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Abstract 

 

With global warming, it is expected that vegetation type may also change, particularly in the 

northern high latitudes over the tundra region. Under a global warming scenario, grass and shrub type 

of vegetation are expected to shift to boreal forests over the Arctic. This study examines the impact of 

potential Arctic vegetation change with global warming on the seasonality of local Arctic and remote 

tropical climates, and compares its impact with the response to CO2 doubling. Three experiments are 

performed with the NCAR Community Atmosphere Model 3 (CAM3) coupled to a slab ocean, which 

are perturbed by 1) Arctic vegetation change from grass and shrub to boreal forest with present day 

CO2 concentrations (335ppmv), 2) present day vegetation type with doubling of CO2, and 3) Arctic 

vegetation change to darker species with doubling of CO2.  

With darker vegetation over the Arctic, the Arctic region becomes warmer throughout the year 

due to the surface albedo reduction. However, because little insolation reaches the Arctic in boreal 

winter, the Arctic warming in boreal summer is four times greater than in boreal winter. 

Evapotranspiration changes also act to maximize the warming in boreal summer. In contrast, the 

Arctic warming peaks in November in response to a doubling of CO2. As a result, as Arctic 

vegetation change is taken into consideration in addition to the doubling of CO2, the peak of Arctic 

warming shifts to August, resulting in a weaker seasonality in the Arctic amplification. 

Arctic warming driven by vegetation change results in imbalance of atmospheric energy budget 

between the hemispheres. Larger incoming insolation in the northern extra-tropics is balanced by 

increased outgoing longwave radiation (OLR) via warming the atmosphere, and some fraction reaches 

the subtropics by quasi-diffusive atmospheric eddy energy fluxes. As the northern subtropics become 

warmer relative to the southern subtropics, the Hadley circulation responds to transport energy 

southward across the equator because large horizontal temperature gradients cannot be sustained 

within the tropics due to the smallness of Coriolis parameter. Since the Hadley circulation transports 

energy in the direction of its upper branch, and moisture is transported northward across the equator, 

the time-mean inter-tropical convergence zone (ITCZ) is shifted northward. However, atmosphere 

cooling from June to September in local area can shift ITCZ to the south when Arctic incoming solar 

radiation is low. 
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Chapter 1.Introduction 

 

Since the beginning of the twentieth century, Arctic surface temperature has increased at twice the 

rate of global mean temperature (IPCC AR4, 2007). This feature, referred to as Arctic amplification, 

is ubiquitous in climate models and observations (e.g. Manabe and Stouffer 1980, Serreze and Barry 

2011). Based on CMIP 3 models, Winton (2006) find a mean annual Arctic warming that is 1.9 times 

greater than the global mean warming at the time of CO2 doubling. One of the key features of 

amplified Arctic warming is a pronounced seasonality as winter warming exceeds summer warming 

by at least a factor of 4 (Bintanja and van der Linden 2013). 

There have been numerous studies on the Arctic amplification. The importance of Arctic 

amplification is that arctic climate change can affect not only high latitude but also mid latitude. 

Francis et al., (2012) suggest that Arctic warming is linked to extreme weather in mid latitudes. Polar 

warming is related with poleward thickness gradient, and it contributes to week zonal wind and 

increase Rossby wave amplitude. In high latitude, polar warming related to earlier snow and ice 

melting.  

In response to Arctic warming, high latitude biome apparently changed with habitat migration 

(Sturm et al., 2001), longer growing season (Jeong et al., 2011), and enhanced photosynthetic activity 

(Xu et al., 2013). These are generally considered as an evidence of the Artic “greening”. Specifically, 

over the past century, ground observation data show that fraction of vegetation has been increasing, 

especially in the Arctic tundra where extension of shrub area is prominent (Tape et al., 2006; Bunn et 

al., 2006; Sturm et al., 2001; Potter et al., 2013). Especially, Pearson et al (2013) reported Arctic area 

have experienced significant changes in vegetation composition including a northward migration of 

the Arctic tree-line during the last several decades. In line with observed relationships between 

warming and biome changes, future model projection also predicts circumpolar greening with a 

northward expansion of boreal forest and enhanced greenness of tundra regions in the future climate 

with increasing CO2 (Notaro et al., 2007; Jeong et al. 2011, hereafter JSJ11).  

