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In molecule optics, a matter wave of molecules is manipulated by a molecule-optical component
made out of external, typically radiative, fields. The molecule-optical index of refraction,n, for a
nonresonant IR laser pulse focused onto a molecular beam can be obtained from the energy
conservation and wave properties of molecules. Experimentally measured values ofn for benzene
and nitric oxide agreed well with the calculated values. Sincen depends on the properties of
molecules as well as those of the laser field, a molecule prism composed of the focused nonresonant
laser field can separate a multi-component molecular beam into several components according to
their molecule-optical refractive indicesn. We obtained a chromatographic resolution of 0.62 for the
spatial separation of a mixture beam of benzene and nitric oxide using a focused Nd:YAG laser
pulse as a molecule prism. ©2003 American Institute of Physics.@DOI: 10.1063/1.1613934#

I. INTRODUCTION

Significant progress in the manipulation of atoms via
light forces has opened up a new field of atom optics and a
number of atom-optical components have been proposed and
demonstrated. Examples include an atom lens,1 an
interferometer,2 a grating,2 and a mirror.3 Molecule optics is
a natural extension of atom optics. Since most substances in
nature are molecules rather than atoms, the development of
molecule optics holds the promise of becoming another im-
portant cornerstone in the control of matter. Practical appli-
cations of molecule optics would contribute to the develop-
ment of areas such as nano-lithography, molecular
electronics and molecular engineering, to name but a few.
Molecule-optical components based on light forces, how-
ever, cannot be realized by the same mechanisms as in atom
optics since the complex vibrational and rotational structures
of molecules prevent them from possessing cycling
transitions.4

When atoms or molecules are placed in a nonresonant
laser field, the nonresonant dipole force resulting from the
interaction between the induced dipoles and the laser electric
field can be exerted on the atoms or molecules regardless of
their internal structures. Along with the numerous and dis-
cerning theoretical suggestions,5 a limited number of experi-
ments on the deflection of molecular beams,6 molecular
alignment,7 rotational acceleration of molecules,8 and a thin
standing wave grating9 have been reported. Recently, mol-

ecule lenses were realized and the characteristic lens param-
eters were determined.10,11These molecule lenses had an ab-
erration similar to optical lenses’ chromatic aberration. Then
the part of a molecule lens with a large aberration can be
regarded as a molecule prism, which disperses the compo-
nents of a molecular beam with different de Broglie wave-
lengths according to the molecule-optical analog of the index
of refraction in photon optics. As the next step on the way
towards the realization of molecule optics, we investigate the
properties of a molecule prism. We develop a theory of the
prism based on the nonresonant dipole force and demonstrate
its properties experimentally by spatially separating the com-
ponents of a mixed neutral molecular beam of benzene and
nitric oxide. Unlike laser cooling of atoms or molecules, an
optical separation technique using the molecule prism re-
quires manipulation of only one translational degree of free-
dom of the molecular motion. Thus the mixture of molecules
could be separated via a much simpler scheme than that re-
quired for cooling.

II. MOLECULE-OPTICAL REFRACTIVE INDEX

The molecule-optical refractive index is a mirror image
of the refractive index for light, with the roles of molecules
and photons interchanged. A focused laser beam is equiva-
lent to a molecule prism, which disperses the mixture beam
of molecules having different molecule-optical refractive in-
dices. In analogy to the photon-optical refractive index, the
molecule-optical index of refraction for a matter wave of
molecules with massm traveling through an external field
with a potentialV(r ) at r can be defined as12

n~r !5k~r !/k0 , ~1!
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where k(r ) and k0 are the wavevectors of the molecular
wave in the field and in the field-free region, respectively. In
a nonresonant field, the energy conservation law requires that

E05
~\k0!2

2m
5

~\k!2

2m
1V~r !5E~r !, ~2!

whereE(r ) and E0 are respectively the total energy in the
field and in the field-free region. Since the corresponding
group velocities of the molecules are given by

v0
g5

dE0

\dk0
and vg5

dE

\dk
, ~3!

we see that

n~r !5
vg

v0
g 5S 12

V~r !

