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Abstract

As the promising cathode material, Ni-containing layered Li NCM oxide has several advantages;
low-cost, high capacity, etc. but hard to commercialize because of its poor cycle performance.

About this, many researchers studied the failure mechanisms and regard the surface part problems as
the failure mechanism of layered L1 NCM oxide.

However, apart from surface part problem, there are other failure mechanisms affect to the poor
cycle performance of Li NCM. Among them, we focus and suggest new kinds of failure mechanism;
Ni disordering as bulk part problem. To identify, at first, the half cell test shows that the poor cycle
performance of Li NCM in several factors, and the degree of Ni disordering during cycling is
analyzed using Rietveld refinement method. As results, when the Ni disordering is increased during
cycling, the capacity of Li NCM is decreased more and more, and this indicates that Ni disordering
can affect the cycle performance of Li NCM during cycling, so it is demonstrated that the Ni
disordering is one of the failure mechanism of poor cycle performance of layered LI NCM.

Moreover, we suggest new type solution to improve; Mg doping at Li layer of Li NCM. Several
analyses, such as TEM, refinement data show the Mg is successfully doped into Li layer, and the half
cell test shows its better cycle performance than bare Li NCM (1C, 30 C). Also, through refinement
analysis of cycled Mg-doped Li NCM electrode, we observe that the Ni disordering is also inhibited

somewhat, comparing the bare Li NCM results.
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1. Introduction

In Li cathode material, Ni-containing layered LiNi,Co,Mny.,,O, (Li NCM) is one of the promising
alternatives of commercialized LiCoO, due to low-cost, high capacity. However, this layered Li NCM
has severe capacity fading problem during cycling.

About this problem, many researchers investigated and found several failure mechanisms; Transition
metal dissolution, SEI formation, etc.., and these were regarded as the reasons affected to capacity
fading problem of layered Li NCM. However, in most of failure mechanism investigations, they are
focused only in surface problems, that is, no one paid attention to bulk problems as one of the failure
mechanisms of capacity fading problem.

Therefore, in this paper, we demonstrate that the bulk problem, especially Ni disordering, can be one
of the failure mechanisms of capacity fading problem using Rietveld refinement analysis. Moreover,
to solve Ni disordering problem, we suggest new type of solution; Mg-doping at Li layer, to improve
their cycle performance at high C-rate.



1-1. Li-ion battery

In battery research history, the development of Li-ion batteries is one of the most innovative
situations. Comparing with previous battery systems, Li-ion battery, especially Li-ion has various
advantages; high electropositivity (-3.04V vs. standard hydrogen electrode), light & small metal
(equivalent weight M = 6.94 g-mol™, specific gravity p = 0.53 g-cm™), etc. And so, Li-ion battery
system can get high energy density.™?

These advantages from using lithium metal were first demonstrated and primary Li batteries were
developed for commercialization during the 1970s. In this period, due to the strong research effort, it
was started to convert Li primary cells into rechargeable cells with high energy density. For example,
in 1972, TiS, as the cathode material was used by Exxon, with Li metal as anode and Li perchlorate in
dioxolane as electrolyte. However, these rechargeable cells with Li metal anode had serious safety
problems caused by forming dendrites and powder deposits on recharging. To overcome these safety
problems, several modifications were researched, and finally, the new type of battery; LiCoO, as
cathode and graphite as anode first commercialized by Sony Co. in 1991, and since then, C-LiMO,
has became the leading Li-ion battery system using various batteries. The basic diagram of C-LiMO,
battery is illustrated in Figure 1.4

Figure 1 shows the main cell reaction which is reversible charge-discharge cycles between two
layered compounds. In cathode, the cathode reactions are;

Li.,xMO, + xLi* + xe” < LiMO,

Because the source of lithium in Li-ion batteries is cathode material, it ensures very prolonged shelf
life & excellent safety, compared to Li metal-based batteries. The first process is charging, that is,
oxidation and delithiation of LiMO, in parallel to the reduction and lithiation of graphite. In graphite
anode, the anode reactions are;

Li* + Cete <« L|C§
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1-2. Li layered cathode material

As shown in Figure 2, several oxides with LiMO, (M = Mn, Co, Ni) crystallize in layered structure
of O-Li-O-M-O along ¢ axis which Li* and M** ions occupy the alternate (111) planes of rock salt
structure. This structure is O3 layer structure which is the unit cell consisted of Li* ions occupy the
octahedral sites and three MO, sheets. In this structure, reversible extraction-insertion of Li ions in Li
planes is allowed by strong-bonded MO, layers. The interconnected Li-ion sites; the edge-shared MOg
octahedral sequence with direct M-M interaction provide good electronic conductivity o. depending
on the M*® ions’ electronic configuration, and the edge-shared LiOs octahedral sequence between
MO, layers provide high o; with fast two-dimensional Li ion diffusion. As a result, the crystallized