The vegetation greening in the high-latitudes in a warmer climate can amplify Arctic warming by 

two to seven times due to decreased surface albedo (Chapin et al., 2005). Transpiration of water vapor 

and feedbacks from the ocean and sea-ice also contributes to amplifying high-latitude warming 

(Swann et al., 2010; hereafter ALS10, Loranty et al., 2011). These studies confined the analysis to the 

annual-mean. Although vegetation may change throughout the year, its effect on the Arctic climate 

may exhibit large seasonality as there is no sunlight to reflect during polar night. Therefore, we study 

how Arctic vegetation change affects the seasonality of Arctic amplification.  

The Arctic vegetation changes resulting from global warming makes energy imbalance between 

hemispheres, so it can affect not only local but also remote climate such as ITCZ. ITCZ is zonal 

rainfall maximum area in tropics and located the north or south of the equator. Although annual mean 
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solar ration is symmetries to the equator but atmosphere condition is asymmetries between 

hemispheres, therefore, the location of ITCZ is changed. Previous studies show that ITCZ is 

controlled by tropical mechanisms such as cold waters at the tropics (Pike et al., 1971), the flow of 

thermocline water from the subtropical (Lu and McCreary, 1995). However, recently numerous 

studies also have investigated that any climate forcing agents that cause hemispheric asymmetry in 

atmospheric energy budget regardless of its latitudinal position can shift the latitude of the ITCZ 

meridionally (Kang et al., 2008, 2009, Seo et al., 2014). ITCZ shift due to energy imbalance between 

hemispheres also has been shown in coupled model by the case of northern hemisphere cooling 

(Broccoli et al., 2006). Consistent with this, several studies has investigated that local vegetation 

change could affect the shift of mean tropical precipitation. For example, afforestation in the Northern 

Hemisphere (NH) middle latitude is shown to induce a northward shift of the annual-mean ITCZ 

(Swann et al., 2012), and expanded forest cover in the mid-Holocene relative to today is shown to 

shift the ITCZ northward resulting in an increased precipitation over Northern Africa with the most 

pronounced response in boreal summer (Swann et al., 2014). However, since the thermal forcing 

caused by Arctic vegetation change has a clear seasonal trend because no sunlight reaches the Arctic 

region in boreal winter, it is expected that the impact of Arctic vegetation change on the ITCZ 

location to vary with season as global warming. 

Therefore, in this study, we investigate the impact of Arctic greening on the seasonality of Arctic 

amplification and the ITCZ location. JSJ11 shows that the land surface temperature response to 

vegetation change is sensitive to its latitudinal position. In the middle latitudes, increasing vegetation 

limits the warming trend due to increased evapotranspiration, whereas that in the high latitudes 

reinforces the warming trend due to the reduced surface albedo. To avoid complications from these 

contrasting effects, we only consider vegetation type changes poleward of 60°N. 
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Chapter 2. Model 

 

The global climate model (GCM) used in this study is the National Center for Atmospheric 

Research (NCAR) Community Atmospheric Model version 3 (CAM3; Collins et al., 2004). It 

includes options for Eulerian spectral, semi-Lagrangian, and finite-volume formulations of the 

dynamical equations. It supports coupled simulations using either finite-volume or Eulerian dynamics 

via an explicit set of adjustable parameters governing the model time step, cloud parameterizations, or 

condensation processes (Collins et al., 2006). Hurrell et al. (2006) was examined dynamical 

simulation of CAM3 including the seasonal variation. 

The model is configured with spectral T42 (2.875° x 2.875°) horizontally and 26 hybrid-sigma 

levels in the vertical. This model is coupled to a slab ocean, with spatially varying mixed layer depth 

where the sea surface temperatures (SSTs) freely evolve to ensure that the surface energy budget is 

closed. 