E D 1/2

. ~4!

Hence n(r ).1 for an attractive potential,V(r ),0, and
n(r ),1 for a repulsive potential,V(r ).0. In the weak-field
limit the potential due to the interaction of a nonresonant
laser field and the induced dipole of a molecule takes the
form3

V~r !52ah0I ~r !/2, ~5!

whereI (r ) is the laser intensity,a the mean static molecular
polarizability, andh0 the vacuum impedance. Then

n~r !5A11~ah0I ~r !/mv0
2!, ~6!

wherev0 is the group velocity of a molecular wave along the
z axis ~see Fig. 1!. Let us consider a molecular beam propa-
gating along thez axis at a velocityv0 , which is crossed by
a Gaussian laser pulse nearx50, I (y,z,t)5I 0 exp@22(y2

1z2)/w0
2#exp@24(ln 2)t2/t2#, wherew0 , I 0 , andt denote the

waist radius, peak intensity, and pulse width, respectively.
This Gaussian pulse is then equivalent to a graded-index
molecule lens with the molecule-optical refractive index

n~y,z,t !'11
ah0I 0

2mv0
2 exp@22~y21z2!/w0

2#

3exp@24~ ln 2!t2/t2#. ~7!

Fermat’s principle in optics leads to a differential equation
for the propagation of light rays through a medium charac-
terized by a refractive index. For molecular rays propagating

nearly along thez axis in theyz plane, Fermat’s principle
can be simplified to the form~paraxial approximation!

d2y

dz2 '
d ln n

dy
. ~8!

By settingz5v0t and integrating Eq.~8! over t, the velocity
component imparted in they-direction,Dvy of a molecular
ray passing throughy5y0 , is given by

Dvy52
ah0I 0y0

mv0w0

3exp~22y0
2/w0

2!A 2p

112 ln 2@w0 /~v0t!#2, ~9!

which leads to a deflection angle

u'Dvy /v0 . ~10!

Note that the result forDvy in Eq. ~9! is the same as the
previous results derived from Newton’s second law.10,11

The interaction of a molecular beam with a Guassian
laser field has properties similar to those of a SELFOC
slab,13 which is the trade name for a dielectric slab having a
parabolic refractive index profile. Based on Eq.~7!, we can
define the refractive index along they axis:

n~y!511
ah0I 0

2mv0
2 exp~22y2/w0

2!. ~11!

For smally, n(y) becomes parabolic:

n~y!'n0S 12
Ay2

2 D , ~12!

with

n0511ah0I 0 /2mv0
2 and A52ah0I 0 /mv0

2w0
2 .

~13!

The focal length of a thin SELFOC slab of thicknessL hav-
ing a graded-index profile of Eq.~13! is given by

f '
1

n0AA sin~LAA!
'

w0
2

4~n021!L
. ~14!

Then choosing the thickness of the equivalent molecule-
optical SELFOC slab as

L5
w0

2
A 2p

112 ln 2@w0 /~v0t!#2, ~15!

the slab’s focal length becomes identical to that derived from
Newton’s second law.10,11 The maximum deflection is im-
parted for a molecular ray passing through the portion of the
SELFOC slab neary56w0/2 and leads to a deflection angle

umax'2
ah0I 0

2Aemv0
2
A 2p

112 ln 2@w0 /~v0t!#2

52
L~n021!

Aew0

. ~16!

