A). Consistently, the drug combination 

enhanced cytotoxic effects compared with single agent treatment and resulted in cancer cell 

death at suboptimal concentrations (Fig. 3-1B). In contrast to the effect on cancer cells, 

gamitrinib did not sensitize cardiomyocytes to DOX treatment (Fig. 3-1C), suggesting no 

enhancement of cytotoxicity to normal cells with the drug combination. To further examine the 

combination effect, we calculated the combination index (CI) in various cancer cells using the 

Chou-Talalay method [21, 22]. The DOX and gamitrinib combination showed synergistic 

anticancer activity (CI<0.9) in all cancer cell types tested at a 50% effective dose: high 

synergism (CI<0.7) for HeLa (Fig. 3-1D), A172 (glioblastoma), ACHN (renal cell carcinoma), 

SK-HEP-1 (hepatocellular carcinoma), NCI-H460 (lung carcinoma), and SK-OV-3; and 

moderate synergism (0.7<CI<0.9) for 22Rv1 and MDA-MB-231 cells (Table 1). 

 

Combination of DOX and gamitrinib augments apoptotic cell death 

To address the cell death mechanism of the drug combination, propidium iodide uptake and 

caspase activation were analyzed by flow cytometry. Single drug treatment at a suboptimal 

concentration did not increase caspase activity significantly compared with the DMSO-treated 

control, whereas the drug combination dramatically increased caspase activity and concomitant 

cell death (Fig. 3-2A). Cell extracts from SK-OV3 and 22Rv1 consistently showed caspase 

activation, i.e., decreased amount of pro-form and an increase in the mature form of caspase-3 

and cleavage of the caspase substrate protein, poly (ADP-ribose) polymerase (PARP), for the 

combined drug treatment but not for single agent treatment (Fig. 3-2B). These data suggest that 

the drug combination synergistically augments apoptotic cell death by mediating caspase 

activation. Activation of caspase by the drug combination was completely inhibited by the pan-

caspase inhibitor zVAD-fmk (Fig.3- 2B). In addition, the enhanced cytotoxic activity of the drug 

combination was almost completely abrogated by zVAD-fmk (Fig. 3-2C), providing further 

evidence that the drug combination activates caspases and triggers the apoptotic cell death 

program. DOX does not act directly on cancer cell mitochondria Gamitrinib is designed to 
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accumulate in mitochondria and open the PTP, resulting in the induction of sudden cell death in 

various cancer cell types[10]. Some reports have suggested that the cytotoxicity of DOX is 

similarly attributed to direct opening of the PTP in mitochondria [17]. Therefore, we asked 

whether the observed drug synergism is associated with the direct effect of DOX on 

mitochondria. Treatment of cultured 22Rv1 cells with 5uM gamitrinib and 0.5uM DOX had 

only a marginal effect on mitochondrial outer (Fig. 3-3A) and inner membrane permeabilization 

(Fig.3-3B), whereas combined treatment with the two drugs dramatically increased the 

permeability of mitochondrial membranes based on discharge of cytochrome c into the 

cytoplasm (Fig. 3-3A) and loss of mitochondrial membrane potential (Fig. 3-3B). However, 

with isolated mitochondria, DOX alone had no effect on the membrane, whereas gamitrinib had 

a direct permeabilizing effect on mitochondrial membranes (Fig. 3-3C and 3D) as previously 

described [10] and the drug combination did not further increase membrane permeability (Fig. 

3-3C and 3D). These data suggest that DOX does not affect mitochondria directly, but instead 

affects signaling pathways outside the mitochondria that enhance mitochondrial membrane 

permeabilization and lead to mitochondrial apoptotic cell death. Confocal microscopic analysis 

showed that DOX was primarily accumulated in the extramitochondrial space (Fig.3-3E), 

further supporting indirect effects of DOX on mitochondria.  

