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Abstract 

 

Various plant-derived useful chemicals have been used for human from ancient to modern time. 

Because of difference of genetic characters between bacteria and plant, it could cause low plant 

protein expression or formation of inclusion body composed by insoluble protein precipitates. There 

are generally two methods for enhancement of heterologous protein expression in E. coli. In order to 

change rare tRNA abundance and chaperone expression level, we conducted chromosomally 

integrated promoter mutant libraries using recombination with single-strand DNA oligonucleotides. 

Some chaperone promoter mutants showed enhancement of Arabidopsis’s protein expression level. 

The tRNA and chaperone promoter mutants also showed significant increases in target Arabidopsis’s 

protein expression. We developed E. coli mutants for optimal plant protein expression. It is applicable 

to pharmaceutical production of plant-derived useful chemicals from E. coli. 
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1. Introduction 

 

Various plant-derived useful chemicals have been used for human from ancient to modern time. 1 

For examples, large numbers of herbal remedies, pigments, natural flavoring and natural rubber are 

extracted from diverse plants.2, 3 However, the extraction of chemicals from plants takes a long time, 

and it is relatively low production efficiency and high production cost. 4, 5 Thus, many researchers 

have developed the rapid, cheap and high productive alternatives for production of plant-derived 

proteins related in production of useful chemicals.6, 7 So plant proteins are synthesized in 

microorganisms rather than direct extraction of desired products from plant.5 Especially, the methods 

which are heterologous protein expression in bacterial host have been widely used for academic 

researches and massive-scale industrial production.8 However, there are difference of genetic 

characters between bacteria and plant.9 It could cause low plant protein expression in bacterial host 

cell.9 Sometimes heterologous protein expression causes low growth or cell death, because of 

formation of inclusion body.10, 11 The inclusion body was synthesized by truncated or misfolded 

protein having insoluble character.12, 13 In order to overcome these problems, various researches of 

engineering genetic machinary in host organisms have been conducted. 

 

1.1 Escherichia coli as an industrial bacterial host for heterologous protein expression 

E. coil has been the most well-known bacterial host for the heterologous protein synthesis. Because 

E. coli grows rapidly, it requires cheap substrates for their growth or production of desired molecules.8 

And E. coli is well-characterized in genetic information, various vectors, promoters, and many kinds 

of mutant host strains are available.8 Furthermore, large-scale production systems have been 

established for industrial application.14 Because of these advantages, production time and cost are 

reduced and various attempts for functional expression of target protein facilitate wide application of 

E. coli strains for heterologous protein expression.14 

However, there are several disadvantages of heterologous protein expression in E. coli. Some foreign 

protein show toxicity to E. coli cell, and this case leads to host cell death.10 Also, synthesized protein 

might be no activity because of protein misfolding15. Misfolded proteins tend to make truncated 

protein and formation of inclusion body, it cause low cell growth or death.12 One of the reason of 

these problems is difference of codon usage bias between foreign gene and E. coli strains.9, 16 It means 

that E. coli does not have enough translational machinery, especially tRNA pool for foreign gene 

expression.6, 16 If these problems are resolved, E. coli will be widely used for heterologous protein 

expression.   
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1.2 Difference of codon usage bias between E. coli and Arabidopsis thaliana 

A. thaliana is model organism of plant, so it is well-studied.17 Function of enzymes and genome 

sequence have been identified. Because of this reason, many researches of Arabidopsis-derived 

heterologous protein expression in E. coli were reported.8 These two organisms show the difference of 

codon preference of several genes.18 It means that they use different synonymous codons of encoding 

same amino acid.18 19 Why they have different codon usage bias? 

The genetic code consists of 61 codons encoding 20 amino acids and 3 stop codons.20 Therefore, 

each amino acid is encoded by one codon (Methionine and Tryptophan) and six synonymous codons 

(Arginine, Leucine and Serine). Codons are recognized by anticodon of complementary tRNAs that 

have been charged with the amino acid.21 The degeneracy of the genetic code enables many 

alternative DNA sequences to encode the same protein sequence.22 Codon distribution is related to 

genome GC content and the changes in codon usage bias could be at least partly explained by a 

mutation–selection equilibrium between the different synonymous codons in each organism.9 

According to arithmetical result of genome analysis of E. coli and A. thaliana, genome GC content of 

E. coli is 51% and genome GC content of A. thaliana is 36%.23 24 This result means that Arabidopsis 

prefer to AT-rich codon.25 Although genome GC content is not same with codon composition of 

several genes, it shows a tendency of AT-rich codon preference.25 Some researchers have explained 

that codon usage biases that tend to reduce the diversity of isoacceptor tRNAs reduce the energy and 

are beneficial to organisms under rapid growth conditions.26 Whatever the reason, it has become clear 

which codon biases could have a high impact on the heterologous protein expression in E. coli. 

Codon usage bias has been believed as the most important factor in E. coli for heterologous protein 

expression.9, 18 The reason is certainly because codon preference correlate with the abundance of 

cognate tRNAs available in the cell.27 This serves to optimize the translation and to balance between 

codon concentration and isoacceptor tRNA concentration.28 For example, the tRNA4
Arg which reads 

the uncommon AGG and AGA codons for Arginine is present at very low levels in E. coli.29 It means 

that codon usage bias and cognate tRNA concentrations have evolved together.30 And the selection 

pressure for this co-evolution could be found in highly expressed genes than genes expressed at low 

levels.31 The difference of codon usage bias was represented in Figure 1. 
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Figure 1. Comparison of codon usage and number of tRNA in E. coli and A. thaliana. a, a 

number of tRNA; b, codon usage bias; c, difference of codon usage between E. coli and A. 

thailiana.  

*A complete summary of codon usages can be found at http://www.kazusa.or.jp/codon/ 

 

1.3 Prevention of inclusion body formation by molecular chaperones 

E. coli has many defense mechanisms responding external environmental change. Chaperones are 

one of the system for synthesis and maintenance of protein in abnormal condition.32 The major 

function of chaperones is to prevent both synthesized polypeptide chains and assembled subunits from 

aggregating into nonfunctional structures.32 The most chaperones are expressed in heat-shocked 

circumstance because chaperones have specific promoters corresponding sigma factor 32 (σ32) which 

is expressed by heat-shock, not sigma factor 70 (σ70) which is expressed constitutively.33 Because of 

this region, expression of chaperones is low in normal condition.33 In heat-shock condition, cytosolic 

and membrane proteins are damaged and aggregated in the cell and it may cause cell death.34 

Chaperones helps new protein synthesis and damaged protein repair.35 Especially, DnaKJ and GrpE 

system help polypeptide elongation in protein synthesis, and GroELS system helps to switch 

misfolding protein to functional protein by refolding.36, 37 

  

AA Codon E. coli A. thaliana AA Codon E. coli A. thaliana AA Codon E. coli A. thaliana AA Codon E. coli A. thaliana

