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Functional near-infrared spectroscopy (fNIRS) is used to detect concentration changes of oxy-
hemoglobin and deoxy-hemoglobin in the human brain. The main difficulty entailed in the analysis of
fNIRS signals is the fact that the hemodynamic response to a specific neuronal activation is contam-
inated by physiological and instrument noises, motion artifacts, and other interferences. This paper
proposes independent component analysis (ICA) as a means of identifying the original hemodynamic
response in the presence of noises. The original hemodynamic response was reconstructed using the
primary independent component (IC) and other, less-weighting-coefficient ICs. In order to generate
experimental brain stimuli, arithmetic tasks were administered to eight volunteer subjects. The t-value
of the reconstructed hemodynamic response was improved by using the ICs found in the measured
data. The best t-value out of 16 low-pass-filtered signals was 37, and that of the reconstructed one
was 51. Also, the average t-value of the eight subjects’ reconstructed signals was 40, whereas that of
all of their low-pass-filtered signals was only 20. Overall, the results showed the applicability of the
ICA-based method to noise-contamination reduction in brain mapping. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4812785]

I. INTRODUCTION

The use of the independent component analysis (ICA)
method1 was investigated as a means of analyzing func-
tional near-infrared spectroscopy (fNIRS) signals and remov-
ing noise.2 ICA, which obtains independent components (ICs)
from signals with unobservable sources, has been established
in recent years as an effective technique for blind separa-
tion of independent sources.3 The purpose of ICA can be ex-
plained the example of the classical “cocktail party” problem.
In such a context, at any one moment, many people are talk-
ing amid a cacophony of background noises (e.g., music). If
a microphone records a mixture of voices the mixing proper-
ties of which can be determined, the respective voice-signal
origins can be independently identified. ICA has been uti-
lized as a fundamental tool in many fields, though its most
classical application is image-noise reduction.4 Additionally,
it has been employed by many researchers employing neu-
roimaging techniques fields including electroencephalogra-
phy (EEG),5, 6 fNIRS,7, 8 and functional magnetic resonance
imaging (fMRI).9, 10

The fNIRS-measured hemodynamic response is contam-
inated by the noises of physiological processes11–13 (i.e.,
low-frequency oscillations14, 15 as well as respiratory16 and
cardiac activities17), motion artifacts (e.g., from body/head

a)Author to whom correspondence should be addressed. Electronic mail:
kshong@pusan.ac.kr.

movement18), optode movement, and instrument degra-
dation (e.g., temporal differences in the baseline laser
characteristics19). fNIRS data preprocessing usually involves
filtering such noises in order to obtain higher-quality topo-
graphic images. But whereas some physiological noises (i.e.,
respiratory and cardiac activities) can be removed using a
low-pass filter (LPF),20 low-frequency (e.g., 0.15 Hz) oscil-
latory noises and motion artifacts cannot. Alternatively, un-
wanted noises and artifacts from fNIRS signals can be re-
moved using linear regression,21 least mean squares adaptive
filtering,22 and ICA.23–26

Continuous-wave-type fNIRS measures the optical in-
tensity changes27 at two wavelengths,28 which results are
then converted to hemodynamic concentration changes us-
ing the modified Beer-Lambert law. In recent years, fNIRS
has emerged as a promising non-invasive technique for near-
infrared-light-range (650–950 nm) monitoring of changes
in the cerebral hemodynamic response.29–33 The advan-
tages of fNIRS compared with fMRI34 or positron emis-
sion tomography35, 36 include higher temporal resolution, im-
proved safety, portability, and lower cost. In order to extend
and enhance the applicability of fNIRS, the noise-reduction
capabilities of fNIRS-based brain-computer interface system
is a current research issue that needs to be addressed.

The present study administered simple arithmetic (addi-
tion and subtraction) tasks to volunteer subjects and inves-
tigated the hemodynamic changes in the prefrontal cortex
in developing the ICA-based noise-reduction scheme herein

0034-6748/2013/84(7)/073106/9/$30.00 © 2013 AIP Publishing LLC84, 073106-1
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FIG. 1. The proposed ICA method: The original hemodynamic response is reconstructed using independent components (ICs).

proposed. Several studies over the past decade have applied
fMRI and arithmetic tasks to the study of brain activity.37 A
number of studies also have used fNIRS to examine the pre-
frontal cortex38, 39 and the left and right hemispheres.40 With
the ICA method, detection of arithmetic-task-stimulated neu-
ronal activities, in which oxygenation changes in the hemo-
dynamic responses are more vivid than in the resting state, is
enhanced. Specifically, the proposed method, compared with
low-pass-filtering, significantly improves the signal-to-noise
ratio (SNR), thereby enabling clearer image reconstruction.