 

Reactive oxygen species are not involved in the cytotoxic effect of combination treatment  

DOX has been reported to trigger production of reactive oxygen species (ROS), although the 

role of ROS in the induction of cancer cell death is controversial [17]. To examine the 

contribution of ROS to the cytotoxic effects of the drug combination, we examined the effect of 

a ROS scavenger on cytotoxic activity in HeLa cells after treatment with gamitrinib and DOX, 

alone or in combination. DOX alone increased the production of ROS (Fig. 3-4A, left panels), 

and the cytotoxic activity of DOX was not affected by co-treatment with the ROS scavenger N-

acetylcysteine (NAC) (Fig. 3-4B). Gamitrinib treatment increased the production of ROS in a 

dose-dependent manner (Fig 3-4A, middle panels), but NAC did not inhibit the cytotoxic 

activities of gamitrinib (Fig 3-4C). There was no additional increase in ROS production with the 

drug combination compared with single agent treatment (Fig. 3-4A, right panels), and NAC did 

not affect the cytotoxicity of the drug combination (Fig. 3-4D). These results indicate that ROS 

production is not involved in the enhanced cytotoxic activities of the drug combination.  

 

Gamitrinib and DOX combination treatment activates expression of CHOP and Bim  

DOX has been reported to modulate stress signal pathways such as the c-Jun Nterminal kinase 
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(JNK) and ER-stress induced C/EBP homologous protein (CHOP) pathways [23-25]. 

Gamitrinib can also activate JNK and induce CHOP by triggering an organelle-specific stress 

response, the mitochondrial unfolded protein response (UPR) [16, 26]. Therefore, we 

investigated the effect of combined DOX and gamitrinib on stress signaling and found that JNK 

activation (phosphorylation) and CHOP induction were increased more by the drug combination 

than by single agent treatment in 22Rv1 cells (Fig. 3-5A). Treatment with CHOP-specific 

siRNA reduced the enhanced cytotoxicity after combined drug treatment but did not affect 

cytotoxicity of single agent treatment (Fig. 3-5C), whereas JNK-specific siRNA did not affect 

the cytotoxic activity of the drugs singly or in combination. These data suggest that induction of 

CHOP is required for the combination effect of the drugs in 22Rv1 cells. As a downstream 

effector, the proapoptotic BH3-only Bcl-2 protein, Bim, is regulated by CHOP [27]. The 

expression of Bim was enhanced by the drug combination in 22Rv1 cells and knockdown of 

CHOP compromised the up-regulation of Bim (Fig. 3-5D). Consistent with these findings, 

inactivation of Bim by siRNA treatment compromised the enhanced cytotoxicity of the drug 

combination (Fig. 3-5B). Collectively, our data indicate that simultaneous genotoxic and 

mitochondrial proteotoxic stresses triggered by the DOX-gamitrinib combination can 

synergistically induce the transcription factor CHOP, which in turn increases Bim expression 

leading to the induction of cell death. Bim transcription was elevated, but expression of other 

Bcl-2 family proteins, such as Bcl-2, Puma, and Noxa, was not affected by the drug 

combination (Figure 3-6). Expression of death receptor 5 (DR5) was elevated by the drug 

combination in a CHOP-dependent manner (Figure 3-6) as described previously [28], while 

procaspase-8, recruited to the death inducing signaling complex (DISC) after DR5 activation 

[21], was not cleaved at all (Figure 3-6). These data suggest the crucial role of Bim expression 

in the drug combination. 

 

Gamitrinib and DOX combination treatment enhances mitochondrial localization of Bim 

and Bax.  

In contrast to 22Rv1 cells, the drug combination did not induce CHOP expression in HeLa and 

MDA-MB-231 cells (Fig. 3-7A). In HeLa cells, knockdown of JNK compromised the enhanced 

cytotoxicity of the drug combination (Fig. 3-7B) whereas knockdown of CHOP did not affect 

the drug synergism. To confirm proteosome degradation of CHOP or Bim, we checked the 

expression in presence or absence of MG132, proteosome inhibitor, and observed that CHOP 

and Bim protein were degraded on combination drug treatment (Fig. 3-8A). These data suggest 

that there are context-dependent disparate stress responses to the drug combination, and the 
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JNK pathway, but not CHOP, can be critically involved in the synergistic combination effect in 

certain cancer cell types. Previous studies have shown that JNK can activate Bim through 

phosphorylation to trigger Bax-dependent mitochondrial apoptosis [29-32]. Phosphorylated Bim 

was detectable in HeLa and MDA-MB-231 cells, but not in 22Rv1 (Fig. 3-5A and 7A). 

