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Thin films of organic-based magnet, V[TCNE]x (TCNE: tetracyanoethylene), were deposited by

physical vapor deposition (PVD) based reactive evaporation. The growth conditions were studied

in detail. A saturated composition of V[TCNE]�1.9 was determined by optimizing the growth con-

dition. Two sets of films with different V to TCNE ratios were characterized. Both films were mag-

netic ordered up to 400 K and held coercive field of 60 Oe at room temperature. With the presence

of excess vanadium within the film, the increase of defects created by PVD results in significant

change in electronic property. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897494]

V[TCNE]x is the first organic-based magnet having the

magnetic ordering temperature above room temperature.1

The exchange coupling between unpaired electrons of V2þ

(S¼ 3/2) cation and TCNE� (1/2) anion makes this poly-

meric complex ferrimagnetic with net magnetic moment of

1 lB. The material is overall disordered, yet with a well-

defined local structure, in which each V ion is surrounded by

six cyano-groups from TCNE molecules with octahedral ge-

ometry.2 It has been demonstrated as a spin-polarizer in

organic-based spintronics research due to its multiple advan-

tages that include: high magnetic ordering temperature,

semiconducting with activation energy �0.5 eV,3 fully spin

polarized electronic structure, and low processing tempera-

ture. These features are critical for fabricating all-organic

spin devices. Spin tunnel junctions and spin-LED have both

been demonstrated using V[TCNE]x as spin polarizer.4–8

V[TCNE]2 was first synthesized by the solution

method.1 Thin films of V[TCNE]x were later deposited by

several different techniques that include chemical vapor dep-

osition (CVD),9,10 physical vapor deposition (PVD),11 and

molecular layer deposition (MLD).7 CVD has been the first

and a promising method to deposit thin films of V[TCNE]x.

The later development of MLD was for the deposition of uni-

form and ultrathin films. Both CVD and MLD have mostly

utilized V(CO)6 as the vanadium source although V(C6H6)2

has also been used. Alternatively, the PVD method directly

utilizes metallic vanadium as the vanadium source. This

makes PVD an advantageous method in studying organic-

based magnets. For instance, because this method does not

require organometallic precursor, it is in principal free of

contamination from by-products. For the same reason, the

selection of metal elements is broader.

Thin films of several metal-TCNE complexes have been

previously grown by the PVD method.11–14 However, more

information is still needed to further understand the nature of

V[TCNE]x made from this method. In this work, the growth

condition of V[TCNE]x films are studied in detail. By moni-

toring the growth, we determined the stoichiometry of

V[TCNE]x and further identify the saturated concentration

of TCNE within the film. Meanwhile, the magnetic proper-

ties were characterized for samples of different V to TCNE

ratios. Finally, we found that the difference in stoichiometry

can significantly change the electronic property of the PVD-

made V[TCNE]x.

The deposition was performed in a reactor with base

pressure below 10�8 Torr. Vanadium was vaporized using an

e-beam evaporator. During deposition, TCNE vapor was

introduced to the reactor through a leak valve. A quartz crys-

tal microbalance (QCM) was used to monitor the deposition.

Once a stable pressure of TCNE was achieved, silicon sub-

strates were moved to the deposition zone so that V[TCNE]x

can be deposited on the substrates. After deposition, the

substrates were transferred to an argon-filled drybox for fur-

ther analyses. The depositions were performed at room

temperature.

The growth of thin films of V[TCNE]x can be regulated

by both vanadium flux and TCNE pressure. Two sets of sam-

ples with different V/TCNE ratios were made with different

vanadium fluxes while the TCNE pressure (6.5� 10�7 Torr)

was kept constant. Figure 1(a) shows the mass changes

FIG. 1. (a) Changes of deposited mass during depositions monitored by

QCM. The blue circles represent the data from a lower vanadium flux (LF);

the red triangles represent the data from a higher vanadium flux (HF). The

solid symbols represent deposition of vanadium only; the hollow symbols

represent the deposition of vanadium under TCNE vapor pressure of

6.5� 10�8 Torr. Black lines are the fitted trend lines. (b) Molar ratio deter-

mined by QCM results versus TCNE pressure with constant vanadium flux.

