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An examination of the validity of nonequilibrium molecular-dynamics
simulation algorithms for arbitrary steady-state flows

Brian J. Edwards,a� Chunggi Baig, and David J. Keffer
Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996
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Nonlinear-response theory of nonequilibrium molecular-dynamics simulation algorithms is
considered under the imposition of an arbitrary steady-state flow field. It is demonstrated that the
SLLOD and DOLLS algorithms cannot be used for general flows, although the SLLOD algorithm
is rigorous for planar Couette flow. Following the same procedure used to establish SLLOD as the
valid algorithm for planar Couette flow �D. J. Evans and E. P. Morriss, Phys. Rev. A 30, 1528
�1984��, it is demonstrated that the p-SLLOD algorithm is valid for arbitrary flows and produces the
correct nonlinear response of the viscous pressure tensor. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2035079�

I. INTRODUCTION

Nonequilibrium molecular-dynamics �NEMD� simula-
tions are used to determine the transport properties of fluids
under the conditions of imposed gradients of velocity, con-
centration, or temperature.1 For over two decades, the
SLLOD algorithm has been used to determine the rheologi-
cal properties of fluids for steady homogeneous planar Cou-
ette flow �PCF�, which is a steady-state shear flow. It has
been shown2 that the SLLOD algorithm is correct for arbi-
trary shear flow strengths by comparing the stress tensor de-
rived from the SLLOD dynamics with the one obtained from
nonlinear-response theory;3 i.e., the two were identical.

Recently, several sets of authors have turned their atten-
tion to the simulation of the rheological properties of steady-
state planar elongation flow �PEF�.4–9 Two of these sets have
assumed that the SLLOD algorithm, used successfully in
shear flows for so long, would naturally carry over to PEF as
well.4–7 However, problems arose in these simulations in that
aphysical phase transformations occurred at low strain rates
due to an unavoidable numerical round-off error.6 The final
set of authors showed that the problems mentioned above
were due to the use of the SLLOD algorithm in the prior
simulations.8 By using a different algorithm, called
p-SLLOD, these authors demonstrated that the problems
could be overcome. Although motivation for using p-SLLOD
over SLLOD in PEF was given in Ref. 8, the only concrete
way to demonstrate the validity of p-SLLOD �and, possibly,
the inapplicability of SLLOD� in PEF is to examine the non-
linear response of these two algorithms under PEF, as in
Refs. 2,3.

Thus, in this paper, we develop the nonlinear-response
theory of the p-SLLOD algorithm under the imposition of an
arbitrary steady-state flow field �including PEF� from two
perspectives, and compare the respective results for the stress
tensors at the end of the analyses. In the first perspective,
which follows the analysis of Evans and Morriss,2 we de-

velop the nonlinear response of the system based on an
analysis of the mechanical response of the canonical en-
semble to the imposed flow field—see Secs. II–IV. Section II
demonstrates conclusively that the SLLOD algorithm cannot
be used for arbitrary flow fields, including PEF. In the second
perspective, we develop the nonlinear system response
through an analysis of the local equilibrium distribution, fol-
lowing the work of Yamada and Kawasaki.3

We should point out that we are precisely repeating the
procedure by which SLLOD was established as the correct
NEMD algorithm for PCF �Ref. 2� in order to establish that
p-SLLOD �and not SLLOD� is the rigorous NEMD algo-
rithm for PEF. We go one step further to show that p-SLLOD
is the rigorous NEMD algorithm for any arbitrary flow field,
reducing to SLLOD for PCF.

