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Image Restoration with a New Class of Forward-Backward-Forward Diffusion
Equations of Perona–Malik Type with Applications to Satellite Image

Enhancement∗
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Abstract. A new class of anisotropic diffusion models is proposed for image processing which can be viewed
either as a novel kind of regularization of the classical Perona–Malik model or, as advocated by the
authors, as a new independent model. The models are diffusive in nature and are characterized by
the presence of both forward and backward regimes. In contrast to the Perona–Malik model, in
the proposed model the backward regime is confined to a bounded region, and gradients are only
allowed to grow up to a large but tunable size, thus effectively preventing indiscriminate singularity
formation, i.e., staircasing. Extensive numerical experiments demonstrate that the method is a
viable denoising/deblurring tool. The method is significantly faster than competing state-of-the-art
methods and appears to be particularly effective for simultaneous denoising and deblurring. An
application to satellite image enhancement is also presented.
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1. Introduction. The Perona–Malik model, while of considerable theoretical interest, has
been limited in its applicability by its strong propensity to singularity formation, among other
reasons. This problem results in images with a strong cartoonish look due to staircasing.
Total variation (TV)-based models have experienced tremendous success but typically lack
any sharpening capability. The proposed model offers a tool (two regularization parameters)
which makes it possible to harvest the desirable sharpening features of Perona–Malik-type
models in a controlled fashion. This is done by introducing a very mild regularizing term,
which still allows gradient growth while effectively introducing a bound for the gradient’s
maximal size. It is obtained as the gradient flow associated to

(1.1) Ep,δ(u) =

∫
Ω

[
1

2
log(1 + |∇u|2) + δ

|∇u|p
p

]
dx ,

where δ > 0 and p ∈ (1, 2]. This is an eventually convex functional which exhibits a concave
region of the form [1 ≤ |∇u| ≤ M(p, δ) < ∞] responsible for the controlled growth of gradients.
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While the functional with p = 2 was introduced in [14] for theoretical purposes such as
understanding the onset of staircasing for Perona–Malik, it provides, as advocated here, a
viable tool in applications to image processing, especially for p � 1. It should be observed
that the model obtained by choosing p = 1 would effectively lead to a (δ-sloped) TV model.
Indeed the relaxation of E1,δ turns out to be a rescaled TV functional in that case. Numerical
experiments based on a discretization of the nonlinear PDE (1.2) described later indicate that
p = 1 is, however, not an optimal choice in applications. Best results are obtained for p close
but not equal to one.

Just as for Perona–Malik, the corresponding gradient flow

(1.2) ut = ∇ ·
[(

1

1 + |∇u|2 + δ|∇u|p−2

)
∇u

]

is of forward-backward type, at least for δ small enough. As pointed out above, the backward
regime is confined to the annulus where

(1.3) [1 < |∇u| < M(δ, p)] ,

whereas the backward regime in Perona–Malik is the outer domain where |∇u| > 1 . It is
essentially a consequence of (1.3) that solutions of (1.2) enjoy better regularity properties
than those of the Perona–Malik equation; i.e., they never develop any discontinuities. These
equations provide a well-posed family of models which are not only amenable to analysis
(cf. [14]) but also offer practical benefits such as performance enhancement and robustness in
the simultaneous presence of noise and blur. In a way, the new models are an interpolation of
two classical models, Perona–Malik and TV. This is essentially due to the fact that solutions u
of (1.2) evolve as solutions of Perona–Malik as long as the gradient is large but not too large,
whereas they exhibit a (p-Laplacian type, p ∼ 1) diffusion for small and very large gradients.
It has been proved that the discontinuity set of solutions to TV cannot grow [2], and it is
well known that Perona–Malik has strong sharpening features. The tunable parameters δ
and p of the new model make it possible to benefit from the sharpening features of Perona–
Malik while still enjoying many of TV’s desirable properties. Extensive numerical experiments
clearly support this theoretically grounded claim.