CAM3 model was used in various simulations such as the role of the interaction between deep 

and shallow convection in MJO simulation (Zhang and Song, 2009) and indirect effect of aerosols on 

cold clouds (Liu et al., 2007). CAM3 has been evaluated based on surface, satellite, and reanalysis 

data by Collier and Zhang (2007). Updated convective scheme version of CAM 3 is CAM 3.5 (Chen 

et al., 2010) was evaluated by Gent et al. (2010) as well. 

Land-surface processes in CAM3 are calculated with the Community Land Model version 3 

(CLM3; Oleson et al., 2004) that calculates the heat, moisture, and momentum fluxes between land 

surfaces and atmosphere as well as the thermal and hydrologic processes at the surface and the 

interior of near-surface soil layer. 

Coupled with CAM3 at a T42 horizontal resolution, CLM3 is comprised of 3,799 grid points. 

Four primary land cover types which are glacier, lake, wetland, and. The vegetated portion of the grid 

cell is represented by the fractional coverage of plant functional types (PFTs). The model uses seven 

PFTs: namely, needle-leaf evergreen or deciduous trees, broadleaf evergreen or deciduous trees, 

deciduous shrubs, grass, and crops. In each PFT, leaf phenology in the CLM3 is prescribed, and the 

seasonal course of leaf area index (LAI) for each PFT is derived through interpolating the monthly 

PFT-specific LAI from National Oceanic and Atmospheric Administration (NOAA) Advanced Very 

High Resolution Radiometer (AVHRR) data. We prescribed annual mixed layer depth as Figure 1, 

and it has no seasonality. To make energy balance, we used slab ocean model which contains Qflux 

which also can indicated in minus surface net fluxes represents seasonal deep water exchange and 

horizontal heat transport (Figure 2). The model is integrated for 100 years, and we use the mean of 

last 80 years as an equilibrium state. 
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Figure 1 Model mixed layer depth 
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Figure 2 Map of annual mean (a) Control run Q-flux in slab ocean model which is the same as (b) 

model control. Positive (negative) indicates downward (upward). 
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Chapter 3. Experiments 

 

The control integration, denoted as CNT, is with the present-day CO2 concentration (335ppmv) 

and the vegetation type fixed to the current climate distribution. It is the hypothetical vegetation 

state that would occur in the absence of human influences (e.g., urbanization, deforestation, and 

change to cultivated area), which is obtained by running CAM3 with the dynamic global vegetation 

model (DGVM) (Levis et al., 2004) where the SSTs and sea ice distributions (SICs) are fixed to the 

climatological mean over the period 1950-2000 from the Hadley Center data. The PFT in CNT shown 

in Figure 3a indicates that shrub and grass are dominant vegetation types poleward of 60°N. In 

response to doubled CO2 concentration, most northern high latitude regions with grass and shrub are 

suggested to be replaced with boreal forest (JSJ11). Hence, the effect of poleward expansion of forest 

with global warming is studied by replacing grass/shrub poleward of 60°N in CNT with boreal forest, 

as shown in Figure 3b. In the study by JSJ11, the model is run with fixed SST and SICs (to that 

derived from the ocean-atmosphere coupled model, CCSM3, under either present-day or doubled CO2 

condition), whereas in our study the SST and SICs are allowed to adjust. Monthly LAI in Figure 3c 

indicates that there is distinct growing season of shrub and grass type from May to September in CNT 

(blue), but under double CO2 (red), vegetation exists all year long, especially increasing from June to 

November. 