II. DETERMINATION OF NEMD ALGORITHM
APPLICABILITY IN ARBITRARY STEADY-STATE
FLOWS

The following analysis closely follows that of Evans and
Morriss2 for planar Couette flow. Herein, we adapt their
analysis to arbitrary steady-state flow fields, in particular, the
planar elongational flow. For PCF and PEF, the velocity gra-
dient tensor is defined as

�u�PCF� = �0 0 0

�̇ 0 0

0 0 0
� , �1�

and

�u�PEF� = ��̇ 0 0

0 − �̇ 0

0 0 0
� . �2�

Of course, in general, all components may be nonzero.
Let us focus on an initial canonical ensemble of systems

described by the N-particle distribution function,
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f0 = exp�− H0/kBT��� exp�− H0/kBT�d� , �3�

where �= �q j ,p j� denotes phase space and

H0 = 	
i=1

N
1

2mi
pi · pi + Vfluid�q j� . �4�

Here, mi is the mass of particle i. At time t=0, we map this
distribution function to the local equilibrium distribution
function,1–3 f l, by transforming the velocity of each particle
according to

q̇i�0+� = q̇i�0−� + qi · �u . �5�

Such a system represents a canonical ensemble with an im-
posed strain rate, �u.

If such a system evolves adiabatically under Newton’s
equations, the strain rate cannot change with time.10 The
strain-rate-dependent stress tensor can be calculated by solv-
ing the Liouville equation for this system.

This derivation is simplified by noting that the exact
same distribution function, f , will be obtained by calculating
the response of a canonical ensemble f0 at t=0 under the
imposition of a fictitious strain-rate field, �u�t�, provided
that the system evolves under the equations of motion,

q̈i =
Fi

mi
+ qi ·

d � u�t�
dt

, �6�

where Fi
−�Vfluid /�qi. A particle that obeys Eq. �6� will
exhibit Newtonian dynamics in the absence of a time-
dependent flow field. Let �u�t� be defined in terms of a
Heaviside function, �u�t�=�u ��t�, so that d�u�t� /dt
=�u��t�. The equivalence of these two trajectories can be
determined by integrating �6� in a small neighborhood
around t=0; the result is �5�. Hence we see that �6� will lead
to Newtonian dynamics for t�0.

In what follows, it will be more convenient to deal with
6N first-order ordinary differential equations �ODEs� than
the 3N system of second-order ODEs expressed by �6�.
Equation �6� can be transformed into

q̇i =
pi

mi
+ qi · �u, ṗi = Fi − pi · �u − miqi · �u · �u .

�7�

These equations are what the present authors refer to as the
p-SLLOD algorithm.8 They stem from an original idea of
Tuckerman et al.11 and were further developed by Edwards
and Dressler.12 Because Eq. �7� is equivalent to Eq. �6�, the
p-SLLOD algorithm will generate the correct system New-
tonian dynamics under the imposition of any homogeneous
steady-state flow field, including both PCF and PEF. Note
that we did not assume the p-SLLOD equations from the
outset of our analysis, but were forced into this choice by the
requirement of Newtonian dynamics.

Now let us briefly consider other NEMD algorithms,
specifically, SLLOD and DOLLS.1 First, let us examine
SLLOD. The equations of motion for the SLLOD algorithm
analogous to Eq. �7� are1

q̇i =
pi

mi
+ qi · �u, ṗi = Fi − pi · �u . �8�

Transforming these equations into the form of Eq. �6�, we
obtain

q̈i =
Fi

mi
+ qi · �u · �u + qi ·

d � u�t�
dt

. �9�

This equation cannot, in general, be integrated to give the
Newtonian trajectories required for our physical application
because Eq. �9� is not equivalent to Eq. �6�. Hence the
SLLOD algorithm can be used only in special cases, i.e.,
when the second term of the right side of Eq. �9� goes to
zero, as it does in PCF �but not PEF�. Note that p-SLLOD
and SLLOD are equivalent in PCF.

Now let us examine the DOLLS algorithm. The equa-
tions of motion for DOLLS analogous to Eq. �7� are

q̇i =
pi

mi
+ qi · �u, ṗi = Fi − �u · pi. �10�

Transforming to the form of Eq. �6�, we find that

q̈i =
Fi

mi
−

1

mi
� u · pi +

1

mi
pi · �u + qi · �u · �u

+ qi ·
d � u�t�

dt
. �11�

Again, this algorithm does not provide Newtonian trajecto-
ries for our system in general, and neither in PCF nor PEF,
because Eq. �11� is not equivalent to Eq. �6�.