Treatment with the drug combination caused increased accumulation of Bim and Bax in the 

mitochondria, which was significantly reduced by the JNK inhibitor SP600125 (Fig. 3-8C, left). 

Bim that accumulated in mitochondria was a slow-migrating phospho-form of the protein 

(Fig.3-8C, right panel). The combination effect was compromised by treatment with Bim siRNA 

(Fig. 3-7C), further supporting the important role of the proapoptotic Bcl-2 protein in the drug-

induced stress response [33]. Collectively, these data indicate that the DOX-gamitrinib 

combination enhances JNK-mediated Bim phosphorylation, which triggers translocation of Bax 

to the mitochondria and augments mitochondrial apoptosis. 

 

Drug combination treatment effectively inhibited tumor growth in vivo 

We further investigated the efficacy of the drug combination in vivo using two xenograft 

models for prostate and breast cancer. Firstly, gamitrinib has shown anticancer activity as a 

single agent against prostate cancers in vivo[11, 13, 14, 34], therefore we examined the 

anticancer activity of gamitrinib in the presence of DOX using a prostate cancer xenograft 

model with the hormone-independent relapsed human prostate cancer cell line 22Rv1[35, 36]. 

Single treatment with gamitrinib or DOX resulted in a slight reduction in tumor volume, 

whereas combination treatment dramatically suppressed tumor growth (Fig. 3-9A). Secondly, 

DOX is frequently used to treat early and metastatic breast cancers in the clinic [37, 38]; 

therefore we tested the effect of the drug combination on an orthotopic xenograft model with the 

triple negative (ER-negative, PR-negative, and no HER2 overexpression) metastatic breast 

cancer cell line MDA-MB-231 [39]. The tumor growth was strongly inhibited by the drug 

combination but not by single agent treatment (Fig. 3-9B). Histologic analysis of organs did not 

show any prominent differences among the groups except for the heart (Fig. 3-10A and 11), and 

there was a marginal reduction in mouse weight with the combination treatment (2.5% loss of 

body weight at the end of the experiment compared with the start). 

 

In vivo cardiotoxic side effects and mode of action of the drug combination. 

 A close examination of heart tissues from the treated mice showed a cardiotoxic phenotype of 

cytoplasmic vacuolization with similar severity for DOX alone and in combination treatment 

(Fig. 3-10A). The serum creatine phosphokinase (CPK) level was measured as an index of 
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cardiotoxicity [40, 41] at the end of the experiment (Fig. 3-10B). DOX treatment alone 

increased the level of CPK; this increase was reduced with the combination treatment, but the 

difference between single and combination treatment was not significant (Fig. 3-10B). These 

data suggest that the DOX-induced cardiotoxicity is not aggravated by the drug combination. 

Next, we analyzed the mechanism underlying the activity of the drug combination in vivo. 

Consistent with the in vitro data, the drug combination synergistically increased the 

phosphorylation of JNK in whole tumor tissue extracts (Fig. 3-9C) and the accumulation of Bim 

and Bax in mitochondrial fractions (Fig. 3-9D). 

 

 

 

3-4. Discussion 

 

In this study, DOX, one of the most widely used anticancer drugs, was combined with the 

mitochondria-stress inducer, gamitrinib, to exploit disparate stress pathways in cancer therapy. 

Combination of these agents synergistically increased cancer-specific cytotoxic activity through 

stimulation of JNK and CHOP stress signalling pathways and activation of the proapoptotic 

protein Bim. Importantly, the drug combination did not aggravate the well-known cardiotoxic 

side effects of DOX in vitro or in vivo. Both gamitrinib[13, 14] and DOX [33, 35] have 

previously been shown to activate JNK and CHOP signalling pathways. Turning on these stress 

pathways activates the proapoptotic Bcl-2 family protein Bim through elevated gene expression 

and/or phosphorylation, leading to mitochondrial cell death [37, 42]. As a result of simultaneous 

stimulatory effects on the stress pathways by DOX and gamitrinib, the drug combination is able 