It is worth reiterating that (1.2) is not well-posed in the sense of classical solutions but
rather in the weaker sense of Young measure–valued solutions. The latter are constructed via
time discretization and successive minimization (cf., e.g., [6, 14]). They do, however, have
centers of mass which evolve according to the convexification of the driving energy, which in
this case, and in contrast to Perona–Malik, is not trivial.

2. Properties of the model. It is well known that staircasing is an artifact which appears
in discretizations of the Perona–Malik equation. It is a manifestation of the forward-backward
nature of the equation, and a typical occurrence is depicted in Figure 1. Indeed, a solution,
in the attempt to flee the backward regime, is forced into developing vanishing or infinite
gradients thus generating the staircasing phenomenon. The proposed regularization, on the
other hand, reduces the size of the backward region, and solutions can escape the backward
region merely by developing small and large gradients. Their size is effectively controlled by
the parameters δ and p with δ playing the dominant role as explained later. Staircasing isD
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1418 PATRICK GUIDOTTI, YUNHO KIM, AND JAMES LAMBERS

Figure 1. Manifestation of the staircasing phenomenon widely observed in discretizations of the Perona–
Malik equation.

effectively replaced by a form of microstructured ramping, as can be clearly seen in Figure 2.
In this way it is still possible to exploit the sharpening properties of Perona–Malik without
incurring its full cost.

The microoscillatory phenomenon, which is akin to a similar one well known in material
science, can be mathematically captured by the use of Young measures (in particular, weak
Young measure–valued solutions in the sense of [6]). This is done in [14] where, for p = 2,
equation (1.2) is shown to be globally (in time) well-posed, and the microstructured nature
of the gradients of its solutions is fully described by the use of Young measures. This remains
true for values of p < 2, and further comprehensive investigation in that direction is being
pursued. The reader is referred to [14] for the details with p = 2. It is pointed out that the
case p = 1 is not of interest in the current paper for the reasons cited above. For p = 1,
E1δ possesses the same backward regime as the original Perona–Malik model. Moreover, the
convexification E∗∗

1,δ(u) of E1,δ(u) is given by

E∗∗
1,δ(u) = δ

∫
Ω
|∇u|dx,D
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Figure 2. The microramping phenomenon exhibited by (1.2).

and

E∗∗
1,δ(u) < E1,δ(u) unless ∇u ≡ 0.

Hence p = 1 is not an appropriate choice for the development of a confined backward regime,
as discussed earlier. On the other hand, for p > 1, the following minimization problem can
be considered:

(2.1) inf
u∈W 1,p(Ω)

{
Fp,δ(u) = Ep,δ(u) +G(u)

}

for a convex G. Then, due to the properties of Ep,δ(u) and by convexification,1 one is led to

(2.2) inf
u∈W 1,p(Ω)

{
Fp,δ(u) = Ep,δ(u) +G(u)

}
= inf

u∈W 1,p(Ω)

{
F ∗∗
p,δ(u) = E∗∗

p,δ(u) +G(u)
}
.

Since it is not the purpose of this paper to provide analytical details of this variational model
and its associated PDE model (1.2), they will be considered in a subsequent paper. In the

1While it is not true in general that F ∗∗ + G coincides with the convexification of F + G for a convex
function G, it is true for the functions considered here.D
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1420 PATRICK GUIDOTTI, YUNHO KIM, AND JAMES LAMBERS

experiments performed later in this paper, two distinct functions G are considered:

G(u) =

{
0 for denoising,∫

Ω |u0 −Ku|2dx for deblurring or denoising/deblurring,

with the aim of understanding how (1.2) affects the recovery from degraded images by noise
and blur. Since the images of interest are two-dimensional and boundary effects can be dealt
with by introduction of a buffering frame around the image, periodicity will be assumed, with
a periodicity box given by Ω = [0, 1] × [0, 1] ⊂ R

2.
Theorem 2.1. Given a periodic function u0 ∈ L2(Ω) and 1 < p ≤ 2, the minimization

problem (2.1) has a minimizer on Ω in W 1,p
per(Ω) regardless of which function G,

G ≡ 0 or G(u) =

∫
Ω
|u0 −Ku|2dx,

is chosen. Here K is a convolution operator with nonnegative kernel k ∈ L1(Ω) satisfying∫
Ω k(x)dx = 1.