So far, we have succeeded in demonstrating that only the
p-SLLOD algorithm provides the correct Newtonian trajec-
tories for our system in the general case, although SLLOD
does so for PCF. Note that this observation implicitly pro-
vides a criterion for NEMD algorithms: the equations of mo-
tion for the algorithm must satisfy Newton’s equation of mo-
tion when d�u�t� /dt=0, as can be affirmed by the
appropriate transformation, described above.

III. DETERMINATION OF THE p-SLLOD INTERNAL
ENERGY RATE EQUATION

Since only the p-SLLOD algorithm is applicable to PEF,
we shall only consider it henceforth. According to the first of
Eqs. �7�, the pi are recognized as peculiar momenta. Conse-
quently, the pressure tensor can be defined as

PV = 	
i=1

N � 1

mi
pi · pi + qi · Fi� , �12�

where V is the system volume, and H0 of Eq. �4� is recog-
nized as the internal energy of the system. Differentiating Eq.
�4� and substituting into it the p-SLLOD equations of mo-
tion, �7�, give the rate equation for the internal energy,

Ḣ0 = − VP:�u − 	
i=1

N

qi · �u · �u · pi. �13�

Note that a :b=a��b��, applying the Einstein summation
over repeated indices.

114106-2 Edwards, Baig, and Keffer J. Chem. Phys. 123, 114106 �2005�
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Equation �13� is not the standard rate expression for the
internal energy in nonequilibrium statistical mechanics,1 due
to the second term on the right side, and begs the question
why is it different and what consequences does it have? First,
we will examine why it is different from the standard form,
and then we will see if this nonstandard form causes a prob-
lem. Note, however, that the second term on the right side
vanishes for PCF. Hence both SLLOD and p-SLLOD obey
the standard form of the rate expression for internal energy in
this special case.

Edwards and Dressler12 showed that the p-SLLOD algo-
rithm has a Hamiltonian, but only in a noncanonical frame-
work. In other words, inserting the Hamiltonian,

H�q,p� = 	
i=1

N � 1

2mi
pi · pi + qipi:��u�T� + Vfluid�q j�

+ Vext�q j� , �14�

into the noncanonical equations of motion,

q̇i =
�H

�pi
, ṗi = −

�H

�qi
− mi � u ·

�H

�pi
− mi

�H

�pi
· �u , �15�

generates the p-SLLOD algorithm of Eq. �7�. These nonca-
nonical equations of motion, �15�, were derived via a trans-
formation from the canonical frame to the p-SLLOD
framework.12

If one examines the Hamiltonian of Eq. �14�, one sees
additional terms beyond what one would normally expect to
see; in particular, the Hamiltonian contains an external field
potential,

Vext�q j� = 	
i=1

N
mi

2
�qi · �u�2, �16�

which acts as another source of energy for the system. When
one performs an energy balance over the system, the rate of
internal energy change within the system contains not only
the pressure term but also another term due to the presence
of this external field. Note that the form of the rate equation,
�13�, is entirely consistent with the results obtained from
nonequilibrium thermodynamics for systems possessing an

external potential field.13 Also note that Ḣ=0 when Eq. �7� is
used in this expression.

Since SLLOD and p-SLLOD are equivalent in PCF, Eq.
�14� provides a Hamiltonian for SLLOD in this special case.
For a long time, it was thought that the SLLOD dynamics
did not have a Hamiltonian in PCF, but this was because
researchers were trying to find a Hamiltonian consistent with
Hamilton’s canonical equations of motion instead of the non-
canonical form of Eq. �15�.