to further increase the amount of Bim protein (through CHOP elevation) and/or mitochondrial 

accumulation of Bim (through JNK activation), leading to enhanced mitochondrial 

accumulation of Bax and synergistic induction of apoptotic cell death. Combining cancer drugs 

with disparate mechanisms of action is a feasible strategy to increase therapeutic efficacy while 

avoiding unacceptable side effects of the drugs [38]. In this regard, combined treatment of DOX 

with other cancer drugs has been examined before and some of these combinations, for example 

with taxane or trastuzumab, have shown much more severe cardiotoxic side effects even at 

lower cumulative doses [16]. The combination of DOX and gamitrinib, however, did not 

aggravate cytotoxicity to cardiomyocytes in vitro or in vivo. We presume that cardiomyocytes 

are relatively resistant to gamitrinib because they are less dependent on mitochondrial 

chaperone functions to maintain protein homeostasis and cope with stresses under normal 



74 

 

physiologic conditions. In conclusion, combined treatment of DOX and gamitrinib showed 

synergistically enhanced cancer-specific toxicity without aggravating cardiotoxic side effects. 

The drug combination can realize the full potential of the anticancer activity of the individual 

drugs and broaden the application of the drugs to various cancer types. 
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Table 3-1. Combination Index (CI) values at ED50 and ED75 in various cancer  

cell lines 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 

 

Figure 3-1. Combination treatment with DOX and gamitrinib  

(A) Gamitrinib sensitizes cancer cells to DOX treatment. HeLa, SK-OV3, and 22Rv1 cells were 

treated with various on centrations of DOX in the absence (open circles) or presence of 5 μM, 

10 μM, and 2.5 μM gamitrinib (closed circles), respectively, for 24 hours. Cell viability was 

analyzed by MTT assay. Percent viability was expressed as a percentage relative to 0 μM DOX-

treatment. (B) DOX and gamitrinib were added as a single agent or in combination to the 

following cancer cells: SKOV3 (10uM/10uM gamitrinib), 22Rv1 (0.25uM DOX/2.5uM 

gamitrinib), and HeLa (2uM DOX/5uM gamitrinib). Cells were treated with the drugs for 

24hours and analyzed by MTT assay. The cell viability compared with that of DMSO treated 

control was plotted as a percentage. Data are the mean±SEM of two independent experiments 

performed in triplicate. (C) Effect of combination treatment on cardiomyocytes. Mouse primary 

cardiomyocytes were treated in the absence (open circles) or presence (closed circles) of 5 μM 

gamitrinib for 24 hours and analyzed by MTT assay. (D) Graphical representation of 

combination index (CI) for HeLa cells. The MTT data were analyzed using CalcuSyn software 

to generate CI values. The 95% confidence interval of CI (mean ± 1.96 × standard deviation) is 

depicted as dotted lines. 
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Figure 3-2. Induction of apoptosis by combination treatment  

(A) Cell death analysis. 22Rv1 and MDA-MB-231 cells were treated with 0.25 μM DOX/2.5 

μM gamitrinib and 10 μM DOX/5 μM gamitrinib, respectively, as single agents or combination 

treatment for 24 hours, and analyzed for propidium iodide, Sytox, Annexin V staining, and 

DEVDase activity by flow cytometry. The percentage of cells in each quadrant is indicated. (B) 

Caspase activation by the drug combination. 22Rv1 cells were treated with 0.25 μM DOX and 

2.5 μM gamitrinib, and analyzed by western blotting. The pan-caspase inhibitor zVAD-fmk was 

used at a concentration of 10 μM. (C) Effect of caspase inhibitor on the drug combination 

treatment. 22Rv1 cells were treated with 0.25 μM DOX, 2.5 μM gamitrinib, and 10 μM zVAD-

fmk as indicated and analyzed by MTT assay. Percent viability compared with DMSO-treated 

control is shown. Data are the mean ± SEM of duplicated three independent experiments  
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Figure 3-3. Effect of DOX on cancer cell mitochondria 

(A) Discharged cytochrome c in cytoplasm. HeLa cells were treated with 5uM gamitrinib and 