03 structure LiMO, oxides is promising candidates for cathode materials.
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Figure 2. Crystal structure of LiMO,



(1) LiCoO,

Among the layered metal oxide, LiMO,, LiCo0O, is one of the most predominant cathode materials in
commercially available Li-ion batteries, because of its high energy density, high accessible Li
diffusion pathway, and good cycle performance. However, although it has high theoretical capacity
(273 mAh-g?), the practical capacity is limited to about 140 mAh-g"' because of its phase
transformation from hexagonal to monoclinic phase between 4.1 and 4.2V (LiCoO, = LiyC00O; (x <
0.5)) (Figure 3).5 Also, this phase transformation leads to volume change along the ¢ axis (~2%
expansion), which extends defects (micro-cracks) of particles, disconnects electrical contact of

particles, and increases cell capacity fading.™
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Figure 3. First charging curve of a Li | Li;.«CoO, cell at the C/10 rate from 3.5t0 5.2V



(2) LiNixCoyMn;.,yO>

Studies to overcome the disadvantages of LiCoO,; high-cost, low capacity, etc approaches to
Li[Ni,Co,Mn]O;, that considered as compensation Co metal’s disadvantage with others’ advantage."?
For example, LiNiy3Coy3Mny30,, the first commercialized Li NCM cathode material, better rate
capability and structural stability.*2®!

Among them, LiNi,Co,Mn,.,.,O, (X > 0.4) received much attention due to its better electrochemical
performance and higher capacities, caused by high Ni composition. In LiNiyCoyMn;.,.,O, (X > 0.4),
these have different electrochemical & structural properties with various composition of Co & Mn.
Because high Ni composition usually results in poor cycle performance & structural instability, the
best compositions of metal ions is not yet clearly understood, so many studies have been carried
out.”! However, in commercialization of Li-ion battery, thermal instability & structural collapse
during long-term cycling is still an obstacle.®?* In detail, this problem is caused by exothermic
reactions with electrolyte, oxygen release at elevated temperature (55<C), simultaneously.” To

stabilize without capacity loss, various cation substitutions have been studied.?*4



1-3. Failure mechanisms of LiNixCoyMn1.x.,O;

As we mentioned, in LiNi,Co,Mny.,,O, (X > 0.4), there are poor cycle performance & structural
instability during cycling. About this problem, some researchers have investigated and suggested
several failure mechanisms; Transition metal (Ni, Co, Mn) dissolution,*® Residual Li,”® and Phase

transition of cathode surface.l®”!

(1) Transition metal dissolution

In charge/discharge process, when Li ions move from/to cathode material, the oxidation numbers of
transition metal are changed from stable state to unstable state. Because of these changes, layered
NCM oxide material becomes unstable, and this leads to the transition metal dissolution from layered
NCM oxide cathode material.

After dissolution, these dissolved metals make various side reactions at cathode & anode. Especially,
at graphite anode, in full cell, there are self-discharge due to Mn deposition,® or solid electrolyte
interphase with Ni, Co, and Mn ions are formed. Each metal SEI hinder the Lithium intercalation and
lead capacity fading with their unique mechanisms (Figure 4a-c).l**!
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(2) Residual Li contents

On the surface of LiNi,Co,Mn,.,.,O,, especially high Ni composition, as the cathode material, there
are Li,CO; and LiOH resulting from reaction with air.***”! These residual Li contents lead to degrade
layered NCM’s capacity; LiOH generates acidic HF in electrolyte caused by reaction with LiPFg, and

Li,CO; make severe swelling at high temperature, especially in charge process.!
Figure 5a-b shows the relationship between capacity fading problem and amount of residual Li

contents. The amount of total residual Li contents increased drastically with increasing Ni contents of
layered NCM oxide (Figure 5a), and these Ni-rich layered NCM oxide has poorer cycle performance
(Figure 5b).B®!
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(3) Phase transformation of cathode surface