IV. DETERMINATION OF THE p-SLLOD VISCOUS
STRESS TENSOR FROM THE LIOUVILLE EQUATION

Let us continue following the analysis of Evans and
Morriss.2 According to the discussion above, instead of
studying the Newtonian evolution of f l, we can instead ex-
amine the evolution of the canonical distribution function, f0,
under the p-SLLOD dynamics represented by Eq. �7�. If we

denote the Liouville operator for the p-SLLOD dynamics by
L, then the distribution function at any time t is given by

f�t� = e−iLtf0. �17�

Of course, this is equivalent to

f�t� = e−iL0t f l , �18�

where L0 is the Liouville operator arising from H0,

iL0 = 	
i=1

N � pi

mi
·

�

�qi
−

�Vfluid

�qi
·

�

�pi
� . �19�

The Liouville operator arising from the p-SLLOD dynamics
can be found using the noncanonical Poisson bracket of Ed-
wards and Dressler,12

iL = 	
i=1

N � pi

mi
+ qi · �u� ·

�

�qi
− � �Vfluid

�qi
+ pi · �u

+ miqi · �u · �u� ·
�

�pi
� . �20�

Now let us substitute Eq. �3� into Eq. �17�,

f�t� = exp�− iLt�exp�− H0/kBT��� exp�− H0/kBT�d� .

�21�

According to Evans and Morriss,1 in the adiabatic case the
distribution function propagator is the Hermitian conjugate
of the phase variable propagator, so that exp�−iLt� is the
negative-time phase variable propagator, exp�iL�−t��. Hence
it operates on the numerator, moving time backwards in the
presence of the external field, while not affecting the de-
nominator. This implies that

f�t� = exp�− H0�− t�/kBT��� exp�− H0/kBT�d� . �22�

Substitution of Eq. �22� into the right-hand side of the Liou-
ville equation,

� f�t�
�t

= − iLf�t� , �23�

and then using Eq. �20�, leads to

� f�t�
�t

= − � V

kBT
P�− t�:�u +

1

kBT
	
i=1

N

qi�− t� · �u · �u

· pi�− t�� f�t� . �24�

Of course, this same equation could have been obtained by
taking the time derivative of Eq. �22� with subsequent use of
Eq. �13�. This equation can be integrated to give

114106-3 Nonequilibrium molecular-dynamics simulation J. Chem. Phys. 123, 114106 �2005�
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f�t� = exp�− �
0

t � V

kBT
P�− s�:�u

+
1

kBT
	
i=1

N

qi�− s� · �u · �u · pi�− s��ds� f0. �25�

Alternatively, Eq. �13� can be integrated directly,

H0�− t� = H0�0� − �
0

t

Ḣ0�− s�ds

= H0�0� + �
0

t � V

kBT
P�− s�:�u

+
1

kBT
	
i=1

N

qi�− s� · �u · �u · pi�− s��ds , �26�

and then substituted into Eq. �22� to yield Eq. �25�. Obvi-
ously, then, the nonstandard form of the internal energy rate
equation, �13�, is entirely consistent with the Liouville op-
erator for the p-SLLOD dynamics, �20�.

We can also solve the differential equation for the distri-
bution function iteratively.1,2 Let us define

Z�q j,− s� 
 P�− s� +
1

V
	
i=1

N

pi�− s�qi�− s� · �u , �27�

so that Eq. �24� becomes

� f�t�
�t

= − � V

kBT
Z�q j,− t�:�u� f�t� . �28�

Solving this equation iteratively now yields

f�t� = f0 + 	
n=1

	 �−
V

kBT
�n

��u���u� ¯ �
u�

� �
0

t

ds1�
0

s1

ds2 ¯ �
0

sn−1

dsnZ���q j,− s1�

�Z���q j,− s2� ¯ Z�
�q j,− sn�f0. �29�

Again, note that the Einstein summation convention applies
over repeated indices. Accordingly, by defining the extra
stress �viscous stress� tensor as =P− P0� �with P0 the equi-
librium pressure�, then the hydrodynamic viscous stress ten-
sor at any time due to the imposition of a flow field at t=0 is
given by

��t�� = 	
n=1

	 �−
V

kBT
�n

��u���u� ¯ �
u�

� �
0

t

ds1�
0

s1

ds2 ¯ �
0

sn−1

dsn��0�

�Z���q j,− s1�Z���q j,− s2� ¯ Z�
�q j,− sn��0.

�30�

Note that the angular brackets denote an average over phase
space, which is a standard notation.1–3 Of course, ��0��0

=0 since there is no viscous stress at equilibrium.