0 0 0 37 0 0 0 0

2.22 2.18 -0.04 0.8 2.52 1.72 1.6 1.46 -0.14 0.5 1.05 0.55

2 16 2 1 3 76 1 15

1.66 2.07 0.41 0.86 1.12 0.26 1.22 1.37 0.15 0.64 0.72 0.08

1 6 1 9 0 0 1 0

1.38 1.27 -0.11 0.7 1.83 1.13 0.2 0.09 -0.11 0.09 0.12 0.03

1 10 1 4 0 0 1 14

1.36 2.09 0.73 0.89 0.93 0.04 0.2 0.05 -0.15 1.53 1.25 -0.28

0 11 0 16 0 0 4 9

1.1 2.41 1.31 0.7 1.87 1.17 1.29 1.38 0.09 2.1 0.9 -1.20

1 1 1 0 1 10 0 0

1.11 1.61 0.50 0.55 0.53 -0.02 0.97 0.87 -0.10 2.21 0.38 -1.83

1 10 1 39 2 8 0 6

0.39 0.99 0.60 0.84 1.61 0.77 1.54 1.94 0.40 0.35 0.63 0.28

4 3 1 5 2 9 1 4

5.31 0.98 -4.33 2.33 0.86 -1.47 2.9 1.52 -1.38 0.54 0.49 -0.05

0 20 0 10 0 0 0 0

3.04 2.15 -0.89 0.89 1.75 0.86 1.76 2.23 0.47 1.87 1.4 -0.47

3 0 2 0 4 16 1 13

2.52 1.85 -0.67 2.35 1.03 -1.32 2.16 2.09 -0.07 1.6 1.13 -0.47

0 5 1 8 6 13 1 9

0.42 1.26 0.84 0.69 1.57 0.88 3.36 3.08 -0.28 0.2 1.9 1.70

8 24 2 6 0 18 1 8

2.78 2.45 -0.33 1.44 0.77 -0.67 1.03 3.27 2.24 0.11 1.1 0.99

0 15 0 16 0 0 0 1

1.83 2.72 0.89 1.52 2.83 1.31 3.22 3.66 0.44 2.48 2.22 -0.26

2 0 2 0 3 23 4 23

1.53 1.28 -0.25 2.57 1.03 -1.54 1.91 1.72 -0.19 2.98 0.92 -2.06

5 7 3 10 4 12 1 12

1.09 0.99 -0.10 2.01 1.75 -0.26 3.96 3.43 -0.53 0.79 2.42 1.63

0 8 0 7 0 13 1 5

2.63 1.74 -0.89 3.38 0.9 -2.48 1.79 3.22 1.43 1.1 1.02 -0.08
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1.4 Simultaneous genome editing for introduction of various mutation 

 In E. coli researches, there are two general genome engineering methods such as site-directed 

genome mutagenesis which uses lambda RED system and KmR cassette from pKD13, and random 

genome mutagenesis which uses transposon.38, 39 In this study, lambda RED system and KmR cassette 

were used to make knockout strains and replacement strains. However this method is only one site 

mutagenesis in each attempt.37 So multiple target mutagenesis takes long time and high cost. In order 

to overcome this problem, simultaneous genome engineering method was developed. 

Simultaneous engineering of multiple sites on the genome using short single-stranded oligo 

nucleotides, it called multiplex automated genomic engineering (MAGE), has currently become a 

unique genomic engineering tool that could help efficient and accelerated mutagenesis of desired 

functions during a short time.40-42 This technique utilizes the lambda RED recombination system 

(Gamma, Exo, Beta) and short nucleotide oligos in order to introduce desired mutations on E. coli 

genome.40-42 When DNA replication occurs, MAGE oligos integrated as lagging strand into newly 

synthetic strand. 40-42 Also, inactivation of the methyl-directed mismatch repair (MMR) system is 

necessary to avoid correction of engineered regions by native MMR system.43 Although several 

modified E. coli strain (EcNR2, DY330, and EcHW24) could be used for genome engineering, these 

strains have several problems such as low cell growth because of the cytotoxic genes from defective 

prophage.43 A permanent inactivation of MMR system could cause undesired mutations.43 In order to 

avoid these disadvantages of MAGE, our groups developed pRED system which possess all 

components for oligo-mediated recombination.43 Also, pRED suicide plasmids could inactivate the 

host MMR system by insertional inactivation of mutS.43 
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Figure 2. Multiplex Automated Genome Engineering. When DNA replication occurs, MAGE 

primers integrated into newly synthetic DNA strand as lagging strand. 

 

1.5 Optimal expression of plant genes in E. coli 

If the effect of different codon usage biases in heterologous protein expression is shown negative 

result by different tRNA levels, one solution is to be the expansion of the intracellular tRNA pool of 

the host.9 For E. coli, the important targets to increase the expression of Arabidopsis’s genes are the 

argU gene encoding the rare tRNA4
Arg that reads AGG and AGA codons, ileY gene encoding the 

tRNA2
Ile that reads AUA, leuW gene encoding the tRNA3

Leu that reads CUA and CUG codons.44 E. 

coli strains over-expressing these tRNA genes are commercially available from companies such as 

Stratagene and Novagen.44-46 Some researchers have shown that expression of proteins whose genes 

contain rare codons could be dramatically improved when the cognate tRNA is increased in the host.47, 

48 

Aggregation of recombinant heterologous proteins overexpressed in E. coli could result either from 

accumulation of high concentrations of folding intermediates or from inefficient processing by 

molecular chaperones.49 By codon usage bias difference, translation speed is low.50 It causes ribosome 

pausing and synthesizing polypeptide is separated from ribosome.50 Finally formation of misfolding 

or truncated protein occurs.51 These abnormal proteins are aggregated in the cell, and it causes the 

formation of inclusion body and cell death.12 Molecular chaperones contribute new protein synthesis 



6 

 

or refolding of misfolded proteins, in order to make insoluble proteins to soluble proteins.37 In Kazuyo 

Nishihara’s research, Cryj2 allergen protein from ‘Japanese cedar (Cryptomeria japonica) pollen’ was 

expressed as insoluble protein.52 They expressed molecular chaperones containing plasmid.52 

Chaperones helps Cryj2 protein to make it soluble.52 Above this example, commercial chaperone 

expressing plasmids have been used to express soluble heterologous protein in E. coli. 

There are generally two methods for enhancement of heterologous protein expression in E. coli. First, 

expression of rare tRNA extra copies is related to adjust codon usage bias between E. coli and 

Arabidopsis’s genes.30, 48 Second, expression of molecular chaperone is related to convert insoluble 

protein to soluble protein by helping protein synthesis or repair of misfolding proteins.37, 52 However 

existing systems are only plasmid-based tRNA and chaperone expression.52, 53 In these cases, 

antibiotics for maintenance of tRNA or chaperone plasmid should be added in culture media. It is 

disadvantage for large-scale production of heterologous protein expression in E. coli, because 

antibiotic addition and purification after cultivation are dissipation. Thus, we developed plasmid-free 

optimal plant gene expression E. coli strain by engineering promoters of tRNA and chaperone on 

genome. 
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Figure 3. Experiment procedure in this study. MAGE method was used for introduction of 

mutation on genome. Screening system was constructed to screen MAGE mutants. Selection 

was conducted by growth. Protein expression was confirmed by SDS-PAGE and western 

blot. 
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2. Materials and methods 

 

2.1 Bacterial strains and growth condition 

 The bacterial strains used in this study are listed in Table 1. E. coli MG1655 was used as a parental 

strain. Luria-Bertani (LB) medium containing suitable antibiotics was used for general cell growth (50 

μg/mL of kanamycin, 100 μg/mL ampicillin, or 30 μg/mL chloramphenicol). The reduced-salt LB 

medium (5g/L NaCl) was used to cultivate E. coli strains after MAGE. Strains which was possessing 

temperature sensitive plasmids and possessing pRED-2 system on genome were grown at 30°C. The 

others were grown at 37°C. Liquid cultures were incubated in shaking incubator (shaking speed is 

200 rpm). Engineered strains were cultured in M9 minimal medium with 0.2% glucose and antibiotics 

for mutant enrichment. 