Red triangles represent the data from a higher vanadium flux; blue dots rep-

resent the data from a lower vanadium flux.
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monitored by a QCM during different growth conditions.

Comparing to the deposition of only vanadium, the growth

rate increases significantly in the presence of TCNE. This

increase in deposition rate primitively confirmed the

adsorption/reaction of TCNE with vanadium. The molar ra-

tio of V/TCNE for each growth condition can be calculated

by the deposition rates with and without the presence of

TCNE vapor (see supporting information Figure S1 and

Table S1).15

As described above, thin films of two different composi-

tions were deposited by tuning vanadium flux. Thin films

that have QCM-estimated composition of V[TCNE]1.2 were

deposited with a higher vanadium flux (deposition rate,

�0.20 ng cm�2 s�1). To increase the TCNE concentration of

the film, lower vanadium flux (deposition rate,

�0.05 ng cm�2 s�1) was used and a sample with composition

of V[TCNE]1.8 was made. The compositions of these films

were determined by x-ray photoelectron spectra of V 2p and

N 1s orbitals, where the molar ratios of TCNE/V were 1.2

for sample with higher vanadium flux and 1.9 for sample

with lower vanadium flux. The results are consistent with the

molar ratios estimated from QCM data. However, it should

be noted that the TCNE concentration would easily be over-

estimated by calculation based on the QCM results. This is

likely due to the adsorption/reaction of other reactive species

such as oxygen. Therefore, the QCM-determined molar ratio

is only valid when the precursor cell is well-evacuated prior

to the deposition. Densities of both films were found to be

about 1.3 g/cm3 by combining the QCM results and film

thicknesses determined by atomic force microscopy (AFM).

The density is between those of V[TCNE]x made by solution

method and MLD.7,16

Alternatively, the molar ratio between V and TCNE can

be tuned by varying the TCNE pressure while keeping the

vanadium flux constant. We utilized this approach to deter-

mine the saturated stoichiometry of V[TCNE]x. The relation-

ship between TCNE vapor pressure and molar ratio of the

resulting films is shown in Figure 1(b). With a constant vana-

dium flux, the TCNE concentration continuously increased

when the TCNE pressure increasing from 5� 10�8 Torr to

8� 10�7 Torr. To pursue the saturation ratio, while keeping

the TCNE pressure within the same range, we used a lower

vanadium flux. At the lower vanadium flux, the TCNE con-

centration increased linearly at pressure up to 8� 10�7 Torr

and then started leveling off at TCNE pressure of

3� 10�7 Torr. The maximum TCNE/V ratio is close to 1.9.

This saturation value is close to the previously reported

results of V[TCNE]x made from solution and CVD methods

that both hold the value of �2.1,9 Moreover, it is in good

agreement with previously reported V[TCNE]x and ana-

logues made from the PVD method.11–13

Figure 2 shows the XP spectra of thin films of the two

different stoichiometries, V[TCNE]1.9 and V[TCNE]1.2,

described in Figure 1(a). Figure 2(b) shows the C1s spectra,

where the carbon peaks close to 286 eV with shoulder on the

high energy side are consistent with previously reported

result for V[TCNE]x.11 The peaks around 284.6 eV are

attributed to adventitious carbon. Without considering the

contribution from adventitious carbon, the carbon to nitrogen

ratios are 1.61 and 1.48 for the V[TCNE]1.9 and V[TCNE]1.2

samples, respectively, that are close the theoretical ratio of

1.5 for TCNE molecule. Figure 2(b) shows the V 2p spectra.