Equation �30� is the expression for the viscous stress
tensor obtained from nonequilibrium statistical mechanics. It
is analogous to the expression obtained by Evans and
Morriss for the SLLOD algorithm,2 but is not limited to PCF.
We will next derive the expression for the viscous stress
tensor from an independent perspective, namely, that of the
nonlinear response theory of Yamada and Kawasaki.3

V. DETERMINATION OF THE VISCOUS STRESS
TENSOR FROM NONLINEAR-RESPONSE THEORY

In this section, note that we do not assume the p-SLLOD
dynamics. Yamada and Kawasaki3 started with the local
equilibrium distribution function for adiabatic flow, with
only the local velocity differing from its equilibrium value.
According to Mori,14 this distribution can be written as

f l = exp�− U−1H0/kBT��� exp�− U−1H0/kBT�d� . �31�

In this expression, U is a “pseudocanonical” transformation
operator,3 which generates the local equilibrium distribution
function from the equilibrium one. This means that the trans-
formation is not canonical, but still conserves the volume of
phase space. Consequently,

f l = U−1f0. �32�

For an arbitrary function of phase space, G,3

�G�l 
� Gfld� =� U�GU−1f0�d�

=� �UG�f0d� 
 �UG�0. �33�

Let the local mass density, mass current density, and Hamil-
tonian density be defined as

��q� = 	
i=1

N

mi��qi − q� , �34�

j�q� = 	
i=1

N

pi��qi − q� , �35�

H0�q� = 	
i=1

N
1

2mi
pi · pi��qi − q� + Vfluid�q j���qi − q� , �36�

so that3

���q��l = �U��q��0 = �0, �37�

�j�q��l = �Uj�q��0 = �0u�q� , �38�

�H0�q��l = �UH0�q��0 = �H0�q��0 +
1

2
�0u�q� · u�q� . �39�

Note that �0 is the equilibrium mass density. Also note that
the second term on the right side of Eq. �39� correlates with
the external field potential of Eq. �16�. Furthermore, taking
the time derivative of Eq. �39� yields the Yamada and
Kawasaki equivalent of Eq. �13�, extra term included.
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Yamada and Kawasaki specify the transformation U as3

Upi = pi + miu�qi�, Uqi = qi. �40�

Not coincidentally, this can be recognized as the noncanoni-
cal transformation that Edwards and Dressler used to derive
the p-SLLOD dynamics,12 once the velocity in Eq. �40� is
identified as u�qi�
qi ·�u. Consequently, H=UH0 gives the
Hamiltonian of Eqs. �14� and �16� starting with the canonical
Hamiltonian of Eq. �4�.

For the local equilibrium distribution function of Eq.
�31�,

U−1H0�q� = H0�q� + R , �41�

where

R = −� j�q� · u�q�d3q +
1

2
� ��q�u�q� · u�q�d3q . �42�

According to Eqs. �18�, �31�, �41�, and �42�,

f�t� = e−iL0t f l = �e−R�−t�/kBTf0, �43�

where � is a constant. Taking the derivative of this expres-
sion yields

� f�t�
�t

=
Ṙ�− t�
kBT

f�t� . �44�

This differential equation can be solved directly,

f�t� = exp��
0

t Ṙ�− s�
kBT

ds� f l, �45�

or iteratively,

f�t� = f l + 	
n=1

	 � 1

kBT
�n�

0

t

ds1�
0

s1

ds2

¯ �
0

sn−1

dsnṘ�− s1�Ṙ�− s2� ¯ Ṙ�− sn�f l. �46�

Now consider the local stress tensor,

P�q� = 	
i=1

N �pipi

mi
��qi − q� + qiFi��qi − q�� . �47�

The viscous part of this tensor is

�q� = P�q� − P0� . �48�

Following Yamada and Kawasaki,3 we define

P�
*�q� 
 	

i=1

N � 1

mi
�pi − miu�qi���pi − miu�qi����qi − q�

+ qiFi��qi − q�� − P0� . �49�

Clearly then,

U P�
*�q� = P�q� − P0� = �q�, U−1P�q� = P�

*�q� + P0� .