0.5uM DOX alone or in combination for 24 hours and cytosolic fractions were analyzed by 

western blotting. (B) JC-1 staining of HeLa cells. Cells were treated as in (A) labelled by JC-1 

staining[43], and analyzed by flow cytometry. The percentage of lost membrane potential is 

indicated (C) Cytochrome c release from isolated mitochondria. HeLa mitochondria were 

treated with 10uM gamitrinib and 1uM DOX alone or in combination. After centrifugation, the 

mitochondrial pellet (P) and supernatant (S) were analyzed by western blotting. (D) Membrane 

potential of isolated mitochondria. Mitochondria isolated from HeLa cells were treated with the 

drugs at the same concentration as in (C), stained with TMRM and analyzed by flow cytometry. 

(E) Confocal imaging of DOX localization. HeLa cells with stable overexpression of Bcl-2 were 

labelled with Mitotracker (green), treated with 10uM DOX (red) for 24hours and analyzed by 

confocal microscopy. Fluorescence intensity of the cytoplasm was further analyzed as a 

histogram (upper panel). White bar, 10um 
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Figure 3-4. Effect of reactive oxygen species on the drug combination effect 

(A) ROS production in HeLa cells. CM-H2DCFDA-labeled cells were treated with DOX and 

gamitrinib as indicated for 24 hours and anlayzed by flow cytometry. (B) Effect of ROS 

scavenger on DOX cytotoxicity. HeLa cells were treated with 5uM DOX in the presence or 

absence of 20mM N-acetylcysteine(NAC) for 24 hours. (C) Effect of ROS scavenger on 

gamitrinib cytotoxicity. HeLa cells were incubated with 2uM gamitrinib in the absence or 

presence of 20mM NAC for 24 hours. (D) Effect of ROS-scavenger on drug combination 

cytotoxicity. HeLa cells were co-treated with 5uM DOX and 2uM gamitrinib for 24 hours. In 

(A)-(D), cells stained with CM-H2DCFDA and propidium iodide were analyzed by flow 

cytometry. 
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Figure 3-5. Effect of drug combination on the expression of CHOP and Bim 

(A) CHOP induction and JNK phosphorylation. 22Rv1 cells were treated with DOX and 

gamitrinib alone or in combination as indicated and the whole cell lysate was analyzed by 

western blotting. (B) CHOP knockdown and Bim expression. After treatment with control or 

CHOP-#1 siRNAs, 22Rv1 cells were incubated with DOX and gamitrinib alone or in 

combination for 24 hours as indicated and cell extracts were analyzed by western blotting. (C) 

CHOP knockdown. 22Rv1 cells were treated with control or CHOP siRNAs for 24 hours and 

then with 0.25 μM DOX and 2.5 μM gamitrinib for 24 hours as indicated. The cell viability was 

analyzed by MTT assay. Data are mean ± SEM of two independent experiments performed in 

triplicate.*, p < 0.05; **, p < 0.004. (D) Effect of combination drug treatment after Bim 

silencing. After treatment with Bim siRNA, 22Rv1 cells were incubated with 0.25 μM DOX and 

2.5 μM gamitrinib for 24 hours as indicated and cell viability was analyzed by MTT assay. Data 

are mean ± SEM of two independent experiments performed in triplicate. *, p < 0.05.  
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Figure 3-6. Expression of Bcl-2 family proteins and DR5 

22Rv1 cells were treated with 0.25 μM DOX and 2.5 μM gamitrinib for 24 hours as indicated. 

After extraction and reverse transcription of RNA, the cDNA of interest was amplified by PCR. 
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Figure 3-7. Enhancement of JNK-mediated Bim phosphorylation by drug combination 

treatment  

(A) Phosphorylation of JNK and Bim. HeLa and MDA-MB-231 cells were treated with DOX 

and gamitrinib alone or in combination for 24 hours as indicated and analyzed by western 

blotting. (B) JNK silencing compromises the synergistic effect of combination treatment. HeLa 

cells were treated with JNK siRNA prior to treatment with 2 μM DOX and 5 μM gamitrinib as 

indicated for 24 hours. Cell viability was analyzed by MTT assay. Data are mean ± SEM of two 

independent experiments performed in triplicate. *, p < 0.02; **, p = 0.0004. (C) Effect of Bim 

silencing. After treatment with control or Bim-specific siRNAs, HeLa cells were incubated with 