In order to differentiate the response to direct CO2 radiative forcing and that to Arctic vegetation 

change, three perturbed experiments have been performed: (1) with the present-day CO2 concentration 

and altered vegetation type only poleward of 60°N (denoted as VEG), (2) with CO2 doubled, but 

vegetation fixed to present-day condition (denoted as 2CO2), and (3) with CO2 doubled and altered 

vegetation type poleward of 60°N (VEG+2CO2). We analyze the difference between the perturbed 

and the control integrations. 
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Figure 3 Plant Functional Types (PFTs) in (a) CNT and (b) VEG, with green and yellow 

corresponding to boreal forest and shrub/grasslands, respectively. (c) Monthly Leaf Area Index 

(LAI) averaged poleward of 60°N in CNT (blue) and in VEG (red). 
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Chapter 4 Results 

4.1. Model and observation data  

Chapter 4.1 describes model validation as comparing model control run with observation data. Model 

validation is important because it is related with reliability of model results. Each Figure 4-7 show 

model control run (CNT, left) and GPCP observation (OBS, middle) and the difference between CNT 

and OBS (right) of each variable. Our model underestimated where precipitation high region (Figure 

4), however, the differences of SW between model and observation are balanced in TOA and SFC 

(Figure 5, 6). This model generally overestimated LW and cloud fraction than observation data 

(Figure 5, 6, 7). 
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Figure 4 Annual mean precipitation (mm/day) (a) control run (CNT), (b) GPCP observation 

(OBS), and the difference between (c) CNT and OBS. 

 

 

Figure 5 Annual mean Top of atmosphere (TOA) SW and LW (W/m
2
) (a) control run (CNT), (b) 

GPCP observation(OBS), and the difference between (c) CNT and OBS. Positive indicates 

downward fluxes. 
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Figure 6 Annual mean Surface (SFC) SW and LW (W/m2) (a) control run (CNT), (b) GPCP 

observation(OBS), and the difference between (c) CNT and OBS. Positive indicates upward 

fluxes. 
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Figure 7 Annual mean High and Low cloud fraction (a) control run (CNT), (b) GPCP 

observation(OBS), and the difference between (c) CNT and OBS. 
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 4.2. Local climate (Arctic amplification) 

 

Figure 8 shows the simulated annual-mean change in temperature at 950hPa (T950). We note that 

the following discussion qualitatively holds for all vertical levels below 800hPa. In response to CO2 

doubling (red) the polar regions warm twice as much as the tropics, with the similar magnitude of 

warming at both poles. In response to Arctic vegetation change (blue), the annual-mean temperature 

increases by 2.3 K poleward of 60°N, with a peak at 65°N where land albedo is changed most. The 

spatial pattern of warming is shown in Figures 8(b)-8(d). In a study by ALS10 where the effect of 

Arctic vegetation changes is investigated by adding deciduous forest on bare ground at high northern 

latitudes, the near surface Arctic warms by only 1 K in the annual-mean. The contrast stems from the 

difference in experiment setup: in our study compared to ALS10, larger reduction in surface albedo is 

induced by 2 and 5 times and larger increase in transpiration (that induces larger water vapor feedback) 

is induced by 1.5 and 20 times in April and July, respectively. The sum of the responses in VEG and 

2CO2 (black dashed) almost coincides with the response in VEG+2CO2 (black). This linearity holds 

at every month with high accuracy (Figure 9a), allowing a decomposition of the response in 

VEG+2CO2 into the responses to CO2 doubling and Arctic vegetation change. One third of the 

annual-mean T950 increase poleward of 60°N in VEG+2CO2 results from VEG, but its relative 

contribution varies with month. The contribution from VEG reaches 55% during the growing season 

and falls to 11% in boreal winter.  

Figure 9a shows the monthly changes in T950 averaged poleward of 60°N in all experiments. In 

2CO2 (red), the warming response over the northern high latitudes is largest in November, and 

smallest in June, consistent with the CMIP5 simulated response to increased CO2 (Pithan and 

Mauritsen et al., 2014). The maximized warming occurs in fall and early winter because most 

incoming solar radiation in summer is taken up to melt the ice and warm areas of open ocean whereas 

during late fall and winter ocean transfers heat to the atmosphere (Screen and Simmonds 2010). In 