In layered NCM oxide, especially in Ni-rich NCM oxide surface, there is serious phase
transformation with increasing cutoff voltage as one of the other failure mechanisms, and Figure 6
shows the schematic diagram of phase transformation of LiNigsC0y,Mng30,. At first, in 4.5V cutoff
cycling, the surface of the electrode has phase transformation mainly to spinel phase, with small part
of rock salt formation. In addition, in increased 4.8V cutoff cycling, the rock salt phase is more
universally formed than 4.5V cutoff, and in result, the rock salt phase encircles the NCM oxide

material (Figure 6).
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Li{Ni; .Co, ;Mg 5);0, - Spinel phase

Li deficient phase Li, (Niy;Co, ;Mn, )0,
= Spinel Li(Ni, ,Coy ;Mn, ,),0,
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o
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3.048V
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Highly delithiated Li(NigsCoy Mng 3,0,
3 2(Niy.Co,;Mn,,)O + O,

LiNiy yCo, ;Mny, 0, - Rhombohedral phase

Figure 6. Degradation mechanisms of LiNiy5C0,.Mng30, and phase transformation after cycle tests
under high-voltage conditions
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1-4. My topic
(1) New suggested mechanism; Ni disordering (Bulk part)

Like this, many researchers have investigated and suggested about the failure mechanisms of
capacity fading of layered Li NCM oxide, but these investigations have been focused on surface part.

However, the investigation about the other parts of failure mechanisms is insufficient relatively.
Therefore, we studied and suggested the new failure mechanism focusing on another part; Ni cation
disordering.

Ni cation disordering is the transformation that some Ni ions migrate from the transition metal layer
to vacant sites of Li layer. However, in fact, any transition metals in TM layer have possibility to go

through the migration.
Figure 7-8 shows the pathways for migration of transition metal ion, M™, to vacant Li layer. In

charged cathode, Li;,MO,, for transformation to a spinel-like phase, some transition metal ion M3
should migrate from the octahedral sites of M layer (3b sites) to empty octahedral sites of Li layer (3a
sites). At this process, migrated transition metals should pass the neighboring tetrahedral sites (T, or
Tz)-[42’43]

11
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M Layer

O Layer

Li Layer

Figure 7. lllustration of the paths for the migration of the transition metal ion M™ from the octahedral
sites in the transition metal layer to the octahedral sites in the Li layer via the neighboring
tetrahedral sites (T, and T,)
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Like this, every transition metal have possibility to happen cation disordering, but in real, only Ni
ions (Ni?*) occur cation disordering due to its similar radius to Li ions (Li*).

Furthermore, to identify whether Ni cation disordering affects to cycle performance of layered Li
NCM cathode, the data of difference of Ni cation disordering during cycling is needed. About this,
Figure 9 shows the arrangement change of Li & Ni during charge-discharge process of LiNigsMngs0..
According to the paper, in charge process, the composition of Ni is decreased at Li layer, whereas in
discharge process, Ni ions come back to Li layer, increasing Ni composition.”? Resultingly, Ni ions
migrate between Li & TM layer during insertion-extraction of Li, and this can be the evidence of Ni

cation disordering during cycling.
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Figure 9. Summary of structural changes during the first cycle between 5.3 and 2.0V of
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(2) New solution; Mg-doping at Li layer

In general, to overcome improve layered Li NCM oxide cathode, most researchers used another
transition metal doping at transition metal layer or coating processes.

On the other hand, in this paper, we introduce the new-type solution; magnesium ion doping at Li
layer of layered Li NCM cathode. In overlithiated layered oxide (OLO), especially Mn-rich OLO, this
solution was applied and improved cycle performance due to structural stabilization with expansion of
lattice (Figure 10). Similarly, in Li NCM oxide, Mg-doping stabilizes the structure for better cycle

performance. Also, because of fixed Mg ions, the Ni disordering process is blocked somewhat.
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Figure 10. Discharge capacity of the cells with respect to cycle number under 1C for Liy ..
xMgxMng 54Nio.13C00.130;
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2. Experimental Procedure

2-1. Synthesis of layered Li NCM oxide

To prepare the composite metal carbonate (Niy4C0y2Mng4)-CO;3 and hydroxide
(NigsC0g2Mnyg,)-(OH), as the precursor, co-precipitation method was employed. The co-precipitation
method as follows; First, an aqueous solution with NiSO4-6H,0, CoSO,-7H,0, MnSO4-H,O (molar
ratio of Ni : Co:Mn=4:2:4&6:2: 2, concentration of 2.0 mol-dm™) was put into continuous
stirred tank reactor (CSTR) under N, atmosphere.***! Simultaneously, Na,CO; or NaOH solutions as
pH controller & NH,OH solutions as a chelating agent were also put into CSTR. In addition, other
conditions; pH, temperature, input amount, and stirring speed were set before start co-precipitation,
and during this process, these conditions were monitored and controlled. After co-precipitation, the
best-synthesized precursors were filtered, washed, and dried at 80 C, 24h.