As a consequence of the purely attractive nature of the in-
duced dipole potential, the deflection angle is negative for

FIG. 1. Schematics of the setup for a molecule prism. The molecular beam
propagates along thez axis and the laser beam along thex axis. The non-
resonant dipole force is exerted along they axis. After deflection, molecules
are ionized by a dye laser pulse and focused onto a detector. The image of
molecular ions on the phosphor screen is detected by PMT or ICCD camera.
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positive y and vice versa. Note that the deflection angle in
Eq. ~16! is equivalent to the deviation angle of a thin prism
having an apex angle ofL/(Aew0). Therefore, the portion
near y56w0/2 of the SELFOC slab acts as a molecule
prism made up of a nonresonant laser field that separates
molecular species as an optical prism disperses light of dif-
ferent colors.

III. EXPERIMENT

The optical separation instrument, similar to the previous
one,11 consists of two parts, a molecule prism and a time-of-
flight mass spectrometer~TOFMS! with a two-dimensional
imaging detector~Fig. 1!. A neutral molecular beam is
formed by expanding a mixture of 50 torr benzene and 70
torr nitric oxide mixed with argon to a total pressure of 2 atm
at a rate of 10 Hz. A circularly polarized 1064-nm Nd:YAG
laser pulse of 7 ns duration~t! and 15.5mm waist radius
(w0) is focused into the pulsed molecular beam and acts as a
molecule prism. The center of laser focus, the directions of
propagation of the laser and the molecular beam are chosen
as the origin,x axis, andz axis, respectively. The molecular
rays deflected by the molecule prism are then crossed by a
dye laser pulse, which ionizes molecules through
multiphoton-ionization processes. The dye laser is pumped
by the second harmonics of another Nd:YAG laser and ad-
justed to generate pulses of 644.1 nm wavelength, 5 ns pulse
width, and 2 mJ/pulse energy. At 644.1 nm, benzene and
nitric oxide are ionized via a multiphoton-ionization process
and a resonance-enhanced-multiphoton-ionization process,
1S1(v51)←2S1(v51)←2P, respectively.14 Note that the
velocity changes from the remaining energies during the cho-
sen ionization processes at 644.1 nm are negligible and the
velocity of a molecular ion is the same as that of the parent
neutral molecule; v(neutral molecule)'v(molecular ion).
The resultant molecular ions are then accelerated and fo-
cused by three electrodes, a repeller, an extractor, and a
ground, onto the front of a microchannel plate~MCP! after
flying 127 cm through a TOF tube. These electrodes perform
velocity map imaging by maintaining the ratio of the repeller
voltageVR to the extractor voltageVE,15 which ratio is about
1.55 in our setup. During the traveling time of molecular
ions (5TOF), unaccelerated neutral molecules proceed a
distance of TOF3v0(neutral molecule) along thez axis with
the samey shift as molecular ions (DY). In order to inves-
tigate the spatial separation of neutral molecules, the focus-
ing electrode voltages are adjusted alternatively asVR

51500 V andVE5970 V for benzene andVR5580 V and
VE5375 V for nitric oxide, which values yield the same
TOFs for the chosen species for each acquisition cycle. Ion
signals amplified by the MCP hit a phosphor screen at the
back of the MCP to result in luminescence, which is detected
by a photomultiplier tube~PMT! and an intensified charge
coupled device~ICCD! camera. To obtain the images of the
selected species only, TTL signals are applied to gate the
intensifier of the ICCD.

The trajectories of neutral molecules are deduced from
the two-dimensional images of molecular ions on the ICCD.
The velocity change of the deflected and then ionized mol-

ecule is determined from the image shiftDY (5YON

2YOFF, whereYON and YOFF are they coordinates of mo-
lecular ions at the MCP with the deflecting laser on and off,
respectively! and the TOF of the ionized molecule:

Dvy5
DY

TOF
. ~17!

Since the velocities along they axis of a molecular ion and
the parent neutral molecule are almost equal, they coordi-
nate of the neutral molecule, which has an initial velocity
v0ẑ and has passed through the molecule prism at (y
5y0 ,z50;t50), is the same as the molecular ion’sy coor-
dinate y01DY. On the other hand, the change in velocity
along thez axis, Dvz , is negligible sincev0@Dvz . The
position of neutral molecules, therefore, can be represented
by they-z coordinate

~y01DY, v03TOF; t5TOF!. ~18!