VEG (blue), during the growing season, Arctic warming is intensified by 3.5 K, 20% larger than the 

response in 2CO2. The predominant temperature increase during the growing season is due to reduced 

surface albedo from vegetation type change (Figure 9b). In fact, there are two peaks in the surface 

albedo reduction, one in May associated with land greening and the other in October associated with 

sea ice melt (Figures 9b and 9c). 
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Figure 8 (a) The response of annual-mean zonal-mean 950hPa temperature to vegetation change 

(blue), CO2 doubling (red), and both vegetation and CO2 doubling (black). The sum of blue and 

red is shown with the black dashed line. The shading indicates plus/minus one standard 

deviation. The map of annual-mean 950hPa temperature change to (b) vegetation, (c) CO2 

doubling, and (d) both vegetation and CO2 doubling. 
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Figure 9 Monthly response averaged poleward of 60°N of (a) 950hPa temperature, (b) surface 

albedo, and (c) sea ice fraction, to vegetation change (blue), doubling of CO2 (red), and both 

vegetation and CO2 doubling (black). The sum of blue and red is shown with the black dashed 

line. The shading indicates plus/minus one standard deviation. 

  



 

  
15 

 
  

However, since little sunlight reaches the high latitudes in late fall and winter, the reduced albedo 

in late fall does not yield more incoming solar radiation (Figure 10). Hence, although vegetation is 

changed throughout the year, the amount of insolation reaching the Arctic surface is most enhanced in 

June. Moreover, as ALS10 suggested, the greenhouse warming by additional atmospheric water vapor 

content resulting from enhanced evapotranspiration in the summer (dashed pink) can contribute to a 

maximized warming during the growing season. In ALS10, the radiative forcing of enhanced water 

vapor from evaporation is shown to be of the same order of magnitude as shortwave forcing from 

albedo reduction. However, in our experiment setup with larger changes in albedo, we expect the 

effect of a decrease in albedo to overwhelm the effect of an increase in water flux from transpiration, 

as implied in Figure 10. 

It is large seasonality in the incoming solar radiation over the Arctic that causes large seasonal 

variation in the net shortwave flux at the surface and evapotranspiration. As a result, when vegetation 

change is considered in addition to doubling of CO2 (black in Figure 9a), the Arctic amplification is 

maximized earlier than when only CO2 doubling is accounted for, leading to a weaker seasonality.  
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Figure 10 Monthly response averaged poleward of 60°N in VEG of net shortwave radiation (SW, 

red), net longwave radiation (LW, blue), sensible heat fluxes (SH, cyan), latent heat fluxes (LH, 

pink), and evapotranspiration (ET, dashed pink). Positive indicates downward fluxes. 
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 4.3. Remote climate (Tropical precipitation) 

 

Figure 11a shows the annual-mean response of 2m temperature in VEG. As vegetation is changed 

poleward of 60°N, the Arctic region becomes warmer by 4 K in the annual-mean (Figure 11a). 

Heating over the Arctic is fluxed into the lower latitudes by the quasi-diffusive eddies, and the 

northern mid-latitudes become warmer by 1 K. As the northern subtropics become warmer than the 

southern subtropics, the anomalous Hadley circulation (HC) is induced that transports energy 

southward across the equator (Figure 12, Figure 13) in order to flatten the upper tropical tropospheric 

temperature (Kang et al. 2009). Following the direction of the lower branch of the HC, moisture is 

then transported northward across the equator, leading to a northward shift of the ITCZ (Figure 14). 

Figure 11c indeed shows that Arctic vegetation change moistens the northern tropics and dries the 

southern tropics, consistent with Swann et al. (2010). 

As discussed in Section 4.1, since the magnitude of insolation reaching the Arctic is greatly 

season dependent, the Arctic temperature response is a strong function of season, and so is the 

magnitude of perturbation reaching the lower latitudes (Figure 11b). In particular, the northern mid-

latitude warming response is maximized in June-July-August (JJA). However, Figure 11d shows that 

the tropical precipitation response is largest in March-April-May (MAM). Following Hwang and 

Frierson (2013), the seasonal contrast in the tropical precipitation response is quantified by a tropical 

precipitation asymmetry index (PAI) defined as: 

 

     
        °          °     

    °      °  
 

 

Positive change in PAI corresponds to a northward shift of tropical precipitation, and vice versa. 