II. MATERIALS AND METHODS

A. ICA theory

A schematization of the proposed ICA method is pro-
vided in Figure 1. Let xi(k), i = 1, 2, . . . , M, denote the mea-
sured fNIRS data, where M is the total number of channels,
subscript i is the ith channel, k (= 1, 2, . . . , N) is the discrete
time, and N is the number of samples (in this study, M = 16
and N = 796).

Further, let si(k), i = 1, 2, . . . , M, be the unknown source
signals. Then, the measured fNIRS signals can be written as

x (k) = A s(k), k = 1, 2, . . . , N, (1)

where x(k) = [x1(k) x2(k) · · · xM(k)]T, s(k) =
[s1(k) s2(k) . . . sM(k)]T, and A ∈ RM×M is an unknown
constant matrix (i.e., a mixing matrix) representing the
weighting coefficients of the respective ICs’ influence on
the measured signals, and x(k) ∈ RM×1 and s(k) ∈ RM×1 are
the column vectors representing the measured hemodynamic
responses and the ICs, respectively, at each time point. Given
x(k), the issue now is how both A and s(k) are to be estimated.
The ICs’ ŝi(k) are written as

ŝi(k) = wT
i x(k), k = 1, 2, . . . , N, (2)

where wi is a column vector to be determined.
The basic purpose of ICA is to consider the non-

Gaussianity of measured signals and to find their projec-
tions. ICA estimates wi by maximizing the non-Gaussianity
of wi

Tx(k) upon the observed data x(k). If the projec-
tions afford consistent IC estimates, it can be concluded
that wi was well chosen. ICA estimation entails two steps:
preliminary whitening of data, and estimation of an or-
thogonal ICA transform.1 It has been noted that per-
forming ICA decomposition several times yields similar
ICs.41

After estimating each wi, the ICs are estimated using the
equation

ŝ(k) = W x(k), k = 1, 2, . . . , N, (3)

where W = [w1 w2 · · · wM]T. ICA’s potent blind-separation
utility makes possible the separation of various noises within
fNIRS data, resulting in an enhanced stimuli-prompted hemo-
dynamic response.

B. ICA concept

Figure 2 illustrates the ICA concept. Let the five sig-
nals in Figure 2(a) (i.e., h1, h2, h3, h4, and h5) repre-
sent hemodynamic signals and the power-spectral densities
(PSDs) of which are depicted in Figure 2(b). Let the sig-
nals in Figure 2(c) be mixed signals from Figure 2(a) (i.e.,
1.0h1 + 0.9h2 + 1.1h3 + 0.3h4 + 0.7h5, 0.5h1 + 1.3h2

+ 1.2h3 + 0.5h4 + 0.5h5, 0.7h1 + 1.4h2 + 0.9h3 + 0.1h4

+ 0.9h5, 0.5h1 + 0.5h2 + 0.5h3 + 0.7h4 + 0.8h5, 0.2h1

+ 1.5h2 + 1.3h3+ 0.9h4 + 0.1h5, etc.). Now, it is as-
sumed that only three of the five signals in Figure 2(c)
are measured (i.e., the measurement is insufficient) and that
the ICA method is applied only to those three signals, re-
sulting in Figure 2(d). In comparing Figures 2(a) and 2(d)
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FIG. 2. ICA concept: (a) examples of 5 hemodynamic signals (i.e., a hemodynamic response due to neuronal activation, low frequency oscilla-
tion #1, respiratory, motion artifact, and low frequency oscillation #2), (b) the power-spectral densities of (a), (c) three signals used in the ICA of
http://www.cis.hut.fi/projects/ica/fastica, (d) three identified ICs from (c), and (e) the power-spectral densities of (d) that can be compared with (b), where
IC 1, IC 2, and IC 3 are claimed to be the estimated hemodynamic responses ĥ1, ĥ2, and ĥ3, respectively.

and their power-spectral densities in Figures 2(b) and 2(e),
respectively, it can be seen that the ICA method effectively
retrieved the original source signals from the noisy mixed sig-
nals shown in Figure 2(c). This strategy is particularly useful
for replicating the variation of measured signals. When us-

ing ICA, the IC associated with the applied stimuli might not
be the dominant one, or there might exist multiple such ICs.
But by referencing the spectrums of the identified ICs, we can
determine the particular hemodynamic signal having the same
density (Figure 2(b)).
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FIG. 3. Experimental design: (a) optodes configuration (Fp1 and Fp2 in the
International 10-20 System are used as reference points), (b) experimental
procedure for arithmetic task.

