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Finite-element calculations of Schottky diode capacitance-voltagesC-Vd curves show that an array
of subsurfaceinclined quantum wellssQWsd produce negligible change in shape and slope of
C-V curves, but significantly reduce the intercept voltage. This is particularly important for
hexagonal SiC, in which current- or process-induced cubic inclusions are known to behave as
electron QWs. These calculations naturally explain the surprisingly large effect of cubic inclusions
on the apparent 4H–SiC Schottky barrier determined byC-V measurements, and together with the
measuredC-V data indicate the QW subband energy in the inclusions to be,0.51 eV below the
host 4H–SiC conduction band. ©2005 American Institute of Physics. fDOI: 10.1063/1.1935757g

We report finite-element calculations and measurements
of capacitance-voltagesC-Vd response of Schottky diodes
when the semiconductor substrate has quantum wellssQWsd
in an inclined geometry with respect to the metal/
semiconductor interface, with sufficient density to deplete
the host semiconductor of free carriers. In this case, free
carriers are concentrated in the QWs, but can move freely
toward the metal interface in response to an applied ac or dc
voltage. This geometry is particularly relevant for hexagonal
SiC, a wide band-gap semiconductor with great promise for
applications in high-temperature, high-frequency, and high-
power electronic devices. Basal-plane inclusions with local
cubic “3C” stacking often form in hexagonal SiC during de-
vice operation1,2 and/or processing3–5 with an inclined geom-
etry for most SiC surface miscut angles. These cubic inclu-
sions have recently been shown to act as unique “structure-
only” QWs sRefs. 6–8d which can deplete the surrounding
hexagonal SiC host and strongly impact device performance.
SinceC-V measurements are commonly used for semicon-
ductor characterization, it is important they be properly in-
terpreted when inclusions are present. We find that calculated
C-V curves for this inclined QW geometry have the usual
linear shapesplotted as 1/C2 versus applied reverse biasVrd
and the same slope as for equally doped material without
QWs, but with a shifted intercept voltageVint that depends
strongly on the QW energy depthDEQW at the physical depth
where the QWs start to accumulate free carriers. Hence,
measuredC-V curves can be used to quantifyDEQW at this
depth, provided the QW spacing can be independently deter-
mined. Our calculations provide a natural explanation for the
surprisingly large reported effect4 of “double stacking fault”
cubic inclusions on the apparent Schottky barrier height
sSBHd determined byC-V, even though,98% of the
metal/SiC interface was unaffected by the inclusions.8 Our
measuredC-V data indicateDEQW>0.51 eV, in good agree-
ment with an independent measurement ofDEQW close to the
metal interfaces,0.53 eVd.8

Finite-element electrostatic modeling was done with the

commercial software packageFLEXPDE sRef. 9d using the
sample geometry shown in Fig. 1. We define the total elec-
tron potential energy in the host semiconductors4H–SiCd as
ftot-host=fsx,y,zd+ESB-host, where ESB-host is a constant
equal to the host SBH at the metal interface. The total po-
tential energy in the QWs is thereforeftot-QW=ftot-host
−DEQW=fsx,y,zd+sESB-host−DEQWd. The electrostatic po-
tential energyfsx,y,zd is determined by solving the Poisson
equation¹2ff / s−qdg=−rsx,y,zd /«s«0, wherersx,y,zd is the
net charge density inside the semiconductor,q is the elemen-
tary charge,«0 is the vacuum permittivity, and«s is the rela-
tive dielectric constant of the semiconductor. With these defi-
nitions the metal Fermi level is the reference energy, and
fsx,y,0d=0 along the metal interface. The net charge
density is rsx,y,zd=qfNd−ncsx,y,zdg, where Nd is the
donor density and nc the free electron density. In
the host semiconductor, nc is given by:10

nc;sMc/4ds2m*kBT/p"2d3/2expfsEF,s−ftot-hostd /kBTg, where
EF,S=−qVr is the Fermi energy in the semiconductor with an
applied reverse biasVr, Mc is the number of equivalent host
conduction-band minima,m* is the effective electron
density-of-states mass in the host,kB is Boltzmann’s

adElectronic mail: pelz.2@osu.edu

FIG. 1. sad Schematic cross-sectional view of sample showing the 3C inclu-
sionssgray+black linesd which start to fill with free carriersselectronsd at
the depthLeff below the interface, while the surrounding 4H area remains
depleted even in the bulk.sbd BEEM imagestaken with −1.5 V tip voltaged
of a Pt/4H–SiC sample with embedded 3C inclusions. The bright straight
lines show reduced SBH where the 3C QW inclusions intersect the
metal/SiC interface.sMore details are given in Ref. 8.d
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constant, and" is the reduced Planck’s constant. In the
QWs, nc>sQW/d, where sQW>sMcmt

*kBT/p"2d
lnf1+exphsEF,S−ftot-QWd /kBTjg is the sheet electron density
in a QW,11 and mt

* is the QW in-plane effective density-of-
states mass, andd is the QW width. The local surface charge
density on the metal can be calculated assMsx,y,0d
=«S«0]sf / s−qdd /]zuz=0, and C-V curves are calculated by
monitoring how the average surface charge density depends
on the applied bias. We include the effects ofspontaneous
polarizationsSPd in the host semiconductor, which according
to theory12 and recent experiments13,14 should exist in 4H–
SiC, and would produce a strong electric field across any
snonpolard cubic inclusions that would shift the QW conduc-
tion band relative to the 4H–SiC host. Our calculations as-
sume thatESB-host.DEQW, which is true for all cubic inclu-
sions in the SiC system and for most other QW systems as
well.