�50�

Consequently, we can write

��t�� = �P�
*�0��l + 	

n=1

	 � 1

kBT
�n�

0

t

ds1�
0

s1

ds2…�
0

sn−1

dsn

� �P�
*�0�Ṙ�− s1�Ṙ�− s2� ¯ Ṙ�− sn��l . �51�

In view of Eqs. �33� and �50�,

�P�
*�0��l = �UP�

*�0��0 = �P�0��0 − P0� = ��0��0, �52�

so that Eq. �51� becomes

��t�� = 	
n=1

	 � 1

kBT
�n�

0

t

ds1�
0

s1

ds2

¯ �
0

sn−1

dsn��0�U�Ṙ�− s1�Ṙ�− s2� ¯ Ṙ�− sn���0.

�53�

Note that the U in this expression applies to the whole term
inside the rectangular brackets. Also recall that ��0��0=0.
The time, t, in the above equation is chosen such that it is
much greater than the microscopic time scale of the dynam-
ics, but much less than the relaxation time of the macro-
scopic hydrodynamics.3 This ensures that the local equilib-
rium distribution follows exact dynamics while allowing
proper averages to be obtained.

Lastly, we need to calculate Ṙ. According to Eq. �42�,
this quantity is

Ṙ = −� dj�q�
dt

· u�q�d3q +
1

2
� d��q�

dt
u�q� · u�q�d3q .

�54�

Using the balance equations3

d�

dt
= − � · j,

d j

dt
= − � · P , �55�

Eq. �54� becomes

Ṙ =� � · P · ud3q −
1

2
� � · ju · ud3q . �56�

Applying integration by parts to the above expression finally
yields �neglecting surface contributions�

Ṙ = −� P:�ud3q +� uj:�ud3q . �57�

From Eqs. �47� and �49�,

P = P0� + P�
* + uj + ju − �uu. �58�

Consequently, Eq. �57� becomes

Ṙ = −� �P�
*:�u + P0� + ju:�u − �uu:�u�d3q , �59�

and hence

UṘ = −� �P:�u + ju:�u�d3q 
 −� Z�q�:�ud3q . �60�

With this expression, Eq. �53� for the hydrodynamic viscous
stress tensor becomes
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��t�� = 	
n=1

	 � − 1

kBT
�n

��u���u�

¯ �
u��
0

t

ds1� d3q1�
0

s1

ds2� d3q2

¯ �
0

sn−1

dsn� d3qn��0�Z���q1,− s1�Z���q2,− s2�

¯ Z�
�qn,− sn��0. �61�

Equation �61� can be compared directly with Eq. �30�, and it
is thus recognized that the two expressions are identical.
Hence the nonlinear response is the same in both perspec-
tives, and therefore the p-SLLOD algorithm will yield the
appropriate rheological properties under the imposition of an
arbitrary steady-state flow field. Also note that the nonstand-
ard form of the internal energy rate equation, �13�, was used
to derive Eq. �30�, and is thus essential in obtaining the cor-
rect nonlinear system response; had the standard form been
used for this expression, the correct nonlinear response
would not have been generated.

VI. CONCLUSION

While it had been demonstrated via NEMD simulation
that p-SLLOD removed the problems SLLOD encountered
in the simulation of PEF,8 there had been lacking a widely
accepted theoretical basis for this choice of algorithm. By
repeating the procedure by which SLLOD was established as
the correct NEMD algorithm for PCF,2 we have now estab-
lished that p-SLLOD �and not SLLOD� is the rigorous
NEMD algorithm for PEF. We have also shown that
p-SLLOD is the rigorous NEMD algorithm for any arbitrary

flow field, reducing to SLLOD for PCF. We have shown that
the form of the internal energy for p-SLLOD is consistent
with both continuum nonequilibrium thermodynamics and
nonequilibrium statistical mechanics. We have shown that
the form of the viscous stress tensor is consistent with non-
equilibrium statistical mechanics and nonlinear-response
theory.
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