C. Subjects

Eight students participated in the experiment (all males,
aged 28 ± 5 years, none having a history of any neurological
disorder). All of the subjects had provided written consent.
The experiment was conducted in accordance with the ethi-
cal standards outlined in the latest Declaration of Helsinki. It
entailed having each of the subjects sit on a chair and solve
arithmetic problems provided to him on a piece of paper.

D. Data acquisition

The experimental data were acquired from a NIRS imag-
ing system (DYNOT: DYnamic Near-infrared Optical To-
mography; NIRx Medical Technologies, Brooklyn, NY) at a
sampling rate of 1.81 Hz. The data were measured simulta-
neously at two wavelengths (760 nm and 830 nm) using 14

optodes. As Figure 3(a) indicates, Fp1 and Fp2, in the Inter-
national 10-20 System, were utilized as reference points (dis-
tance between Fp1 and Fp2: 5.6 cm).

The diagonal distance between an emitter and a detector
is 2.5 cm, the vertical distance between two detectors 4.3 cm,
the horizontal distance between them 2.2 cm, and the distance
between two sources 2.2 cm. The oxy-hemoglobin (HbO) and
deoxy-hemoglobin (HbR) concentration-level changes were
computed using the modified Beer-Lambert law

�φi(λ, t) = −ln
Ui(λ, t)

Uo
i (λ, t)

= [aHbO(λ)�cHbO
i (t)

+ aHbR(λ)�cHbR
i (t)] dili , (4)

where i is the channel index, λ is the wavelength of the laser
source, �φ(λ, t) is the optical density variation at time t, Uo(λ,
t) and U(λ, t) are the photon fluxes at the source and detector
positions, respectively, aHbO and aHbR are the absorption coef-
ficients of HbO and HbR, respectively, �cHbO

i and �cHbR
i are

the concentration changes of HbO and HbR, respectively, di

is the differential path length factor (in this study, constant
values for all channels, di = 7.15 for λ = 760 nm and di

= 5.98 for λ = 830 nm that are the default values in the NAVI
software, were used), and l is the distance between the source
and the detector. A total of 16 channels were used, including
four sources and 10 detectors, as shown in Figure 3(a).

E. Stimuli

Throughout the experimental session, each subject per-
formed two types of randomly appearing two-digit arithmetic
tasks (addition and subtraction of integers; e.g., 15 + 12, 23
− 6). The session consisted of a 24-s task period followed by
a 20-s rest period, and was repeated 10 times (Figure 3(b)).
Accordingly, the total experimental duration was 440 s.

F. ICA processing

To help illustrate the performance of the proposed ICA
method, two other hemodynamic signals were generated: a
modeled (or desired) hemodynamic response and low-pass
filtering of the fNIRS signal (Figure 4). The modeled hemo-
dynamic response, denoted hM(k) in Figure 4, represents
the expected hemodynamic response to the given stimuli,

FIG. 4. Processing scheme.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

114.70.7.203 On: Fri, 19 Dec 2014 06:24:19



073106-5 Santosa et al. Rev. Sci. Instrum. 84, 073106 (2013)

computed by convolving the stimuli pattern in Figure 3(b) and
a typical hemodynamic response function as

hM (k) =
∑∞

n=−∞ Box(n) h(k − n), (5)

where Box(k) is the box-type stimuli pattern and h(k)
is the hemodynamic response function adopted from the
SPM8 (Wellcome Trust Centre for Neuroimaging, London,
UK).42

To obtain the HbO and HbR concentration changes
from the DYNOT signals, NAVI open-source software (Near-

FIG. 5. Comparison of hLPF’s and ICs (Subject 8): (a) NAVI HbO data, (b) low-pass-filtered (LPF) signals of (a) with cut-off frequency 0.18 Hz, and (c) the
obtained 16 ICs.
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FIG. 5. (Continued.)