The PAI response with season is shown in Figure 15 in green. The largest northward shift occurs in 

MAM, and, interestingly, there is a slight southward shift in September-October-November (SON).  

 The tropical precipitation response mostly results from the response of moisture convergence by 

the anomalous Hadley mass transport. Hence, PAI is expected to be proportional to the magnitude of 

anomalous atmospheric energy transport in the deep tropics, denoted as δF0, calculated as the average 

of the response of atmospheric energy transport, F, over 15°S to15°N (Kang et al. 2008). F is the 

vertical integral of meridional flux of moist static energy, which can be alternatively computed from 

the equation for the steady-state atmospheric energy budget, RTOA+RSFC=∇∙F where RTOA is 

downward top-of-atmosphere (TOA) net radiation and RSFC is the upward net surface radiation. In 

turn, F0 is proportional to the zero-crossing latitude of atmospheric transport F, referred to as the 
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energy flux equator θe in Kang et al. (2008). To quantify the seasonal dependence of tropical 

precipitation response, Figure 15 compares the PAI change (green), δF0 (blue), and θe (red) with 

season. δF0 and θe nicely predicts the seasonality of tropical precipitation response.  

In order to understand the seasonal dependence of δF0, the response of column atmospheric 

energy budget is examined.

 

Figure 11 The annual-mean response of (a) 2m temperature (K) and (c) precipitation (mm/day). 

(b, d) The zonal-mean of (a, c) in MAM, JJA, SON, and DJF in pink, red, cyon, and blue, 

respectively. 
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Figure 12 Annual mean Hadley cell of CNT (black line) and VEG (shading). Black dashed and 

blue shading corresponds to count clockwise, and black solid indicates clockwise circulation. 
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Figure 13 Annual mean atmospheric energy transports in CNT (black) and its change in VEG 

(red) in W. Positive (negative) indicates northward (southward) energy transport. 
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Figure 14 Annual mean moisture transports in CNT (black) and its change in VEG (red) in W. 

Positive (negative) indicates northward (southward) moisture transport. 
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Figure 15 The change in atmospheric energy transport between 15S and 15N (F0 in PW, blue), 

the change in precipitation asymmetry index (δPAI, green), and the energy flux equator (θe, red) 

in VEG. 
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To understand which forcing can make the largest northward ITCZ shift in MAM (via F and PAI) 

and southward ITCZ shift in SON, we analysis the seasonality box plot of     ,     ,      (Figure 

16), and map (Figure 17). 

In MAM and JJA, clear sky incoming SW is larger in TOA and smaller increasing surface 

downward SW in TOA due to albedo decreasing poleward of 60°N. The surplus of energy move to 

the south, and most of it is transported to the south across the equator. However, In JJA and SON,  the 

cooling exists over the North Pacific located in middle latitude which reduces southward atmospheric 

energy transport. The cooling can make more energy transport to the south in equator in MAM than 

JJA. To understand the cooling, Figure 17 can be divided into RTOA(TOA NET) (Figure 18) and RSFC 

(SFC NET) (Figure 20). 

Figure 12 and 14 show that cooling over the North Pacific is caused by TOA NET 8h Pacific is 

due to reduced SW cloud forcing (SWCF) (Figure19) by low and high cloud increasing in JJA. 

However, cooling over the North Pacific in SON and heating in DJF can be considered SFC NET. 

Since incoming isolation is very small in SON and DJF (Figure 16). Therefore, cooling in SON is can 

over-compensates Arctic heating. Therefore, in SON, ITCZ is shifted southward even heating exist in 

the high latitude. Our results show that the arctic greening can move ICTZ shift but it is from different 

energy sources between spring, summer and fall, winter. 
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Figure 16 The column atmospheric energy budget for each season (in     PW). Blue (red) 

corresponds to cooling (warming) the atmospheric column, and black denotes the direction of 

atmospheric energy transport 
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Figure 17 Seasonal map of total atmospheric energy budget (TOT NET in W/m
2
), which is the 

sum of net downward TOA radiative fluxes (RTOA) and net upward surface energy fluxes (RSFC). 