Strains Genotype/description Reference 

E. coli MG1655 Wild type, F- λ- ilvG- rfb-50 rph-1 
24 

E. coli BL21(DE3) 
F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 

gene 1 ind1 sam7 nin5]) 
54 

E. coli DH10B 

F– endA1 recA1 galE15 galK16 nupG rpsL ΔlacX74 

Φ80lacZΔM15 araD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-

mcrBC) λ- 

55 

MG-MAGE* MG1655 which is pRED2 integration to genomic DNA 
43 

ΔTSA1 MG-MAGE with ΔtrpA ::KmR This study 

ΔADT2 MG-MAGE with ΔpheA ::KmR This study 

ΔPROC1 MG-MAGE with ΔproC ::KmR This study 

ΔHIS6 MG-MAGE with ΔhisA ::KmR This study 

::TSA1 MG-MAGE with ΔtrpA ::TSA1-KmR This study 

::ADT2 MG-MAGE with ΔpheA ::ADT2-KmR This study 

::PROC1 MG-MAGE with ΔproC ::PROC1-KmR This study 

::HIS6 MG-MAGE with ΔhisA ::HIS6-KmR This study 
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Table 1. E. coli strains used in this study 

*MG-MAGE strain was used as wild type 
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Table 2. Plasmids used in this study 

 

Plasmids Genotype/description Reference 

pSIM5 
pSC101 ori. temperature sensitive replication 
exo, bet, gam gene - λ-RED recombinase expression is induced 
by temperature 

56 

pKD13 
Template of FRT-flanked kanamycin resistant gene. 
R6K gamma ori. Requiring the pir + E. coli 

38 

pRED2 
R6K gamma ori. Requiring the pir + E. coli 
mutS homologous region with exo, bet, gam gene - λ-RED 
recombinase expression is induced by temperature 

43 

pYES2.1/V5-His-
TOPO 

pYES2.1 using the TOPO TA expression kit for cloning of 
Dammarenediol synthase cDNA 

57 

pET30a(+) Kmr, Expression vector 
58 

pET30a(+)-TSA1 pET30a(+) containing Flag-tagged A. thaliana TSA1 gene This study 

pET30a(+)-ADT2 pET30a(+) containing Flag-tagged A. thaliana ADT2 gene This study 

pET30a(+)-PROC1 pET30a(+) containing Flag-tagged A. thaliana PROC1 gene This study 

pET30a(+)-HIS6 pET30a(+) containing Flag-tagged A. thaliana HIS6 gene This study 

pET30a(+)-PSP pET30a(+) containing Flag-tagged A. thaliana PSP gene This study 

pET30a(+)-
At2g19940 

pET30a(+) containing Flag-tagged A. thaliana At2g19940 
gene 

This study 

pET30a(+)-GS1 pET30a(+) containing Flag-tagged A. thaliana GS1 gene This study 

pET30a(+)-CGS1 pET30a(+) containing Flag-tagged A. thaliana CGS1 gene This study 

pET30a(+)-SAT1 pET30a(+) containing Flag-tagged A. thaliana SAT1 gene This study 

pBbB6a Biobrick BBR1-ori, Ampr, PLlacO-1 promoter, dbl terminator 59 

pBbB6a-TSA1 pBbB6a containing FLAG-tagged A. thaliana TSA1 gene This study 

pBbB6a-ADT2 pBbB6a containing FLAG-tagged A. thaliana ADT2 gene This study 

pBbB6a-PROC1 pBbB6a containing FLAG-tagged A. thaliana PROC1 gene This study 

pBbB6a-HIS6 pBbB6a containing FLAG-tagged A. thaliana HIS6 gene This study 

pBbB6a-gDS-flag 
pBbB6a containing FLAG-tagged Panax ginseng 
Dammarenediol synthase gene 

This study 
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2.2 Strain construction 

pSIM5 plasmid harboring the λ-RED recombination system under the control of cI857 (temperature 

sensitive) was used to for several genes deletion and gene replacement on genome.56 Chromosomal 

exchanges were identified by PCR analysis and sequencing. Kanamycin cassette from pKD13 was 

amplified with primers carrying a 50 bp overhang that is homologous to the target site.38 For knocking 

out E. coli native genes, the kanamycin cassette PCR product was transformed to MG-MAGE strain. 

For replacing E. coli native genes to A. thaliana genes, the kanamycin cassette and the A. thaliana 

gene were linked by SOE-PCR.60 This SOE-PCR product was transformed to MG-MAGE strain. Cell 

harboring the plasmid pSIM5 were induced by thermal inactivation of CI at 42°C for 15 minutes. The 

cells were chilled immediately after induction to arrest the metabolic state of the cell, made 

electrocompetent, and transformed with the PCR products as described above. SOC medium was 

added after electroporation and the cells were recovered from electric shock by incubation at 30°C for 

2 hours. Transformant colonies carrying the desired modification were directly selected on LB agar 

plates containing kanamycin. Kanamycin cassette was not deleted because we could know the gene 

replacement or not. Primers used to construct knockout strains are listed in Table 3 and replacement 

strains are listed in Table 4.61 Three synthetic constitutive promoters, CP6, CP12 and CP25 were used 

for promoter exchange.62 

 

 

Figure 2. Gene knockout and gene replacement methods. λ RED recombination system was used 

for exchanging native gene to Km cassette. Arabidopsis and Km cassette fusion genes were 

synthesized by overlapping PCR method. 
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Table 3. Primers for gene knockout strain construction 

aAll primer sequences are 5′ -> 3′ direction 

  

Primers Template Primer sequence a 

trpA KO_F 

pKD13 

AAAGACATCTTCACCGTTCACGATATTTTGAAAGCACGAGGGGAAAT

CTGGTGTAGGCTGGAGCTGCTTCG 
  

trpA KO_R 

ATTCCGGGGATCCGTCGACCCTTCATTAAAGAAAGTTAAAATGCCGC

CAGCGGAACTGGCGGCTGTGGGA 

   

pheA KO_F 

pKD13 

AGGCCTCCCAAATCGGGGGCCTTTTTTATTGATAACAAAAAGGCAAC

ACTGTGTAGGCTGGAGCTGCTTCG 

  

pheA KO_R 

ATTCCGGGGATCCGTCGACCGCCAGTAATAATCCAGTGCCGGATGATT

CACATCATCCGGCACCTTTTCA 

   

proC KO_F 

pKD13 

CTTCTGCCAGCGATTATCAAAACAATGAATTTCACGGCAGGAGTGAG

GCAGTGTAGGCTGGAGCTGCTTC 

  

proC KO_R 

AGCCGGACGTAACCGCACCGAAGTGGCGGCCTGACGTCCGGCGAAA

GTCACTGTCAAACATGAGAATTAA 

   

hisA KO_F 

pKD13 

CGTTCTGGTGCCGCTGGTGCTAAGTTGCTGAAAAACTTCCTGGAGAT

GTGGTGTAGGCTGGAGCTGCTTC 

  

hisA KO_R 
CGTCGAGACATGGGATTATGCGTTTTGCCAGCATGCGATGGCCTCCTT

CACTGTCAAACATGAGAATTAA 
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`Primers Template Primer sequence a 