Proof. For G ≡ 0, it is obvious that any constant is a minimizer. For the other G, choose
a minimizing sequence {un}n∈N. Due to relaxation (2.2), the proof is classical. The uniform
boundedness of ‖Kun‖L2(Ω) implies uniform boundedness of

∫
Ω un(x)dx since∣∣∣∣

∫
Ω
un(x)dx

∣∣∣∣ =
∣∣∣∣
∫
Ω
k ∗ un(x)dx

∣∣∣∣ ≤ ‖Kun‖L2(Ω),

which leads to the uniform boundedness of ‖un‖W 1,p(Ω) through Poincaré’s inequality. Then,
Rellich’s compactness theorem implies the existence of a weak limit ũ such that

un ⇀ ũ in W 1,p(Ω) and un → ũ in L2(Ω).

W 1,p sequential lower semicontinuity of E∗∗
p,δ finally implies that ũ is a minimizer on Ω.

For some details, the reader is referred to [6]. While this variational problem is related
to the proposed model (1.2), the interest here is mainly in the behavior of the associated
PDE (1.2), which inherits a nice property from the Perona–Malik equation: it does enhance
edges. Yet, unlike the Perona–Malik equation, it is well-posed as can be shown using Young
measure–valued solutions. It should be stressed that this kind of regularization with a confined
backward regime is different from others proposed previously. The extensive numerical results
about (1.2) presented later will clearly underscore and strongly corroborate this important
claim.

We conclude this section with a couple of remarks. First, notice that a mathematically
rigorous connection between the appropriate gradient flow of (1.1) and the TV flow has
been obtained in [3]. In this paper Colombo and Gobbino use Γ-convergence techniques
combined with the concept of maximal slope curves to show that time-rescaled gradient flow
curves of (1.1) do indeed converge to gradient flow curves of the TV energy. The authors
obtain their result for p = 2. While this paper is motivated by the Perona–Malik model and
its subsequent modifications/variations, it should be pointed out that the use of nonconvex
regularization/penalization was also suggested in [15] in a Bayesian framework. Finally an
analytical and numerical study of the well-known staircasing phenomenon was performed in
[1] by using a fourth-order regularization in a one-dimensional setting.D
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3. Implementation. In this section, attention is focused on the implementation of an
efficient numerical method for nonlinear diffusions of the form

(3.1) ut = ∇ · (g(∇u)∇u)

on [0, 1]2, such as (1.2), with appropriate initial data and either periodic or Neumann boundary
conditions.

3.1. Spatial discretization. Details about the spatial discretization of (3.1) are given first.
The one-dimensional periodic differentiation operator D is discretized spectrally by means of
the discrete Fourier transform (DFT) FN , which yields the discretization

(3.2) DN = F−1
N ΛNFN ,

where N denotes the number of grid points used and

ΛN = 2πidiag

(
−N

2
+ 1,−N

2
+ 2, . . . , 0, 1, . . . ,

N

2

)
.

Then, the discretization of the two-dimensional differentiation operatorDz, where z = x, y,
has the form

Dz;N,N = F−1
N,NΛz;N,NFN,N ,

where FN,N is the two-dimensional DFT operator and

Λx;N,N = IN ⊗ ΛN , Λy;N,N = ΛN ⊗ IN .

That is, Λz;N,N is the diagonal matrix of eigenvalues of Dz;N,N . The resulting system of ODEs
is

(3.3)
du

dt
= LN,Nu ,

where
LN,N =

∑
z=x,y

Dz;N,NGN,NDz;N,N ,

and GN,N is a diagonal matrix consisting of the values of g(∇u) at the grid points.

3.2. Time-stepping. For diffusion equations, it is generally not practical to use explicit
time-stepping methods, because of the severe constraints they impose on the time step. A
straightforward alternative is to use backward Euler for time-stepping, and an iterative method
such as MINRES [28] to solve the associated system of equations.