Red and blue corresponds to warming and cooling the atmosphere. 

 

Figure 18 Seasonal map of top-of- atmospheric energy budget (TOT NET in W/m
2
). Red and 

blue corresponds to warming and cooling the atmosphere. 
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Figure 19 Seasonal maps of short wave cloud forcing (SWCF in W/m
2
). Red and blue 

corresponds to warming and cooling the atmosphere. 

 

Figure 20 Seasonal map of surface energy budget (SFC NET in W/m
2
). Red and blue 

corresponds to warming and cooling the atmosphere. 
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Figure 21 Seasonal map of TOA SW in clear sky (W/m
2
). Red and blue corresponds to warming 

and cooling the atmosphere 
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Chapter 5. Conclusions 

 

We study the effect of Arctic greening on the seasonality of polar amplification and ITCZ shift 

using CAM3 coupled to mixed layer ocean and CLM3 with prescribed vegetation type.  

In the local effect of Arctic greening, the effect of CO2 doubling is compared with the effect of 

Arctic vegetation type change. In particular, shrub and grass poleward of 60°N are changed to boreal 

forest, which is a potential scenario under double CO2 suggested by JSJ11. Even though vegetation is 

changed over small area, its effect on the polar temperature is comparable to CO2 doubling. In the 

annual-mean, the lower tropospheric temperature response poleward of 60°N to Arctic vegetation type 

change is 60% of that to CO2 doubling. Hence, the Arctic vegetation type change will amplify the 

regional warming due to CO2 increase, although, as stated in Section 3, the exact magnitude of the 

response would be sensitive to the experiment setup. However, the qualitative effect of Arctic 

greening on the phase shift of peak Arctic warming, which is the focus of our study, would be a robust 

feature. 

Even though vegetation is changed all year long, its ability to reduce surface albedo is maximized 

in June when the incoming solar radiation reaches maximum over the Arctic. Also, evapotranspiration 

is enhanced the most in the summer with the highest photosynthesis rate, leading to the largest 

increase in water vapor and consequently the greenhouse effect. Conversely, from November to 

January, the solar radiation barely reaches the Arctic, so that vegetation change has little impact on 

the Arctic temperature. Hence, although vegetation is increased throughout the year, its ability to 

warm the Arctic is confined to boreal summer because of large seasonality of insolation. Therefore, 

the peak of Arctic warming that appears in November when doubling of CO2 is considered in isolation 

shifts to August when the resulting Arctic vegetation change is additionally taken into account, 

leading to a weaker seasonality in the Arctic amplification.  

In the remote effect of Arctic greening, the heating over the Arctic is balanced by southward cross 

equatorial atmospheric energy flux. Since in the tropics the energy is transported mostly by the 

Hadley circulation, which transports moisture by its lower branch, the ITCZ is shifted to the south in 

the annual mean. However, the seasonality of ITCZ shifts can be different with annual ITCZ shifts. 

As Little sunlight reaching the Arctic in SON and DJF, the heating resulting from albedo 

reduction is smaller a factor of 10, compared with the other seasons. In SON, the cooling from the 

reduction of SWCF, surface SH, and clear sky upwelling LW in the North Pacific, over-

compensates the Arctic heating caused by vegetation change. Hence, Hadley circulation transports 

energy northward, and the ITCZ is shifted southward in SON. 

This study suggests that vegetation change over the Arctic can impact not only on local area but 

also remote area, and the effect of Arctic greening on the ICTZ shift depends also significant on the 

seasons due to polar night. 
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Although there is uncertainty in the potential vegetation change, we expect details of vegetation 

will only affect the magnitude of the response while holding the qualitative results the same. The 

present study emphasizes the importance of improving vegetation parameterizations to raise precision 

of climate change projections. 
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