H1-TSA1 F1 MG1655 
gDNA 

TGTCTATTACCGATGATGAA 

H1-TSA1 R1 GATTTGAAAGCAATCGCCATCAGATTTCCCCTCGTGCTTT 
   

TSA1 F2 A. thaliana 
cDNA 

ATGGCGATTGCTTTCAAATC 

TSA1-P1 R2 GAAGCAGCTCCAGCCTACACTCAAAGAAGAGCAGATTTAA 
   

P4-H2 TSA1 F3 MG1655 
gDNA 

TTAATTCTCATGTTTGACAGTCCCACAGCCGCCAGTTCCG 

H2 TSA1 R3 GAGGAATAAGTGACTTAGAG 
   

H1-ADT2 F1 MG1655 
gDNA 

CTGTACTAAAGTCACTTAAG 

H1-ADT2 R1 TTCTTCACTTCCATAGCCATAGTGTTGCCTTTTTGTTATC 
   

ADT2 F2 A. thaliana 
cDNA 

ATGGCTATGGAAGTGAAGAA 

ADT2-P1 R2 GAAGCAGCTCCAGCCTACACTTAGAGCATTGTAGTGTCCA 
   

P4-H2 ADT2 F3 MG1655 
gDNA 

TTAATTCTCATGTTTGACAGTGAAAAGGTGCCGGATGATG 

H2 ADT2 R3 CTGGAGCAGGGCGATAAGCA 
   

H1-PROC1 F1 MG1655 
gDNA 

CCGCGCGATACAAAATCTCT 

H1-PROC1 R1 GGAATCGGAAGAATCTCCATTGCCTCACTCCTGCCGTGAA 
   

PROC1 F2 A. thaliana 
cDNA 

ATGGAGATTCTTCCGATTCC 

PROC1-P1 R2 GAAGCAGCTCCAGCCTACACTTAGCTCTGTGAGAGCTCGC 
   

P4-H2 PROC1 F3 MG1655 
gDNA 

TTAATTCTCATGTTTGACAGTGACTTTCGCCGGACGTCAG 

H2 PROC1 R3 GGGTGCATGAAGGGCTAAAT 
   

H1-HIS6 F1 MG1655 
gDNA 

TGTTCACAGCTACGCAATGC 

H1- HIS6 R1 TGGGAGCTCAAAGTTCTCATCACATCTCCAGGAAGTTTTT 
   

HIS6 F2 A. thaliana 
cDNA 

ATGAGAACTTTGAGCTCCCA 

HIS6-P1 R2 GAAGCAGCTCCAGCCTACACTCAATGGAGTGAGTGCTGCT 
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Table 4. Primers for gene replacement strain construction 

aAll primer sequences are 5′ -> 3′ direction

P4-H2 HIS6 F3 MG1655 
gDNA 

TTAATTCTCATGTTTGACAGTGAAGGAGGCCATCGCATGC 

H2 HIS6 R3 GCTTTTATCTACCACACGGC 
   

P1 
pKD13 

GTGTAGGCTGGAGCTGCTTC 

P4 CTGTCAAACATGAGAATTAA 
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2.3 Plasmid construction 

 All DNA manipulations were performed using established protocols.63 In order to confirm 

expression condition of Arabidopsis’s proteins in E. coli, overexpression plasmid backbone pET30a(+) 

(Novagen) was used with 9 kinds of Arabidopsis’s genes. These genes are listed in Table 5. All 

Arabidopsis’s genes were amplified from A. thaliana cDNA library. Primers were designed by 

insertion of restriction enzyme site corresponding with pET30a(+) restriction enzyme site. Forward 

primers include NdeI (CATATG, NEB biolabs) restriction enzyme site. Reverse primers include XhoI 

(CTCGAG, NEB biolabs), NotI (GCGGCCGC, NEB biolabs), HindIII (AAGCTT, NEB biolabs) 

restriction enzyme sites. pET vector cloning primers are listed in Table 6. Digested vector and gene 

were ligated by T4 DNA ligase (NEB biolabs). Ligation mixture was transformed to DH10B 

competent cell (Invitrogen). In order to confirm the insertion of desire gene to pET30a(+) vector, 

colony PCR and sequencing (Marcrogen Inc.) were conducted. In order to confirm expression of 

Arabidopsis’ protein in MAGE mutant cells, pBbB6a (Biobrick plasmid backbone) was used as 

expression vector. All insert genes were amplified from pET30(+) containing Arabidopsis’ gene. 

Forward primers include NdeI restriction enzyme site. Reverse primers include BamHI restriction 

enzyme site and FLAG-tag binding site. TSA1, ADT2, PROC1 genes amplification used FLAG-

BamHI-RP primer as universal reverse primer. Because BamHI restriction enzyme site located in 

HIS6, B6a-HIS6_RP including XhoI restriction enzyme site was used as reverse primer. Panax 

ginseng Dammarenediol synthase gene57 was also inserted into pBbB6a vector. Biobrick vector 

cloning primers are listed in Table 7. 

Table 5. Target gene information 

E. coli gene 
Arabidopsis 

gene 
Gene product Function 

trpA 
TSA1 Tryptophan synthase alpha chain Tryptophan synthesis 

pheA 
ADT2 

Chorismate mutase / prephenate dehydratase 
(bifunctional) 

Phenylalanine 
synthesis 

proC 
PROC1 Pyrroline-5-carboxylate reductase Proline synthesis 

hisA 
HIS6 

N-(5'-phospho-L-ribosyl-formimino)-5-amino-1-
(5'-phosphoribosyl)-4-imidazolecarboxamide 
isomerase 

Histidine synthesis 

serB 
PSP Phosphoserine phosphatase Serine synthesis 

argC 
At2g19940 N-acetyl-gamma-glutamyl-phosphate reductase Arginine synthesis 

glnA 
GS1 Glutamine synthetase Glutimine synthesis 

metB 
CGS1 Cystathionine gamma-synthase Methionine synthesis 

cysE 
SAT1 Serine acetyltransferase Cystein synthesis 
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Table 6. Primers for plasmid construction of target protein expression 

aAll primer sequences are 5’->3’ direction 

  

Primer name Template Primer sequence a 
Restriction 

site 

pET TSA1_F 

A. thaiana 

cDNA 

CAGCATATGGCGATTGCTTTCAAATCCGGCGTCTTC 
NdeI 

pET TSA1_R CTACTCGAGAAGAAGAGCAGATTTAAGAGAC 
XhoI 

pET ADT2_F CAGCATATGGCTATGGAAGTGAAGAAGATC 
NdeI 

pET ADT2_R GTAGCGGCCGCAGCATTGTAGTGTCCACTGGGTAG 
NotI 

pET PROC1_F CAGCATATGGAGATTCTTCCGATTCCGGCGGAGA 
NdeI 

pET PROC1_R CTACTCGAGGCTCTGTGAGAGCTCGCGGCTTC 
XhoI 

pET HIS6_F CAGCATATGAGAACTTTGAGCTCCCAATTATAC 
NdeI 

pET HIS6_R CTACTCGAGATGGAGTGAGTGCTGCTTGTGATG 
XhoI 

pET PSP_F 
AACTTTAAGAAGGAGATATACATATGACTTTGGGG
CATGAAGGCAAC 

NdeI 

pET PSP_R CTACTCGAGGTCCAATGAGTTTATGAGAGATTC 
XhoI 

pET 
At2g19940_F 

AACTTTAAGAAGGAGATATACATATGGCTAGTAGTT
CTGTTAAACCTG 

NdeI 

pET 
At2g19940_R 

CTAAAGCTTCCGCAGAAACGGTGCTGACCCCGGTT
ATTTGTTAACTGTTAATTG 

HindIII 

pET GS1_F 
AACTTTAAGAAGGAGATATACATATGTCTCTGCTCT
CAGATCTCG 

NdeI 

pET GS1_R TGCGCGGCCGCACCGAGTATGGTCGTCTCAGCGA 
NotI 

pET CGS1_F CAGCATATGGGTGAAAGATTAGGCCGTGG 
NdeI 

pET CGS1_R CTACTCGAGGATGGCTTCGAGAGCTTGAAG 
XhoI 

pET SAT1_F GATCATATGGCAACATGCATCCACACATG 
NdeI 

pET TSA1_R 
 

GATCTCGAGAATCACATAATCAGACCACTCGGT XhoI 
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Table 7. Primers for construction of biobrick expression plasmid 

aAll primer sequences are 5′ -> 3′ direction 

 