And then, obtained precursors were mixed with Li,CO3 (molar ratio 1 : 0.5) and heated at 850 C
(carbonate) & 800C (hydroxide) for 10h in air atmosphere.

To identify the synthesis of layered Li NCM oxide, several measurements were observed; XRD,
SEM, ICP, etc. Powder X-ray diffraction (XRD) data were measured on a Rigaku D/MAX2500V/PC
diffractometer using Cu-Ka radiation (A = 1.5405A ) operated from long scan (26 = 10~80°, 0.2°/min),
powder morphology was measured by Cold-SEM, and atomic composition of samples was obtained

by ICP spectrometry.

(1) Electrochemical characterization

Synthesized layered Li NCM oxide powders were used as the cathode materials, made by mixing
80wt.% of active materials, 10wt.% of carbon black (Super-P, Timcal Inc.), and 10wt.% of
polyvinylidene fluoride (PVdF, KF1000, Kureha Chemical Industry) binder, with coating onto an Al
foil. In addition, Li-metal was used as anode material, PE separator was used as the separator, and the
electrolyte solution was composed of 1.3M lithium hexafluorophosphate (LiPFg) dissolved in solvents
mixed with ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC)
(volume ratio 3: 4 : 3).

The coin-type half cells (2032) of layered Li NCM oxide was assembled in argon filled glove box,

and galvanostatic experiments were performed at 30 & 60C in voltage range; 4.4 and 3.0V (vs.

Li/Li%). In cycle test, it is composed of 1 cycle of pre-cycle (0.1C) and 200 cycles (1C).

16



(2) Failure mechanisms analysis

To identify the relationship between focusing failure mechanism and capacity fading problem,
several measurement methods, mainly Rietveld refinement method, were used.

Focusing mechanism; Ni disordering — Rietveld refinement analysis

To analyze the Rietveld refinement data, X-ray diffraction (XRD) data was needed. The coin-type
half cells (2032) were assembled at first, then synthesized cycled electrodes following Ni composition
(424 vs. 622), cycle number (50 vs. 100 vs. 150 vs. 200), and temperature (30 C vs. 60 C). After that,
XRD data of each samples were measured, and the relationships between Ni disordering and capacity
fading problem via Rietveld refinement data.

17



2-2. Chemical Mg-doping at Li layer

The process about synthesize MgyLi; »«(NCM)O; is presented in Figure 11. Synthesized layered Li
NCM 424 oxide and the mixture with acetonitrile was starting solution. In this solution, excess
nitronium tetrafluoroborate (NO,BF,) (Sigma-Aldrich) were added, stirred for 2h and filtered for
elimination of Li in layered Li NCM oxide. Then, excess sodium iodide (Nal) (Sigma-Aldrich) with
acetonitrile were added, stirred for 2h, and filtered for insertion of Na in Li layer. Next, through reflux
reaction with acetonitrile solvent and Magnesium bromide (MgBr,) (Sigma-Aldrich) reacted at least
6h and filtered, Na ions in Li layer were changed to Mg ions. At last, Mg-doped Li NCM 424 were
calcined at 300°C for 5h in air.

LiNCM == [Acetonitrile ] == [ NO,BF,
' Li Elimination

]
toNew o (memne ] o [ v |
]
]

' Na insertion
Na,Li; , NCM + [ Acetonitrile ] + [ MgBr,
' Na-Mg exchange (Reflux)

Calcination (300°C,5h)

Mg, Li, ;, NCM I [ngul'@ NCM

Figure 11. Schematic diagram of chemical Mg doping process in Li layer of layered Li NCM
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(1) Electrochemical characterization
Similar to 2-1-(1), just different active materials; MgyLi; ,(NCM)O, (Noheat vs. 300C calcination).

(2) Improvement analysis
To identify the synthesis of Mg-doping at Li layer, Transmission electron microscopy (TEM) and
Rietveld refinement data of bare MgyLi;.ox(NCM)O, powder were used. Also, to observe the
relationship between Ni disordering and Mg-doping effect, Rietveld refinement data of 200 cycled
electrode were compared with 200 cycled layered Li NCM electrtode.
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3. Results & Discussions

3-1. Synthesis of layered Li NCM oxide
Synthesis characterization

To analyze the failure mechanisms of Ni-contained layered Li NCM oxides, identify the synthesis of
layered Li NCM oxides (Li NCM 424-622) is the previous step, and to identify, several measurements
were used; XRD, SEM, and ICP.