The two bands in spectra are due to spin-orbit coupling. In

each band, the lower-energy part is attributed to V2þ for

V[TCNE]x and the higher-energy part is due to oxidized spe-

cies.9 Comparing to V[TCNE]1.9, the V[TCNE]1.2 film has a

higher percentage of V2þ than vanadium species with higher

oxidation states. This observation reflects that vanadium is

the electron donor in this charge-transfer polymeric com-

plex; therefore, higher concentration of vanadium would

result in a more reduced material. Figure 2(c) shows the N 1s

XPS spectra. The spectrum for V[TCNE]1.9 film shows a

main peak around 398.5 eV with a broad shake-up band that

is similar to the previously reported results.9,11 However, in

the N 1s spectrum of V[TCNE]1.2 film, a shoulder at the low

energy side of the main peak was observed. This shoulder

may result from the alternative bonding between vanadium

and TCNE due to the direct reaction of vanadium atoms to

TCNE, which has been proposed for other metal/TCNE com-

plexes made by the PVD-based methods.12–14,17

Figure 3 shows the coercive fields of samples of differ-

ent vanadium to TCNE stoichiometry at 100 K and 300 K.

Other than the slightly lower coercivity for the sample with

high vanadium concentration, there was no significant V/

TCNE-ratio dependence in their coercive fields. All films

showed coercivities close to 60 Oe at 300 K and 80 Oe at

100 K, which are in line with previously reported values.11

Figure 4 shows the temperature dependence of magnetiza-

tion in two sets of samples, V[TCNE]1.9 and V[TCNE]1.2, as

FIG. 2. XPS spectra of (a) C 1s, (b) V 2p, and (c) N 1s, where the top spectra

were taken from the V[TCNE]1.1 sample and bottom spectra were from the

V[TCNE]1.9 sample.

FIG. 3. Coercivities of sample of different V:TCNE ratios at 100 K and

300 K.

142401-2 Kao et al. Appl. Phys. Lett. 105, 142401 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  114.70.7.203

On: Wed, 19 Nov 2014 01:27:34



those in Figure 1(a). Figures 4(a) and 4(b) show the zero-

field- and field-cooled curves of both films at 100 Oe, and

Figure 4(c) shows the remanence of the V[TCNE]1.2 film af-

ter applying a 1000 Oe magnetic filed. Both types of samples

were showing magnetic-ordering up to 400 K. Some of the

samples were observed with a more clear partial drop in

magnetization at temperature as high as �360 K (see sup-

porting information Figure S2).15 This is qualitatively con-

sistent with the result from previously reported V[TCNE]x

made by PVD-based method and other methods.9,11 The rea-

son for the magnetization close to 400 K is not understood.

This, either the delay of the structural rearrangement or any

alternative structure that contributes to the magnetism, sug-

gests the samples made from our method are more compli-

cated in structure than previously reported V[TCNE]x. More

details on the structure are needed to clarify the origin of the

material properties.

The activation energies of V[TCNE]1.9 and V[TCNE]1.2

were examined by the temperature dependence of electrical

resistivity.3 The activation energy of V[TCNE]1.9 was found

to be 0.57 eV, which is higher than the previously reported

value for V[TCNE]x (0.45–0.5 eV).3,7 Based on a proposed

model, however, the measured activation energy would

decrease due to the increase in structural disorder.18

Therefore, the difference in activation energy here, compar-

ing to previously reported V[TCNE]x, may be affected by

not only structural disorder but also bonding defects due to

the PVD process as well as possible degradation of the sam-

ple. V[TCNE]1.2 was not measured with a meaningful result

by analyzing with the simple Arrhenius equation. This may

be caused by the higher degree of defects in the sample gen-

erated with higher vanadium concentration.

In conclusion, thin films of V[TCNE]x of different

V/TCNE ratios were grown by PVD. The saturated concen-

tration of TCNE was determined to be �1.9 that is close to

the previously reported composition of V[TCNE]�2. The

magnetic ordering temperature is relatively high and shows

no stoichiometry-dependence. There is a significant variation

in activation energies of films of different V to TCNE ratio.

The transport property is different from V[TCNE]x made by

other methods; meanwhile, it can be significantly affected by

the presence of excess vanadium. As the magnetic and elec-

tronic structures of the PVD-made V[TCNE]x are complex,

with better understanding, it can be an intriguing target in

organic-based magnets and organic spintronics.
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