The central result of these calculations is illustrated in
Fig. 2. The top two curves are calculatedC-V curves for a
samplewithout QWs, using identical parameters except for
somewhat different donor density. As expected, the calcu-
latedC-V curves are straight lines with a slope that depends
on the doping, but with an intercept voltage almost indepen-
dent of doping.10 As a check, we analyzed these calculated
C-V curves in the conventional way,10 and extracted values
for Nd and ESB-host that aresas expectedd identical to the
respective parameter values used to calculate theC-V curves.

The bottom two curves in Fig. 2 were calculated with the
same parameters, but now with inclined QWs with a certain
average spacings' in the bulk and each with the same QW
depthDEQW. In this case, the two calculatedC-V curves are
still straight lines with thesame respective slopesas the
C-V curves without QWs, but with the intercept voltages
shifted by essentially the same amount for both curves. This
shift depends stronglysalmost linearlyd on DEQW, but de-
pends weakly ons'. At first glance, it is surprising that the
shape and slope of theC-V curves do not change, since the
QWs greatly alter the free carrier distribution. But since the
QWs are inclined with respect to the sample surface, free
carriers in the QWs can quickly respond to an applied ac or

dc voltage, producing aC-V response thatmimicsa uniform
material of the same doping but with a much lower Schottky
barrier height. To understand this, we note that inuniform
material the measured capacitance under reverse bias is de-
termined by thedepletion width L, which terminates at the
physical depth where the host conduction-band minimum ap-
proachesEF,S and accumulates sufficient free carriers to
screen the fixed donor charge. In contrast, with inclined QWs
the measured capacitance is determined by an “effective”
depletion widthLeff fsee Fig. 1sadg, which is approximately
equal to the physical depthwhere the conduction band of the
QWs approach EF,S and accumulates sufficient carriers to
effectivelyscreen the fixed donor charge in the surrounding
host material.15 This is illustrated in Fig. 3. Since the QW
conduction band has lower energy than that of the host, it
reachesEF,S at a shallower depthLeff than for the uniform
material, producing alarger capacitance, and hence a
smaller intercept voltage. But the shape of theC-V curve
remains the same since it is still the host donor densityNd

that determines how muchLeff must change whenVr is
changed. We emphasize that the shifted intercept voltage is
not due to any change in the metal/semiconductor interface.
In fact, the calculatedC-V curves would be the same even if
the QWs happened to terminate just below the metal inter-
face, since no free carriers exist in the QWssor in the hostd
close to the metal interface.

We next compare these calculations with measured
C-V data from regions of a 4H–SiC wafer with subsurface
cubic inclusionsswhich are confirmed to behave as QWsd8

inclined ,8° to the sample surface. These samples had a
2 mm lightly n-type N-doped epilayerswith specified 1–2
31017 cm−3 dopingd on a heavily N-doped s,3
31019 cm−3d n-type Si-face substrate.4,8 Double stacking
fault cubic inclusions formed in the substrate during a 90
min thermal oxidation4 at 1150 °C, many of which extended
through the epilayer to the sample surfacefsee Fig. 1sadg.
Samples were stripped of their oxide, cleaned and introduced
into our UHV chamber.8 An ,8 nm thick Pt film was then
electron-beam evaporated through a shadow mask to form
0.5 mm-diameter Schottky diodes. For comparison, similar
Pt Schottky diodes were made on a piece of the same SiC
wafer close to the wafer periphery, where no inclusions

FIG. 2. Top two lines: CalculatedC-V curves without QWs, withNd=1.4
31017 cm−3 sdashed lined andNd=1.731017 cm−3 ssolid lined, and param-
eter values from Table I. ChangingNd has little effect on the intercept
voltage. Bottom two lines: CalculatedC-V curves with inclined QWs
present, withDEQW=0.50 eV, s'=95 nm, parameters from Table I, and
with Nd=1.431017 cm−3 sdotted-dashed lined andNd=1.731017 cm−3 sdot-
ted lined. Introducing QWs strongly reduced the intercept voltage, but not
the shape or slope of the calculatedC-V curves. ChangingNd still has little
effect on the intercept voltage.ssd MeasuredC-V data from a diode on the
wafer periphery without inclusions.shd MeasuredC-V data from Diode A
from the central part of the SiC wafer with inclusions.