Figure 12a shows the XRD patterns of Li NCM 424-622 bare powder. Comparing to the hexagonal
a-NaFeO, structure with R-3m space group at bottom part, both synthesized Li NCM 424-622 have
same peaks. Also, these have the clear splits of (006)/(102) & (108)/(110) doublets. These results

indicate that synthesized Li NCM materials formed well-ordered layer structure.™

The SEM images for morphology identification of layered Li NCM 424-622 are in Figure 12b-c.

These particles are maintained their spherical morphology comparing with co-precipitated precursor,
and particle sizes are similar; 7~10 pm.

The ICP results which are Ni, Co, Mn, and Li composition are listed in Figure 12d. In results, as we
expected, each Li NCM materials measure similar to target compositions; the ratio of Ni, Co, Mn &
ratio of Li, NCM.
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images of LiNio.4C0,,Mno.4O0; and (c) LiNioC00.Mnp,0, (d) ICP data of bare powder
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Electrochemical performance

To observe the electrochemical performance of layered Li NCM cathode, a plot of cycleability for
layered Li NCM 424 and 622 cathodes in Li half cells at 30°C and 60C is shown in Figure 13. At
1C rate test, the initial discharge capacities of Li NCM 424 & 622 at 30C are 128.7 and 151.8
mAh-g™, respectively. Also, at same rate, the initial discharge capacities of Li NCM 424 & 622 at 60 C
are 165.1 and 175.5 mA-g™, respectively. Thus, at higher Ni composition and reaction temperature
condition, the value of initial capacity is increased. However, after 200cycle, the discharge capacities
are all decreased; Li NCM 424 at 30°C (D.C = 78.5 mA-g*, C.R = 60.99%), Li NCM 622 at 30°C
(D.C = 75.2 mA-g?, C.R = 49.54%), Li NCM 424 at 60°C (D.C = 78.9 mA-g™, C.R = 47.79%), and
Li NCM 622 at 60°C (D.C = 56.9 mA-g™, C.R = 32.42%), but the degree is different. According to
these results, in layered Li NCM half cell test, at higher Ni composition and temperature, it has higher
initial capacity but poorer cycle performance. In addition, the detailed voltage profiles of half cell test
at each condition are shown in Figure 14.
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Figure 13. Cycleability of Li NCM 424622 half cell with Li metal anode at 30°C & 60°C (1C rate)
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Identification of failure mechanisms

Before the Rietveld refinement analysis, X-ray diffraction (XRD) of cycled electrodes is measured as
the raw material for converted refinement data. These XRD data of cycled electrodes are shown in
Figure 15. In XRD data, there are several criteria for comparison; temperature (30°C vs. 60C)
(Figure 15a-b), cycle number (50 vs. 100 vs. 150 vs. 200cycle) (Figure 15¢-d) with bare powder XRD
data as the reference.

In results of comparison, all cycled Li NCM 424-622 electrode material maintain its intrinsic layered
structure, which has some additional peaks, that is the peak of Aluminum foil (@) and Beryllium
window (@), so in result, layered Li NCM 424-622 cathode electrodes preserve their layered structure

during cycling.
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To identify the degree of Ni cation disordering at each cycled electrodes, the Rietveld refinements
method is used comparing with bare powder, and the result values are plotted following cycle number
(Figure 16a) and temperature (Figure 16b). At first, comparing bare powder Li NCM 424-622, every
cycled electrode has higher value of Ni disordering, and this demonstrates that Ni disordering occurs
during cycling.

Also, in Figure 16a, comparing the graph of Li NCM 424 (blue line) versus Li NCM 622 (red line),
Li NCM has higher value at spotted cycles, this means that Ni composition is one of the factors of Ni
disordering; higher Ni composition, higher Ni disordering value. Another thing, in both 424-622 cases,
when the cycle number is increased, the Ni disordering value is also increased. This also means that
the cycle number is another factors of Ni disordering; in case the cycle number is increased, there are
more severe Ni disordering.

However, as in Figure 16b, there is different result to our expectation, that is higher temperature
cycled cathode has lower Ni disordering value in both cases. This means that there is no relationship
between the cycle temperature and Ni disordering process.