IV. RESULTS AND DISCUSSION

The molecule-optical refractive indices are deduced
from the deflections of the molecular species measured as a
function of y0 using Eqs.~7! and ~9! as described in the
previous reports.10,11 Figure 2 shows the velocity changes of
~a! benzene and~b! nitric oxide molecules and a fit of ex-
perimental data~circles! to Eq.~9!. The value of 15.5mm for
w0 , the waist radius of the deflecting laser, is determined
from the benzene data which provide larger image shifts than
nitric oxide. The data for nitric oxide yield the same waist
radius values as the benzene data with a larger uncertainty.
The fixed value ofw0515.5mm is then used for fitting the
nitric oxide data. The maximum molecule-optical refractive
indices n0 with the laser peak intensity I 052.0
31012 W/cm2 are 1.070 and 1.022 for benzene and nitric
oxide, respectively. Then0 values can also be calculated
from Eq. ~13!. Average static polarizabilities16 of benzene

FIG. 2. The deflection velocity changes of~a! benzene~closed circles! and
~b! nitric oxide~open circles! along they axis are plotted as a function of the
relative position of the IR laser focus from the dye laser focus. The IR laser
is circularly polarized with peak intensityI 052.031012 W/cm2. The solid
curves show the fitting results from whichw0 andn0 are obtained. The waist
radius of the deflecting laserw0515.5mm is determined from the benzene
data.
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10.3310224 cm3 and nitric oxide 1.7310224 cm3 give
n0(benzene)cal51.098 and n0(nitric oxide)cal51.042. The
uncertainty ranges ofn021 andn0,cal21 values are about
20% and 30%, respectively. Experimental uncertainties can
stem from the measurement of the laser pulse energy, pulse
width, waist radius, molecular velocityv0 in the field-free
region, and average static polarizabilities. For benzene, the
n0 value obtained from fitting agrees well with then0,cal

value while the agreement is somewhat less for nitric oxide.
These analyses are based on the assumption that the multi-
longitudinal mode spikes of our deflection laser prohibit the
molecules from aligning along the plane of circular polariza-
tion. If the molecules are aligned along the plane perfectly,
the effective molecular polarizability values becomea' for
the oblate benzene and (a i1a')/2 for the linear nitric ox-
ide. Since the ratiosa i /a' are approximately 0.5 for ben-
zene and 2 for nitric oxide, increment factors of the perfectly
aligned molecular polarizability to the average static polariz-
ability (a i12a')/3 are 6/5 for benzene and 9/8 for nitric
oxide. Then the waist radius obtained from the fit using Eq.
~9! can be underestimated since molecules passing through
near the center (y50) will be deflected more due to the
increased effective molecular polarizability. Sincen021 and
n0,cal21 are approximately proportional tow0

2 and 1/w0
2, re-

spectively, a 10% underestimation ofw0 decreases then0

21 value by 19% and increasesn0,cal21 by 21%. Therefore,
if the waist radius were calibrated for partial alignment, the
n021 andn0,cal21 values could become closer.

The temporal signals of laser pulses measured by a pho-
todiode and theoretical calculation on the Ar-seeded molecu-
lar beam17 give the laser pulse widtht57 ns and the mo-
lecular beam velocity v05580 m/s, respectively. By
inserting these parameters into Eq.~15! we get the SELFOC
slab thickness of 4.2mm. Note that the velocities of different
molecules in the same molecular beam with argon buffer gas
are equal and the thickness of the equivalent SELFOC slab is
the same for both benzene and nitric oxide. However, they
have different focal lengths due to their different molecule-
optical refractive indices. The focal lengths for benzene and
nitric oxide molecular beams calculated from Eq.~14! are
0.22 and 0.75 mm, respectively. This focal length difference
can be understood as chromatic aberration in molecule op-
tics.