FIG. 3. Calculated electron potential energy profiles for Diode B along the
particular path perpendicular to the metal/SiC interface shown as a dotted
line in Fig. 1sad. The solid line represents the three-dimensional conduction-
band minimum for bulk 4H- and 3C–SiC, while the horizontal dotted lines
represent the two-dimensional conduction-band minimum of the QW states,
including quantum confinement energy. The overall band bending is de-
creased with respect to pure 4H–SiCsdashed lined by charging of the QWs
deep in the bulk, with a corresponding reduction inC-V measured SBH.
Inset: Close-up view of QW profile around an inclusion.

222109-2 Park et al. Appl. Phys. Lett. 86, 222109 ~2005!
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formed.4 The C-V measurements were donein situ after Pt
deposition.

The open circles in Fig. 2 show measuredC-V data from
the SiC wafer peripheryswithout inclusionsd. These data
were fit to a straight linesnot shownd from which were ex-
tracted the SBHESB-host>1.60 eV and local epifilm doping
Nd> ,1.731017 cm−3. The solid line through the open
circles is the calculatedC-V curve based on the measured
ESB-host and Nd, which as expected matches the measure-
ments exactly. Literature values were used form* , mt

* , «s,
Mc, d, and SP in all calculations heressee Table Id. The C
-V measured Barrier height is consistent with the,1.54 eV
barrier height measured independently on the same diode
using ballistic electron emission microscopysBEEMd,8 after
accounting for the expected,78 meV “image force
lowering”10 of the BEEM-measured barrier height for that
doping level.

The open squares in Fig. 2 showC-V data measured
from a Schottky diode with inclusionssdenoted as “Diode
A” d from a wafer piece close to the wafer center. These data
were fit to a straight linesnot shownd which was analyzed in
the conventional way to estimate the local dopingNd
> ,1.431017 cm−3 on this part of the wafer. Since the in-
clined QWs do not change the slope of theC-V curvessas
discussed aboved, they can still be used to determine the
local epifilm doping. Using this value ofNd and ESB-host
>1.60 eV, we then calculatedC-V curves using various val-
ues forDEQW and the perpendicular QW spacings'. These
calculatedC-V curves all had the same slope as the measured
C-V curve, but with shifted intercept voltages which depend
strongly onDEQW and weakly ons'. We note that the mea-
sured doping on the sample with inclusionssfrom the wafer
centerd is somewhat less than that measured on the sample
taken from the SiC wafer periphery. We do not think this
difference is significant since variations in doping across a
wafer are common, and since the calculations indicate that
the changein intercept voltage ofC-V curve due to inclined
QWs is nearly independent of doping.

Our modeling suggests that we could use measured
C-V data to determine the QW energyDEQW, provided we
have an independent measurement of the average perpen-
dicular separations' between the QWs. Accordingly, we
measureds'>95 nm on Diode A by using BEEM to directly
image and count individual inclusionsfsee Fig. 1sbd and Ref.
8g, sampling,10% of the diode diameter along a line per-
pendicular to the inclusions.16 Since all parameter values,
exceptDEQW, are known from the literature or from direct
measurementssee Table Id, we variedDEQW until the calcu-
latedC-V curve best fit the measured data, as shown by the
calculated dotted-dashed line through the open-square data
points in Fig. 2. ThisC-V curve was calculated with the best
fit value DEQW>0.50 eV. We also made similar measure-

mentssnot shownd on another diodesDiode Bd, which had
,50 mV smaller intercept voltage in measurement, and also
had a slightly smaller measured average inclusion spacing of
s'>79 nm. In this case, the best fit QW energy depth was
DEQW>0.52 eV, close to the best fit value for Diode A. We
note that spontaneous polarization in 4H–SiCwas included
in these calculations as noted earlier. For comparison, we
made similar calculations assuming zero spontaneous polar-
ization, and found essentially identical best-fitC-V curves
but with best fit valuesDEQW>0.58 eV and 0.60 eV for
Diodes A and B, respectively.

In summary, finite-element electrostatic modeling shows
that the presence of inclined QWs under a Schottky contact
with sufficient density to deplete the host semiconductor will
result in aC-V curve that has the same shape and slope as
without the QWs, but with a significantly reduced intercept
voltage. These calculations explain the remarkable decrease
in the apparentC-V determined Schottky barrier observed on
4H–SiC with embedded double stacking fault cubic inclu-
sions. Together with measuredC-V data, these calculations
give an estimate of,0.51 eV for the QW energy depth of
the double stacking fault cubic inclusions in 4H-SiC far from
the metal interface, which agrees well with an estimate of
,0.53 eV measured with BEEM at the metal/SiC interface.
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TABLE I. The parameter values from the literaturescitation in parenthesesd
used in finite-element electrostatic modeling.

m*

sRef. 17d
mt

*

sRef. 7d

«s

s4H and 3C,
Ref. 18d

Mc

sRef. 17d
d

sRef. 7d
SP

sRef. 13d

0.39m0 0.36m0 9.7 3 1.25 nm 1.1310−2 C/m2

Note: m0: Free electron mass. SP: Spontaneous-polarization.
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