In result, except temperature, when the cycle number and Ni composition are increased, the degree
of Ni disordering is also increased. Furthermore, at these conditions, the discharge capacity of layered
Li NCM cathode is decreased severely. Through these results, therefore, Ni disordering and capacity
fading of layered Li NCM has relationship during cycling, and that is, Ni disordering can be one of
the failure mechanisms in layered Li NCM cathodes as the bulk-structural problem.
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3-2. Chemical Mg-doping at Li layer
Synthesis characterization

To identify the structure during chemical Mg-doping process, Figure 18a shows the X-ray diffraction
(XRD) patterns from bare Li NCM 424 to 300 C -heated Mgg gosLig05s NCM 424 powder. As you see in
XRD patterns, each of powders maintains their R-3m layered structure. Although there are little bit
shift and broaden peaks during several chemical reactions are progressed to layered Li NCM; Li
elimination, Na insertion, and Na-Mg exchange, but in general, they have similar XRD patterns with
no impurity peaks.

As other identification methods, Figure 18b-e shows the SEM image comparing between bare Li
NCM 424 and 300 C-heated MggozsLiogs NCM 424 powder. As a result, they have almost same
spherical morphology with similar particle size. Also, in magnified images (Figure 18c-e), both
surfaces of spherical powders are similar, consisted of small-sized particles.

In ICP results, unlike the bare Li NCM 424 powder, there are small amount of Mg existed, although

some Na ions are also detected (Figure 18f).
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However, only for using these measurements, we cannot determine that the Mg-ions are doped into
the Li layer of layered Li NCM 424, definitely. And so, to clarify the Mg-doping at Li layer,
additional data are needed; Rietveld refinement analysis of Mg-doped Li NCM powder (Figure 19).

In refinement analysis, as a result, our sample, MgoasLiogs NCM 424 powder has about 2.38% of
Mg ions in Li layer, and its lattice parameter is increased about 0.02 A along c axis after chemical
Mg-doping process.

According to Rietveld refinement data, Mg ions can be existed in Li layer of layered Li NCM via
chemical doping process, and small amount of Mg ions exist in Li layer of our sample. Combined

these results, in conclusion, the small amount of Mg ions are doped into Li layer of our Li NCM 424,
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Electrochemical performance

For electrochemical performance, Figure 20 shows a plot of discharge capacity as a function of cycle
number for a bare and Mg-doped Li NCM 424 in Li half cell at 30°C. The initial discharge capacities
of bare and Mg-doped samples are 128.7 and 130.0 mAh-g™ at 1C rate, respectively. However, after
100 cycles, their discharge capacities are 105.3 and 124.5 mAh-g™, respectively. Also, bare and Mg-
doped samples have 79.09 and 92.65% of capacity retention comparing the highest capacity during
100 cycles.

In supplementary, Figure 21 shows the V-profile and dQ/dV-V plot of bare and Mg-doped Li NCM
cathode. In these plots, comparing with bare Li NCM 424, Mg-doped cathode has more stable V-
profile with small polarization, and constant reaction potential after cycling.
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About this improvement, to observe the correlation with Ni disordering mechanism, Rietveld
refinement method is used, and the results are shown in Figure 22. In result of Figure 22a, the degree
of Ni disordering in 200-cycled Mg-doped Li NCM 424 has about 4.54%, as the median value of bare
powder (3.21%) and 200-cycled Li NCM 424 cathode (5.67%). This means that Mg-doping at Li
layer has somewhat inhibition of Ni disordering effect during cycling with structure stabilization.
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4. Conclusions

According to results, it is demonstrated that the Ni disordering, the bulk part problem, is one of the
failure mechanisms related to capacity fading of layered Li NCM cathode.

Through XRD, SEM, ICP analysis, it is informed that our co-precipitated Li NCM 424-622 are well-
synthesized, and half cell test shows various factors for severe capacity fading; Ni composition,
temperature, and cycle number. About these factors, the degree of Ni disordering is measured using
Rietveld refinement method. As results of refinement, except temperature, Ni disordering is affected
by Ni composition & cycle number. Resultingly, higher the degree of Ni disordering with increased Ni
composition & cycle number, more severe the capacity fading of Li NCM occurs, and this is the
evidence for Ni disordering as one of failure mechanisms.

In addition, to improve Ni disordering & cycle performance, magnesium doping at Li layer is applied
as the new type solution. Through TEM image and powder refinement, Mg doping at Li layer is
successfully examined. Also, through the half cell test and refinement analysis, the effect of Mg
doping is examined.
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