The portion neary56w0/2 of this SELFOC slab can be
used as a separation tool, molecule prism. After the mixture
molecular beam of benzene and nitric oxide passes through
the molecule prism, the two molecular species are refracted
or deflected in different directions according to their
molecule-optical refractive index values. Figure 3 shows the
spatial separation of benzene and nitric oxide neutral mol-
ecules at the position ofv03TOF which has been converted
from the images of molecular ions accelerated by the focus-
ing electrodes. The left image is for benzene molecules with
the deflecting laser turned off. After calibrating the difference
in ion signal intensities from a given laser pulse and the
artifacts of imperfect focusing electrodes, the right image
depicts the separation of benzene and nitric oxide molecules
in 25.9 ms after the deflecting laser turned on. Aty5w0/2,
the molecule prism shifts the rays of molecules downward

and the benzene molecules with a largern are more deflected
than the nitric oxide molecules with a smaller value ofn.
The chromatographic resolution18 of 0.62 between the two
peaks is obtained with the molecule prism formed by a cir-
cularly polarized pulse of 2.731012 W/cm2. In addition to
the initial transverse velocity spread before the ionization,
the ionization detection causes various sources of blurring,
which are residual photon energy over ionization energy, re-
pulsion between ions, cross talk between individual pores of
the MCP, and spreading of amplified electrons in the gap
between the MCP and the phosphor screen. From a simple
line-of-sight argument the initial transverse velocity spread
DNv0 / l is 3.4 m/s with the nozzle diameterDN50.5 mm
and the distance from the nozzle to the dye laser focusl
585 mm. Ionization energies of benzene and nitric oxide are
9.24 and 9.26 eV, respectively. Benzene ions acquired a ve-
locity change;2.7 m/s from the residual energy of six 644.1
nm photons. That for nitric oxide is less than 2.9 m/s since
the (312) REMPI process ionizes nitric oxide into av1

51 vibrational state,14 which has about 0.295 eV more en-
ergy than the vibrational ground state of NO1.19 To mini-
mize the ion–ion repulsion, the ionizing dye laser intensity is
reduced until the ion image sizes reach a minimum. The
blurring due to the detector gave a velocity spread of 3.1 m/s,
which was estimated in our previous work by measuring the
smallest ion image sizes.11 These velocity spreads give a
total velocity spread of 5.3 m/s for benzene and 5.4 m/s for
nitric oxide. Without the instrumental spreads, the resolution
of the two neutral species would have been as large as 0.97.

V. CONCLUSIONS

The interaction of a molecular beam with an intense
nonresonant laser field due to a focused nonresonant
Nd:YAG laser pulse is viewed as a molecular matter wave
passing through a molecule-optical SELFOC slab with a
molecule-optical refractive index,n. Sincen depends on the

FIG. 3. The spatial separation of benzene and nitric oxide neutral molecules
at the position ofv03TOF. The IR laser is circularly polarized with peak
intensity I 052.731012 W/cm2. The left image is for benzene molecules
with the deflecting laser turned off. The right image depicts the separation of
benzene and nitric oxide molecules with the deflecting laser turned on. In-
tensities of the images for benzene~solid line! and nitric oxide~dotted line!
integrated over the band are plotted on the side.
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molecular properties such as the mass and polarizability as
well as the laser field parameters, a molecular matter wave
consisting of multiple molecular species can be separated
spatially using the portion of a SELFOC slab with maximum
dispersion as a molecule prism. A mixture beam of benzene
and nitric oxide was thus successfully separated, with a chro-
matographic resolution of 0.62. The realization of a molecule
prism demonstrates the feasibility of molecule optics. In ad-
dition, light-based molecule-optical components can provide
a new means of manipulating molecules; for example, iso-
mers of identical mass could be separated via the difference
in their molecular polarizabilities by combining a conven-
tional mass spectrometer with a molecule prism.
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