2 μM DOX and 5 μM gamitrinib for 24 hours as indicated and analyzed by MTT assay. Data 

show mean ± SEM of two independent experiments performed in triplicate. ***, p < 0.0001. 
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Figure 3-8. Effect of MG132 and SP600125 

(A) MG132 effect on Bim and CHOP expression. HeLa cells were treated with 5 μM gamitrinib, 

2 μM DOX, and 30 μM MG132 as indicated, and analyzed by western blotting. (B) Inhibition of 

JNK activity by SP600125. HeLa cells were treated with 5 μM gamitrinib, 2 μM DOX, or 10 

μM SP600125 as indicated and analyzed by western blotting. The inhibition of JNK activity 

reduces phosphor-form (auto-phosphorylation) of the protein. (C) Mitochondrial accumulation 

of Bim and Bax. After treatment of HeLa cells with 5 μM gamitrinib, 2 μM DOX, or 10 μM 

SP600125 as indicated, mitochondria were fractionated and analyzed by western blotting (left).  

Bim phosphorylation in the whole cell extract and the mitochondrial fraction (right). 
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Figure 3-9. Drug combination effect in vivo 

(A) Prostate cancer xenograft. 22Rv1 cells (7 × 10
6
 cells) were injected subcutaneously into 

both flanks of nude mouse (5 mice/group). After tumors were established, mice were treated 

twice a week with 3 mg/kg DOX i.v. and 10 mg/kg gamitrinib i.p. as single agents or in 

combination. (B) Orthotopic xenograft of breast cancer cells. MDA-MB-231 cells (1 × 10
7
 

cells) were grown in mammary fat pads of nude mouse (3 mice/group). Mice were treated twice 

a week with 3 mg/kg DOX i.v. and 10 mg/Kg gamitrinib i.p. as single agents or in combination. 

(C) JNK phosphorylation in tumor tissue. Tumor samples collected from the xenograft mice in 

(B) were analyzed by western blotting. (D) Accumulation of Bim and Bax in mitochondria. 

Mitochondrial fractionations isolated from the tumors in (B) were analyzed by western blotting. 
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Figure 3-10. Side effect on combination drug treatment 

(A) Hematoxylin and eosin staining of heart tissues. At the end of the experiment in (Fig 3-9B), 

heart ventricles were collected from the mice and analyzed by hematoxylin and eosin staining. 

Magnification, 200×. (B) Serum creatine phosphokinase activity. Blood was drawn from mice at 

the end of experiments in (Fig 3-9B) and serum creatine phosphokinase (CPK) activity was 

measured. n.s., p > 0.05. 
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Figure 3-11. Hematoxylin and eosin staining of mouse organs [44] 

At the end of the experiment shown in Fig 3-9B, mouse organs were harvested, stained with 

hematoxylin and eosin, and analyzed under a light microscope. Scale bar, 100 um 
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Conclusion 

 

This study shows a new the function of mitochondrial Hsp90s regulating the calcium-mediated 

interplay between the permeability transition pore (PTP) in mitochondria and the ryanodine 

receptor (RyR) in the endoplasmic reticulum (ER). The two calcium channels, PTP and RyR, 

are coordinated to propagate and amplify calcium signal-evoking stress responses, which 

consequently increases susceptibility to additional organelle stresses. The pathway is very active 

in cancer cells unless mitochondrial Hsp90s are elevated to suppress it, and we have therefore 

exploited this to selectively kill cancer cells in vivo in this study. The mitochondrial Hsp90s 

plays a critical regulatory role in mitochondrial stress signalling and protects the cell by 

suppressing mitochondria-initiated, calcium-mediated stress signals in cancer cells. Though the 

calcium signal has been intensively studied so far, “mitochondria-initiated” calcium cross-talk 

between mitochondria (PTP) and the ER (RyR) has not been reported before. This will be 

appreciated not only as a novel calcium signaling pathway but also as a part of the largely 

unknown retrograde signaling from the mitochondria to nucleus. The sequential events 