2.4 Multiplex automated genome engineering (MAGE) 

 For effective and fast introduction of point and deletion mutations, MAGE method was 

used. ::TSA1, ::ADT2, ::PROC1, ::HIS6 strains were grown overnight at 30°C in LB supplemented 

with chloramphenicol and kanamycin. And then, seed was inoculated using 1/100 dilution into 3 mL 

modified LB - Lennox and grown till the OD600 reached to 0.5~0.6 at 30°C. Cells were induced at 

42°C water bath for 15 minutes to express λ-recombination system. After induction, cells were cooled 

on ice for 1 hour to prepare electrocompetent. After cooling, approximately 1 mL ~ 2 mL cells were 

centrifuged in pre-cooled centrifuge at 4°C and then supernatant were removed. Cell pellet was 

washed using 4°C chilled autoclaved water, and then spin down and removed supernatant. Using same 

procedure, repeat at least 3 times for washing the cell pellet. After washing step, the cell pellet was 

resuspended in 50 μL RNAse free water containing each MAGE primer diluted up to 0.5 μM 

concentration, respectively. Re-suspended cells were transferred to electrocuvette and transformed via 

electroporation. Transformed cells were recovered in 3 mL modified LB supplemented with 

appropriate chloramphenicol and kanamycin in test tube till the OD600 reaches 0.5~0.6 at 30°C. The 

whole procedure was repeated 3 times. After final round, recovery was carried out for over 10 hours.  

Primer name Template Primer sequence a 
Restriction 

site 

B6a-TSA1_FP 
pET30a(+)

-TSA1 
CAGCATATGGCGATTGCTTTCAAATCCGGCGTCT
TC 

NdeI 

B6a-ADT2_FP 
pET30a(+)

-ADT2 
CAGCATATGGCTATGGAAGTGAAGAAGATC 

NdeI 

B6a-PROC1_FP 
pET30a(+)
-PROC1 

CAGCATATGGAGATTCTTCCGATTCCGGCGGAGA 
NdeI 

FLAG-BamHI_RP 

FLAG 

tagged 

pET30a(+) 

universal 

CGCGGATCCTCACTTGTCATCGTCATCCT 

BamHI 

B6a-HIS6_FP 
pET30a(+)

-HIS6 

CAGCATATGAGAACTTTGAGCTCCCAATTATAC 
NdeI 

B6a-HIS6_RP 
CGCCTCGAGTCACTTGTCATCGTCATCCTTGTAAT
CATGGAGTGAGTGCTGCTTGT 

XhoI 

B6a-gDS-FP pYES2.1/
V5-His-
TOPO 

TCTCGATCGTTTAAGAAGGAGATATACATATGTGG
AAGCTGAAGGTTGC 

NdeI 

B6a-gDS-RP 
GCCGCTCGAGCGATCGTTACTTGTCATCGTCATC
CTTGTAATCAATTTTGAGCTGCTGGTGCT 

XhoI 
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Table 8. MAGE primers 

Target region MAGE primer sequence a 

tRNA promoters  

argUp CGGTAACTGAGTCGTTCCCAACTGGCATATTAAGTGCGCTAATGATGCGTAA

CGCCATAGTTGCGCGGGAATCGAGTCAACCTATCTCGT 

ileYp ACCCAAGGTGAATGGGAACGTTTGGCAGTTTATTCTTGACATGTAGTGAGG

GGGCTGGTATAATCACATATTTATAAGTATTGTTATTGC 

leuWp CAGTCACTTTCGAGCAATTTTTTGGCAGTTTATTCTTGACATGTAGTGAGGG

GGCTGGTATAATCACATACGCAACGCCGATAAGGTATC 

argWp ATAAATGGCGAGGGTTTAAGCAACTTTGGCAGTTTATTCTTGACATGTAGTG

AGGGGGCTGGTATAATCATGCCGCATTGTCCTCTTAGT 

ileXp ATTGTTTATAAAAACAGCAGTTTGGCAGTTTATTCTTGACATGTAGTGAGGG

GGCTGGTATAATCAAGTTTATTCTTGACATGTAGTGAGGGGGCTGGTATAATC

ACATACATACCATGGCCCCTTAGCTCAGT 

Chaperone 

promoters 

 

DnaKJ-CP12 TCGATACCAATTATTTTACCCATAGCTGTTTCCTGTGTGAACAGTACTCAGGT

ATTATATCATTTTGGCCGACTAGTGTCAAGAATAAACTTGTATATGCTCACTC

ACTGCGGTTGACT 

DnaKJ-CP6 TCGATACCAATTATTTTACCCATAGCTGTTTCCTGTGTGAACAGTACTCAGTT

ATTATATCATCCGGAAATATCTGTGTCAAGAATAAACTCCCACATGCTCACTC

ACTGCGGTTGACT 

DnaKJ-CP25 TCGATACCAATTATTTTACCCATAGCTGTTTCCTGTGTGAACAGTACTATGTG

ATTATACCAGCCCCCTCACTACATGTCAAGAATAAACTGCCAAAGCTCACTC

ACTGCGGTTGACT 

GroESL-CP12 TCATGCAATGGACGAATATTCATAGCTGTTTCCTGTGTGAACAGTACTCAGG

TATTATATCATTTTGGCCGACTAGTGTCAAGAATAAACTTGTATATGGATCAG

CACAAAATCGGGTG 

GroESL-CP6 TCATGCAATGGACGAATATTCATAGCTGTTTCCTGTGTGAACAGTACTCAGT

TATTATATCATCCGGAAATATCTGTGTCAAGAATAAACTCCCACATGGATCAG

CACAAAATCGGGTG 

GroESL-CP25 TCATGCAATGGACGAATATTCATAGCTGTTTCCTGTGTGAACAGTACTATGTG

ATTATACCAGCCCCCTCACTACATGTCAAGAATAAACTGCCAAAGGATCAGC

ACAAAATCGGGTG 

GrpE-CP12 GTTTTCTGTTCTTTACTACTCATAGCTGTTTCCTGTGTGAACAGTACTCAGGT

ATTATATCATTTTGGCCGACTAGTGTCAAGAATAAACTTGTATATGGAATTTC

TCCGCGTTTTTTT 

GrpE-CP6 GTTTTCTGTTCTTTACTACTCATAGCTGTTTCCTGTGTGAACAGTACTCAGTT

ATTATATCATCCGGAAATATCTGTGTCAAGAATAAACTCCCACATGGAATTTC

TCCGCGTTTTTTT 

GrpE-CP25 GTTTTCTGTTCTTTACTACTCATAGCTGTTTCCTGTGTGAACAGTACTATGTG

ATTATACCAGCCCCCTCACTACATGTCAAGAATAAACTGCCAAAGGAATTTC

TCCGCGTTTTTTT 
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aAll primer sequences are 5′ -> 3′ direction  
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Table 9. Sequencing primers for promoters of tRNA and chaperone 