However, there are two significant drawbacks with this approach. First, the number of
iterations required by such methods tends to be very large, unless the time step is prohibitively
small. Second, even when convergence to a reasonably small tolerance is achieved, this is
not sufficient for image denoising or deblurring, because solutions tend to exhibit staircasing
and high-frequency oscillations. In view of the difficulties associated with both explicit and
implicit time-stepping methods, it is worthwhile to consider an alternative approach to solving
the system of ODEs (3.3).D
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For problems with periodic or Neumann boundary conditions, spectral methods are an
attractive option since the solution can be expressed as a linear combination of basis functions
that automatically satisfy the boundary conditions. They are quite effective for problems
with constant coefficients, because then these basis functions are eigenfunctions of the spatial
differential operator, which allows the Fourier coefficients (or Fourier cosine coefficients, in
the case of Neumann boundary conditions) of the solution to be evolved in time, independent
of one another.

This property does not extend to variable-coefficient problems, even in the linear case.
However, even though the Fourier coefficients are coupled, it is still possible to evolve each of
them forward in time using an approximation to the solution operator that, in some sense, is
optimal for that coefficient. This approach allows high-order accuracy in time, and favorable
stability properties, to be realized with a Krylov subspace of far lower dimension than is
feasible for iterative methods such as MINRES that are used within implicit time-stepping
schemes.

This is the basic idea behind Krylov subspace spectral (KSS) methods. They were first
developed in [23] for the purpose of solving parabolic variable-coefficient problems. Let
S(t) = exp(Lt) represent the exact solution operator of the one-dimensional problem ut = Lu,
with periodic boundary conditions, where L is a second-order variable-coefficient differential
operator. Functions are discretized on an N -point uniform grid, and un is used to denote the
computed solution at time tn, where tn = nΔt for some time step Δt. Then, each Fourier
coefficient of the solution u(x, t) at time tn+1 can be approximated by the bilinear form

(3.4) û(ω, t+Δt) ≈
√
ΔxêHω SN (Δt)un,

where êω is a discretization of exp[2πiωx], and SN = exp[LNΔt], where LN is an N × N
matrix obtained by spectral discretization of L.

In [11] Golub and Meurant describe a method for computing quantities of the form

(3.5) uT f(A)v,

where u and v are N -vectors, A is an N ×N symmetric matrix, and f is a smooth function.
KSS methods, introduced in [21, 23], apply this method with A = LN , f(λ) = exp(λt) for
some t, and the vectors u and v are equal to êω and un, respectively.

The basic idea behind the approach of Golub and Meurant is that the bilinear form (3.5)
can be viewed as a Riemann–Stieltjes integral

uT f(A)v = I[f ] =

∫ b

a
f(λ) dα(λ),

where a and b are the smallest and largest eigenvalues of A, respectively, and the measure
α(λ) is derived from the components of u and v in a basis consisting of eigenvectors of A. As
discussed in [5, 10, 9, 11], the integral I[f ] can be approximated using Gauss quadrature rules.
The nodes and weights can be obtained using the symmetric Lanczos algorithm if u = v, and
the unsymmetric Lanczos algorithm if u �= v; see [13]. Alternatively, for the case u �= v, a
block approach can be used, based on block Lanczos iteration [12]. Applying this approach toD
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implement spectral methods significantly improves accuracy over the unsymmetric Lanczos
algorithm [20].

K-node KSS methods applied to diffusion equations achieve O(Δt2K−1) accuracy in time,
and, given sufficient regularity of the coefficients, the 1-node KSS method can be shown to
also exhibit unconditional stability [19, 20]. In general, KSS methods provide a “best-of-both
worlds” compromise between the efficiency of explicit time-stepping methods and the stability
of implicit methods. These desirable properties are due to their use of quadrature rules that
are tailored to each Fourier coefficient of the solution, but this adaptivity opens the door to
other benefits as well. For example, Fourier coefficients can be computed in parallel, with the
only shared data being a low-dimensional Krylov subspace generated by the solution from the
previous time step.