including in PTP opening, RyR opening, ER calcium depletion and UPRER induce CHOP 

expression and sensitize cancer cells to cell death. We provide here a rationale for combination 

cancer therapeutics development lowering the cell death threshold exclusively in cancer cells by 

targeting the coordinated calcium pathway. The importance of the novel calcium signaling was 

further proved by exploiting combination cancer therapy. We found that doxorubicin (trade 

name Adriamycin) or Thapsigargin together with mitochondrial UPR inducer, G-TPP, showed 

strong synergism through the mitochondria and ER crosstalk. The rationale can be exploited to 

find effective and better multicomponent anticancer regimen combining antitumor drugs or even 

non-antitumor drugs, and thereby to benefit the cancer patients in the future. 
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학문에 대한 호기심과 열정으로 다소 늦게 시작했던 박사과정을 마치기까지 여러모

로 도움을 주셨던 많은 분들께 진심으로 감사의 마음을 전합니다. 제일 먼저, 부족

했던 저를 첫 제자로 받아주시고, 아낌없는 조언과 연구를 지도해 주신 강병헌 교

수님께 진심으로 감사드립니다. 늘 한결 같은 마음으로 존경하며, 교수님의 연구에 

대한 열정과 청렴함을 본받겠습니다. 그리고 바쁘신 일정에도 학위 논문 심사에 시

간을 내주신 박찬영 교수님, 박태주 교수님, 이창욱 교수님, 백승훈 교수님께 진심

으로 감사드립니다. 사랑하는 우리 가족, 힘든 과정을 견딜 수 있도록, 아낌없는 격

려로 저를 믿고 지켜봐 주신 주신 아버지, 어머니께 진심으로 감사드리고, 늘 같이 

걱정해주고, 위로해 준 오빠와 동생에게도 고맙다는 말을 전합니다. 5년이라는 박사

과정 동안, 많은 후배들과 박사님들, 연구원 선생님들을 알게 되어서, 좋은 인연을 

만들 수 있었던 시간들이었습니다. 저의 하소연들을 다 들어 주고, 저를 가장 잘 도

와준 야무지고, 알뜰한 지은씨, 뛰어난 유머 감각과 센스 소유자인 다은이 너무 너

무 고맙고, 많은 유행어를 창출하며 먼저 졸업한 주형씨, 삶의 밸런스를 잘 맞춰가

며 인생을 즐기는 재화씨, 조용한 학명이, 너무나 많은 연예인(?)과 사물, 동물(?)을 

닮은 안중이, 베스트 드라이버 근영이, 모두들 힘든 실험실 생활에도 활력소가 되어

주고, 부족한 선배를 믿고 따라줘서 너무 고맙습니다. 비슷한 시기에 대학원을 입학

해서, 함께 수업을 듣고, 많은 시간을 함께 가졌던, 창식쌤, 영지, 늘 이해해주어서 

고맙고, 늘 건강하고, 앞으로도 자주 연락하며 지냈으면 좋겠습니다. 부지런하고, 책

임감이 강해서 뭐든 잘하는 은경이, 현아, 효진이, 준선이 앞으로도 열심히 해서 좋

은 연구 성과로 졸업하길 바랍니다. 멀리서 늘 지켜 봐주고 도움이 필요할 때는 언

제든 달려와 주신 언화 언니 너무 고맙습니다. 꼼꼼히 잘 챙겨주고, 서로 힘이 되었
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던 해영이 더욱 건강해지길 바라며, 실험실 생활에 여유를 가질 수 있게 해주었던, 

지금은 미국에서 열심히 연구하고 있는 유일한 친구 같은 정민씨에게 고맙다는 말

을 전합니다. 일일이 언급하지는 못했지만, 저를 도와주신 많은 분들께 다시 한번 

진심으로 감사의 마음을 표합니다. 앞으로도 더욱 정진하여 좋은 연구 성과와 배움

을 나눔으로, 여러분들에 대한 감사의 마음에 보답 드리겠습니다. 

부족하나마 이 논문을 완성할 수 있도록 지혜와 건강을 허락해주신 은혜로우신 하

나님께 진심으로 감사드립니다. 
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