aAll primer sequences are 5′ -> 3′ direction  

Primers Sequencing primer sequence a 

tRNA promoters  

argUp_seq_F GGGTTCGGAGATAATCGATG 

argUp_seq_R TCATGGCTATCAGCTTGTCG 

ileYp_seq_F TGGAGAGGCAACTGTCAAAA 

ileYp_seq_R AATACATTGCAGTGGCGTGC 

leuWp_seq_F TGTTCACCAGTCGGCGTATA 

leuWp_seq_R GAACCAGGGAATGCCGGTAT 

argWp_seq_F TCTGGTGTTTAACGGTACGC 

argWp_seq_R GCTTTGCTGCTTCAATCTGC 

ileXp_seq_F TGAAAGCCCAGGGTTGATAC 

ileXp_seq_R TGGCGCAGATGCAAATCCCT 

Chaperone promoters  

DnaKJ_seq_F AGGCTGGCGGAAATCGTAAA 

DnaKJ_seq_R GCGACCAATCAGGCGTTTAA 

GroESL_seq_F CAAACACGCCAGTGCCTAAT 

GroESL_seq_R GGCTTCACTTCGCCATTTTC 

GrpE_seq_F CAGCGGTAGAGCATTTCATG 

GrpE_seq_R ACGCAAAATGCCGTCACGTT 
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2.5 High-throughput screening (HTS) for desired mutants after MAGE 

 In order to obtain cells containing desired mutation after MAGE, screening method should be 

established because desired mutants are small amount in mutant mixture.40 After MAGE recovery, 

seed was inoculated using 1/100 dilution into M9 minimal media (0.2% glucose) supplemented with 

appropriate chloramphenicol and kanamycin in order to enrich mutant cells in MAGE mutant. 

Enrichment was repeated 5 times. After enrichment, each MAGE mutant mixture was inoculated into 

LB medium supplemented with appropriate antibiotics and cultivated overnight. MAGE mutant 

mixtures were inoculated into M9 minimal medium, and growth of mutant mixtures were analyzed by 

spectrophotometer (Libra). Mutant mixture diluted until 103 cells was plated in M9 plate, in order to 

separate individual mutants. Single mutant cells were inoculated in 300 uL LB medium with 

appropriate antibiotics in 96-well 2 mL microplates, respectively. After cultivation, each culture was 

re-inoculated in 400 uL M9 minimal medium with 0.2% glucose and appropriate antibiotics. Growth 

of single mutant cells in M9 cultures were analyzed by TECAN after 24 hours. By TECAN growth 

data, high growing cells were ranked and 4 high ranking strains were cultivated in 30 mL M9 media 

in culture flasks. Optical density was analyzed by spectrophotometer. 

 

2.6 SDS-PAGE and western blotting of target proteins 

 SDS-page was applied for separating proteins. Different concentration of acrylamide gels was used 

(12% or 12.5%). The 12.5% separation gel and 5% stacking gel led to satisfactory separation in the 

experiment. Electrophoresis was performed at room temperature (25℃) by voltage at maxims 200V 

and by electrical current at 40mA per gel for one and a half hour. Boil the samples at 95℃ for five 

minutes, which denatures the samples more and help them running well. All of the samples loaded on 

the gel had the same concentration. 

After SDS-PAGE gels are transferred to nitrocellulose membrane in transfer buffer (500mM Glycine, 

50mM Tris-HCl, 0.01% SDS, 20% methanol) buffer at 500 mA for 1h. Membranes are washed in 

TBS-T (10mM Tris-HCl, 100 mM NaCl, 0.1% Tween20 at pH 7.4) and then blocked with 3% non-fat 

milk extract in TBS-T for 30min to 1h. Membranes are exposed to primary anti-FLAG antibody (Cell 

Signaling TECHNOLOGY) in 1% BSA in TBS-T for 1h at room temperature to overnight at 4°C. 

Membranes are washed with TBS-T three times for ten minutes. Then are incubated with appropriate 

secondary antibodies (Cell Signaling TECHNOLOGY) coupled to the alkaline phosphatase (AP) for 

1h at room temperature to overnight at 4°C. After washing the membranes three times for ten minutes, 

signals were visualized using mixture of nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl 

phosphate (BCIP) producing response of color formation. (Sigma-Aldrich). 
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2.7 Heterologous expression of other plant genes in engineered E. coli strains 

 For confirming versatility of our mutant strains, the expression of protein from other plant organism. 

FLAG-tagged pBbB6a-gDS plasmid was transformed to MAGE mutants showing high Arabidopsis 

protein expression level. In order to compare the enhancement of engineered strains, wild type with 

pBbB6a-gDS was made, and protein expression of gDS was analyzed by SDS-PAGE and western 

blotting. Procedures of SDS-PAGE and western blotting were same with 2.6 section. 
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3. Results 

 

3.1 Analysis of A. thaliana protein expression in E. coli 

 When Arabidopsis’s genes are heterologously expressed in E. coli, there are two fates of protein. 

First, some proteins are soluble and functional.49 Second, some cases show insoluble protein 

expression and formation of inclusion body, or very low protein expression.49 In order to find target 

proteins which is not expressed well in E. coli, we inserted 9 kinds of Arabidopsis’s gene into 

pET30a(+) vector. This vector uses T7 promoter for expression of desired gene. Because of this 

reason, large amount of protein expression were observed by SDS-PAGE.  

On polyacrylamide gel, 9 Arabidopsis’s protein expression were observed. TSA1 and ADT2 proteins 

showed low expression level on the gel. It means that translation of these two proteins was interrupted. 

PROC1 and HIS6 proteins showed insoluble expression. These two proteins were 30 KDa and 33 

KDa. On the gel, protein bands were located in insoluble fraction. It means that these two proteins 

form misfolding or truncated structure. It causes formation of inclusion body and cell death. The 

remainders showed soluble protein expression on the gel. As an outcome of these protein expressions, 

TSA1, ADT2, PROC1 and HIS6 proteins were selected for our study. 
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Figure 3. SDS-PAGE of plant gene product expressed in pET30a(+) vector. Red arrow indicated 

target proteins. S, soluble fraction; I, insoluble fraction 
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3.2 Replacement of E. coli genes with their corresponding A. thaliana gene 

We selected 4 kinds of Arabidopsis’ genes by overexpression in E. coli. Because target genes encode 

essential enzymes related in amino acid biosynthesis, knockout strains of E. coli genes cannot grow 

well in M9 minimal media excluded protein source. In the figure, E. coli gene knockout strains did 

not grow well in M9 minimal media. Because essential enzymes for amino acid biosynthesis were 

deleted on the genome, protein synthesis for cell growth was repressed. 