Infrared Analysis, Visualization and Imaging Suite, NIRx,
USA) was used (Figure 4). Figure 5(a) shows the entire
16-channel NAVI HbO data for Subject 8. Figure 6 shows
a typical example of raw HbO, HbR, and HbT (i.e., HbO
+ HbR) data (Subject 1, Ch. 12). The hemodynamic re-
sponses are normally affected by the subject’s respiration,
heartbeat, and low-frequency oscillation in the brain. These
processes, in contrast to the original hemodynamic response
to stimuli, are referred to as physiological noises. One way
to remove such noises (e.g., respiration: ∼0.2–0.3 Hz; car-
diac: ∼1 Hz) is to use a low-pass filter. In the work of Fox
and Raichle,20 for example, a low-pass filter with a cut-off
frequency of 0.15 Hz was used. In the present study, simi-
larly, the post-NAVI hemodynamic signals (i.e., Figure 5(a))
were low-pass filtered with a cut-off frequency 0.18 Hz
(Figure 5(b)). The LPF signals were denoted hLPF(k)
(Figure 4).

Then, the Fast ICA v.2.5 algorithm (http://www.cis.hut.
fi/projects/ica/fastica, or Ref. 1) was employed to identify 16
ICs (Figure 5(c)) from the 16-channel data (Figure 5(a)). This
algorithm, notably, used a pre-processing low-pass filter with
a cut-off frequency of 0.89 Hz (which is almost the Nyquist
frequency of 1.81 Hz) in order to enhance the convergence
speed of the processing, thereby enabling computation of the
respective ICs within 600 steps. To identify the particular ICs
associated with the hemodynamic responses to the arithmetic
tasks, the t-test

tj = ICj (k) − hM (k)√
σ 2

ICj

N
+ σ 2

hM

N

, (6)

for two signals was conducted, where subscript j denotes the
jth IC among the 16 ICs, ICj (k) and hM (k) are the means of

FIG. 6. A typical example of raw HbO, HbR, and HbT data (Subject 1, Ch. 12).
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FIG. 7. PSDs of typical 4 ICs chosen from Figure 5 (Subject 8).

ICj(k) and hM(k), respectively, and σICj
and σhM

represent the
respective standard deviations. The t-values of all of the ICs
are indicated in Figure 5(c). Normally, it is considered that
the IC with the highest t-value is associated with the hemo-
dynamic response to a given stimuli; however, where there
are multiple ICs having similar t-values, their spectrums also
should be checked. Figure 7 shows the PSDs of IC 4, IC 8, IC
12, and IC 16, respectively. As can be seen, IC 4 had the high-
est t-value (i.e, 21) with a PSD of around 0.023 Hz, which was
near the stimulation frequency (Figure 2(b)). Thus, IC 4 was
applied as the primary IC to the reconstruction of the hemo-
dynamic response to the stimuli pattern.

Now, let the primary IC be at j = p. Then, the hemody-
namic response to the given stimuli can be reconstructed as

hICA(k) = ICp(k) +
M∑

j=1,j �=p

tj
M∑

j=1

∣∣tj ∣∣
ICj (k), (7)

where subscript p stands for the primary IC, and M is the total
number of ICs.

III. RESULTS

The hemodynamic responses of the eight subjects were
measured from their prefrontal cortex. The 10 arithmetic-task
sessions were clearly distinguishable by visual inspection. As
expected, HbO and HbT increases were manifested during the
tasks (e.g., Subject 1, Ch. 12; Figure 6). This trend was appar-
ent in some of the raw data (Figure 5(a)), but was not clear
in many channels. However, it became clearer after low-pass
filtering with the 0.18 Hz cut-off frequency (Figure 5(b)). The
t-value of hLPF(k) of Ch. 15 was 37, the highest.

With respect to the obtained ICs (Figure 5(c)), the fol-
lowing observations were made. Except IC 4, the t-value of
which was 21, no clear distinctions among the task sessions
was seen, owing to the fact that the other ICs were supposed
to represent other phenomena. Also, in referencing the spec-

trums of all 16 ICs (Figure 7), IC 8 was found to be associated
with low-frequency oscillation noise (<0.1 Hz), IC 12 with
respiratory noise (∼0.3 Hz), and IC 16 with unknown noise.