E. coli native genes were replaced with Arabidopsis’s genes as same function. If Arabidopsis’s 

protein expression in E. coli is well, replacement strains could grow in M9 minimal media without 

amino acids. However if there are problems of Arabidopsis’s protein expression, replacement strains 

cannot grow well in M9 media. As shown in the figure, TSA1, ADT2 and HIS6 replacement strains 

showed low growth in M9 media along with knockout strains. It means that these Arabidopsis’s 

proteins were not expressed well. However, PROC1 replacement strain showed higher growth than 

knockout strain. It means that E. coli native proC protein could be substituted for Arabidopsis’s 

PROC1 protein. 

 If TSA1, ADT2 and HIS6 proteins are expressed well, we expect that replacement strains could 

grow well in M9 media. This concept could be applied as high-throughput screening of MAGE. By 

using MAGE, we could introduce various mutation on the genome simultaneously. In this case, these 

mutation could help soluble and functional expression of Arabidopsis’s protein in E. coli. It cause 

increase of cell growth of MAGE mutants in M9 minimal media. We could select desired mutants by 

this screening method. 

 

Figure 4. Comparison of cell growth of E. coli strains expressing A. thaliana genes. Error bars 
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indicate the standard deviation of experiments performed in triplicate. 

3.3 Genome engineering of rare tRNA promoters to enhance tRNA expression 

 In order to adjust E. coli codon usage bias to Arabidopsis’s, we engineered rare tRNA promoter by 

MAGE. E. coli representative rare tRNAs are argU (AGA, AGG), ileY (AUA), leuW (CUA). We 

targeted these rare tRNAs and additional tRNAs such as ileX (AUA) and argW (AGG) which binds to 

rare codon. ileY, leuW, ileX and argW tRNA promoters were changed to constitutive promoter such as 

CP25. argU tRNA gene is activated by upstream activator sequences (UASs) and have -35 and -10 

sequences which are very similar to the sigma70 consensus sequences. However, argU tRNA 

concentration in the cell is very low. Mizuno’s group used argU promoter from -850 to -43 for 

reporter protein expression. The results of their research indicate that the limiting sequence could 

involve nucleotides from +2 to +45, especially +7 and +8 nucleotides. So we changed nucleotides A-7 

and C-8 to T-7 and A-8, in order to reduce the extent of the dyad symmetry. These promoter changes 

were conducted by MAGE. The number of mutation cases are 120. In the figure 7A, TSA1 and ADT2 

tRNA MAGE mutant mixture showed slight increase of growth in M9 minimal media. individual 

mutants of TSA1 tRNA MAGE mutants showed slight increase of growth. Figure 7B indicated that 

ADT2 tRNA MAGE affected growth increase. AtM4 strain showed higher growth than ::ADT2 strain. 

 

Figure 7A. Cell growth analysis after tRNA promoter engineering. WT, MG-MAGE; T, ::TSA1; 

TtM, ::TSA1 with tRNA MAGE; A, ::ADT2; AtM, ::ADT2 with tRNA MAGE; 

P, ::PROC1; PtM, ::PROC1 with tRNA MAGE; H, ::HIS6; HtM, ::HIS6 tRNA MAGE. 

Error bars indicate the standard deviation of experiments performed in triplicate. 
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Figure 5B. Comparison of cell growth of individual mutants of tRNA promoter mutants. 

Individual mutants were ranked by TECAN. (left) 4 high ranked strains were analyzed 

by OD600. (right) Cell growth percentage was calculated on the basis of wild type strain. 

Error bars indicate the standard deviation of experiments performed in triplicate. 
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3.4 Genome engineering of chaperone promoters 

For solubility increase of insoluble proteins, molecular chaperone could help protein synthesis or 

refolding. We engineered the promoters of chaperones such as DnaKJ, GrpE, GroESL. These original 

promoters correspond to sigma factor 32 of RNA polymerase which is expressed after heat-shock. So 

we changed original promoters to 3 types of constitutive promoters such as CP12 (weak), CP6 

(medium), CP25 (strong). These promoter changes were conducted by MAGE. The number of 

mutation cases are 216. TSA1 chaperone MAGE mutant mixture showed higher growth than no-

MAGE TSA1 strain. When individual mutants were separated, many mutants showed higher growth 

than no-MAGE TSA1 strain. It means that chaperone expression affects TSA1 protein functionality. 

By using these fast growing TSA1 chaperone MAGE mutant, TSA1 protein overexpression was 

conducted by IPTG induction of pBbB6a-TSA1. This result described in section 3.6. 
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Figure 6. (A) Cell growth analysis after chaperone promoter engineering. WT, MG-MAGE; 

T, ::TSA1; TcM, ::TSA1 with chaperone MAGE; A, ::ADT2; AcM, ::ADT2 with 

chaperone MAGE; P, ::PROC1; PcM, ::PROC1 with chaperone MAGE; H, ::HIS6; 

HcM, ::HIS6 chaperone MAGE. (B) Comparison of cell growth of individual mutants 

of chaperone promoter mutants. Individual mutants were ranked by TECAN. (left) 4 

high ranked strains were analyzed by OD600. (right) Cell growth percentage was calculated 

on the basis of wild type strain. Error bars indicate the standard deviation of experiments 

performed in triplicate. 
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3.5 Simultaneous genome engineering of rare tRNA and chaperone promoters 

 In order to get comprehensive enhancement of Arabidopsis’s protein expression, promoter changes 

of rare tRNA genes (such as argU, ileY, leuW, ileX and argW) and chaperone genes (such as dnaK-

dnaJ, grpE, groEL-groES) were conducted by co-MAGE. The number of mutation cases are 25,920. 

In MAGE mutant mixture, TSA1 tRNA+chaperone MAGE showed increase of growth and HIS6 

tRNA+chaperone MAGE showed increase of growth compared to no-MAGE HIS6 strain. 

 Growth of MAGE mutant mixtures was analyzed in M9 minimal media. TtcM and HtcM showed 

growth increase. It means that desired mutants involve in mutant mixture. Individual mutants were 

separated by plating mixture on M9 agar plate. After selection, growth was compared by TECAN. 

Ranked cells showed higher growth than unchanged strain. As Figure 9B shown, HtcM4 showed 

higher growth than ::HIS6 strain. 

 

Figure 7A. Cell growth analysis after tRNA and chaperone promoter engineering. WT, MG-

MAGE; T, ::TSA1; TtcM, ::TSA1 with tRNA+chaperone co-MAGE; A, ::ADT2; 

AtcM, ::ADT2 with tRNA+chaperone co-MAGE; P, ::PROC1; PtcM, ::PROC1 with 

tRNA+chaperone co-MAGE; H, ::HIS6; HtcM, ::HIS6 tRNA+chaperone co-MAGE. 