Figure 8 compares two hemodynamic responses with the
modeled hemodynamic response: the thin solid line represents
the hemodynamic response reconstructed using Eq. (7), and
the thick dotted line is the highest t-value signal obtained by
low-pass filtering with a 0.18 Hz cut-off frequency. The drift-
ing of the signal from 360 to 450 s might have been due to
incautiousness, though such noise was completely removed
from hICA(k). It is also noteworthy that the t-value of hICA(k)
increased to 51, whereas the highest t-value was 37. This
result, especially, used in Eq. (7) increased the t-value than
using only four ICs with high t-values (dotted) as shown in
Figure 9.

To evaluate the overall noise-reduction effect of the ICA
method in comparison with the low-pass filter approach, and
to confirm the accuracy of Figure 8 results, the individual t-
values for all of the eight subjects were compared (Figure 10).
The post-ICA p-value averaged for all of the subjects was
statistically significant (p < 0.0005). Across all of the sub-
jects, ICA yielded much higher t-values. The SNR, defined as
the ratio of the mean value of the signal during a task period
and the standard deviation of the noise during a rest period,
increased significantly for every subject. The SNR averaged
over all HbO of the subjects improved from 0.66 to 4.33.

IV. DISCUSSION

The present study demonstrated the potential of our ICA
method to separate physiological noises and motion artifacts
from a stimuli-evoked signal and obtain the original hemo-
dynamic response. The ICs associated with the physiological
signals (i.e., low-frequency oscillation, respiration) and mo-
tion artifacts could be identified by reference to their spec-
tral densities. Indeed, isolating the key IC(s) associated with
the original hemodynamic response is essential if accuracy
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FIG. 8. HbO comparison (Subject 8): the low-pass-filtered (LPF) signal hLPF(k) at Ch. 15 (dotted), the reconstructed hemodynamic response hICA(k) using
Eq. (7) (solid), and the modeled hemodynamic signal hM(k) (the t-value between hLPF(k) and hM(k) is 37 and that between hICA(k) and hM(k) is 51).

is to be maintained. In these ways, fNIRS in brain engi-
neering can be facilitated and expedited using the developed
method.

The steps entailed in applying the ICA method to the
analysis of fNIRS signals are as follows: (i) separate signals to
ICs consisting of neuronal activation, low-frequency oscilla-
tion, respiratory signal, and motion artifact noise (Figure 5(c))
in order, crucially, to obtain significant ICs while eliminating
unwanted ICs; (ii) confirm their spectral densities; (iii) recon-
struct the hemodynamic response by weighting the high-t-
value ICs more and the low-t-value ICs less (e.g., Eq. (7));
(iv) determine whether the reconstructed hemodynamic re-
sponse has an increased t-value relative to the low-pass-
filtered signals (Figure 8); (v) confirm that this trend holds
over all subjects.

We were able to separate physiological noises (low-
frequency oscillation and respiratory signals) and an
unknown noise identified as motion artifacts. Two of the ICs
in Figure 7 represent the low-frequency oscillation and res-
piratory signals, which are clearly verifiable by their power-
spectral densities. It is notable that the IC associated with
the cardiac signal could not be detected, due to the fact that
low-pass filtering of 0.89 cut-off frequency was applied prior
to the Fast ICA. However, this low-pass filtering enhanced
the Fast ICA processing. Overall, the obtained results sug-
gest that the proposed method can effectively identify task-
related brain activation in time-series while reducing noises
from motion artifacts and physiological processes. The results
indicate, moreover, that our ICA methodology, enabling quick
construction of topographic brain-activation maps, can be

FIG. 9. Comparison of hICA(k) using (7) (solid) and hIĆA(k) using only four ICs with high t-values (dotted): The drifting behavior of hLPF(k) during 360-450 s
has been removed.
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FIG. 10. Comparison of the highest t-values of hLPF(k) and hICA(k), respec-
tively, for all 8 subjects and their grand averages.

especially useful in brain-computer interfaces and many other
fNIRS-based applications.

V. CONCLUSIONS

A proposed ICA method was implemented to process
arithmetic-task data in the prefrontal cortex. It could effec-
tively separate physiological noises (spontaneous fluctuation
and respiratory signals) and motion artifacts for all 16 chan-
nels employed. Significant t-value increases for all eight sub-
jects, in a comparative evaluation with conventional low-pass
filtering, were observed after reconstruction of the hemody-
namic response using the ICs found. In summary, the utility
of the ICA method as a means of reducing noise contamina-
tion in a targeted brain area was demonstrated.
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