Error bars indicate the standard deviation of experiments performed in triplicate. 
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Figure 9B. Comparison of cell growth of individual mutants of tRNA/chaperone promoter 

mutants. Individual mutants were ranked by TECAN. (left) 4 high ranked strains were 

analyzed by OD600. (right) Cell growth percentage was calculated on the basis of wild 

type strain. Error bars indicate the standard deviation of experiments performed in 

triplicate. 
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3.6 Protein expression level of wild types and engineered strains 

 Protein expression level was analyzed by SDS-PAGE and western blotting. After MAGE, some 

mutants showed increase of growth compared with no-MAGE strain in M9 minimal media. Protein 

expression confirmation of MG-MAGE strains harboring Arabidopsis’s gene were conducted for 

comparison between wild type strain and engineered strains. In figure 10A, gDS gene was expressed 

in soluble fraction and HIS6 gene was expressed in insoluble fraction. TSA1 and ADT2 proteins were 

not observed in western blot results. In order to check protein expression, pBbB6a-TSA1, -ADT2, -

HIS6 and -gDS plasmids were transformed to MAGE mutant strains. TSA1 overexpression was 

conducted in TSA1 chaperone MAGE mutants. ADT2 overexpression was conducted in ADT2 tRNA 

MAGE mutants. HIS6 overexpression was conducted in HIS6 tRNA+chaperone MAGE mutants. In 

the results of figure 10B, TSA1 protein expression of TcM2 and TcM3 strains was shown as soluble 

expression. HIS6 protein expression of HtcM4 was also shown as soluble expression. These results 

indicated that TcM2, TcM3 and HtcM4 strains have chance of candidate for optimal plant gene 

expression E. coli strain. 
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Figure 10A. SDS-PAGE and western blotting of target proteins expressed from wild type strains. 

Red arrow indicated desired protein. S, soluble fraction; I, insoluble fraction; +, IPTG 

induced; -, IPTG uninduced. 
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Figure 10B. SDS-PAGE and western blotting of target proteins expressed from engineered strains. Red 

arrow indicated desired protein. S, soluble fraction; I, insoluble fraction; +, IPTG 

induced; -, IPTG uninduced. 
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3.7 Versatility of effective plant gene expression strains 

 In order to investigate versatility of our engineered strains, we cloned Panax ginseng 

Dammarenediol synthase (gDS) gene into pBbB6a plasmid backbone. gDS is the enzyme related in 

ginsenoside biosynthesis. Engineered strains harboring pBbB6a-gDS-flag plasmid were cultivated in 

LB medium. Protein expression was checked by SDS-PAGE and western blot. In western blot result, 

TcM3 strains showed soluble expression of gDS protein. 

 

Figure 11. Versatility of engineered strains. Panax ginseng Dammarenediol syntheas (gDS) genes 

expressed in engineered E. coli. S, soluble fraction; I, insoluble fraction; +, IPTG induced; 

-, IPTG uninduced.  
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4. Discussion 

 

 In this work, we have engineered an Escherichia coli which enhances heterologous protein 

expression especially plant-derived protein. Previous studies using plasmid harboring extra copies of 

rare tRNA genes (argU, ileY, leuW, ileX and argW) and plasmid harboring additional chaperone genes 

(dnaK-dnaJ, grpE, groES-groEL) have problems such as addition and purification of antibiotics for 

these tRNA and chaperone expressing plasmid.47, 52 However, plasmid-based tRNA and chaperone 

expression system cannot control combination of tRNAs and chaperones simultaneously. In order to 

avoid these problems, we constructed E. coli strains with engineering tRNA and chaperone promoters 

on genome. TSA1 tRNA MAGE strains and ADT2 tRNA MAGE strains showed slight increase of 

growth in M9 minimal media. It means that tRNA promoter engineering by MAGE affect a little of 

enhancement of Arabidopsis’s TSA1 and ADT2 expression. TSA1 chaperone MAGE strains showed 

considerable increase of growth in M9 minimal media. It means that chaperone expression affects 

enhancement of Arabidopsis’s TSA1 protein soluble and functional. HIS6 tRNA+chaperone MAGE 

strains showed increase of growth in M9 minimal media. Arabidopsis’s HIS6 protein were not 

expressed well in tRNA MAGE strains and chaperone strains. However, tRNA+chaperone co-MAGE 

strains expressed soluble and functional HIS6 protein. It means that combination of tRNA and 

chaperone engineering could help to enhance heterologous protein expression which is not expressed 

well in wild type E. coli strain. In the results of SDS-PAGE and Western blotting, TSA1 chaperone 

MAGE strains showed enhancement of protein expression on gel. The control ::TSA1 strain showed 

no expression in western blot result, but TSA1 chaperone MAGE strains showed soluble protein 

expression. Also, HIS6 tRNA+chaperone MAGE strains showed soluble expression of target protein 

against the control ::HIS6 strain. 

However, all MAGE mutants did not show enhancement of growth and protein expression. The 

reason of this problem could be 1) insufficient enrichment of MAGE mutant mixture, 2) insufficient 

MAGE cycle for all coverage, 3) no effect of increase of rare tRNA and chaperone concentration. 

First, when enrichment of MAGE mutant mixture is not sufficient for predominance of desired mutant. 

After MAGE, there are a small amount of desired mutants in the mixture. During enrichment cycles, 

desired mutants grow faster than unchanged strain. So enrichment makes desired mutants to increase 

its populations. Deficient enrichment leads no difference of growth in M9 minimal media. It could be 

enhanced by more enrichment. Second, insufficient MAGE cycle could not cover all number of 

mutation cases.13, 40 By being more MAGE cycles, MAGE efficiency is increased step by step.40, 64 

Although number of cases are small, mutation efficiency is very low because homologous region 

length of MAGE primers are small.13 Because of this reason, a small number of MAGE cycle could 
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cause no change of target sequence. Third, the concentration of rare tRNAs and chaperones is not 

sufficient to treat difference of codon usage bias and refolding of misfolded protein. It means that 

tRNAs and chaperones are expressed from genome. Although these promoter mutation is constitutive 

promoter, there is no guarantee for capability of necessary tRNA and chaperone concentration. This 

might be overcome by adding extra copies of tRNA and chaperone on genome, or adding additional 

strong promoter near original promoter. For E. coli strain development of universal optimal plant 

protein expression, the assistance of tRNA and chaperone is necessary because difference of codon 

usage bias is major obstacle of heterologous protein expression.6, 9, 30 

Many bacterial hosts were optimized for heterologous protein production until now.8 Primarily, all 

bacteria could be used for heterologous protein production.8 Many genomics studies offers new 

information about the bacterial hosts which are frequently or rarely used.65 Unfrequently used codons 

could be a reason to alter from an E. coli system to another host.44 However, E. coli is still the most 

generally used host for industrial production of useful chemicals.8 

 Heterologous protein expression involves the analysis of genes and the transfer of the corresponding 

DNA fragments to hosts other than the original DNA fragments encoding proteins.10 Protein isolation, 

directly from plant proteins, could be costly, intractable and taking long time, and heterologous 

expression provides a convenient way.66 This method allows large-scale production of plant-derived 

proteins in E. coli to study their biochemical and biophysical characters.  
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Figure 82. Overview of this study. There are two parts of enhancement of heterologous gene 

expression in E. coli strains. 
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5. Conclusions 

 

In this study, we constructed optimal plant gene expression E. coli strains such as constitutive 

expression of rare tRNA, chaperone and tRNA+chaperone expressed from genome. By changing 

native promoters of tRNAs and chaperones to constitutive promoters by MAGE, Arabidopsis’s 

proteins were synthesized to soluble and functional expression. For high-throughput screening of 

MAGE, we constructed replacement of E. coli native genes related in amino acid biosynthesis to 

corresponding A. thaliana genes. By comparing growth in M9 minimal media, we can know that 

tRNA and chaperone promoter engineering affects A. thaliana protein expression. Through SDS-

PAGE and western blotting data, we confirmed protein expression level and soluble/insoluble 

expression aspects. As a result, we developed E. coli strains of optimal plant protein expression. It is 

applicable to pharmaceutical production originated various plants and industrial cell factory of plant-

derived useful chemicals from E. coli. Also, this study could be applied to plant genetic research. 
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