KSS methods compute a Jacobi matrix corresponding to each Fourier coefficient, in con-
trast to traditional Krylov subspace methods (see, for example, [16, 17, 26]) that normally use
only a single Krylov subspace generated by the initial data or the solution from the previous
time step. While it would appear that KSS methods incur a substantial amount of additional
computational expense, that is not actually the case, because nearly all of the Krylov sub-
spaces that they compute are closely related by the wave number ω in the one-dimensional
case, or �ω = (ω1, ω2, . . . , ωn) in the n-dimensional case.

In fact, the only Krylov subspace that is explicitly computed is the one generated by
the solution from the previous time step, of dimension (K + 1), where K is the number of
block Gaussian quadrature nodes (which corresponds to 2K scalar nodes). In addition, the
averages of the coefficients of Lj, for j = 0, 1, 2, . . . , 2K−1, are required, where L is the spatial
differential operator. The overall computation can be carried out in O(N logN) operations
per time step using symbolic calculus [22, 24].

With these considerations, the algorithm for a single time step of a 1-node block KSS
method for solving (3.1), with appropriate initial conditions and periodic boundary conditions,
is as follows. The average of a function f(x) on [0, 2π] is denoted by f , and, as before, the
computed solution at time tn is denoted by un. The operator L is a linearization of the
operator on the right-hand side of (3.1), defined by Lu = ∇ · (g(∇un)∇u).
ûn = fft(un), v = Lun, v̂ = fft(v)
for each ω do

a11 = −g(2πω)2

a12 = v̂(ω)− a11û
n(ω)

a22 = 〈um, v〉 + a11|ûn(ω)|2 − 2Re [ûn(ω)v(ω)]
f2
ω = ‖un‖22 − |ûn(ω)|2
a12 = a12/fω
a22 = a22/f

2
ω

r = a22 − a11
b12 = |a12|2
d =

√
r2 + 4b12

s = sgn(r)
t = −2s/(sa21 + d)

w1 = 1/
√
1 + b12t2

w2 = a12tw1
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λ1 = a11 + b12t
λ2 = a22 − b12t
e1 = exp(λ1Δt)
e2 = exp(λ2Δt)
ûn+1(ω) = ûn(ω)(|w1|2e1 + |w2|2e2) + fωw1w2(e1 − e2)

end
un+1 = ifft(ûn+1)

The quantities a11, a12, and a22 are entries of a 2× 2 Hermitian negative definite matrix that
is the (1, 1) block of the block tridiagonal matrix produced by block Lanczos iteration. This
block has eigenvalues λ1 and λ2, which are the two scalar nodes for 1-node block Gaussian
quadrature. The quantities w1 and w2 are the first components of the normalized eigenvectors
corresponding to λ1 and λ2, respectively; they are used to obtain the entries of the single block
weight.

The above algorithm is first-order accurate in time, due to the use of one block Gaussian
quadrature node. Future work involves the generalization of existing higher-order KSS meth-
ods for linear PDEs to the nonlinear case by combination with methods based on exponential
integrators, such as those described in [31].

4. Numerical experiments. This section is devoted to extensive numerical experimenta-
tion. One of the advantages of the proposed model, unlike other models which are usually
specialized for one task (either image denoising or image deblurring), is its applicability to
both image denoising and deblurring problems. The two parameters δ and p in the model
determine the convex and concave regions. By tuning δ and p, those regions can be enlarged
or reduced, and this yields control over the forward or backward nature of diffusion. In all
experiments, gray-scale images of size 256× 256 are used. The emphasis is on the recovery of
noisy blurred images. Therefore, the most important results will be presented first. Later we
will also consider a variety of pure denoising and deblurring experiments which illustrate the
model’s performance as a function of the parameters δ, p. When it comes to blur, we use one
of the six types of blur in Table 1.

Table 1
The six different types of blurring kernels used in the experiments.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

�

�

3× 3 average kernel 5× 5 average kernel 3× 3 out-of-focus blur
Type I Type II Type III

� �

�

�

�

�
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4.1. Noisy blurred case. Experiments with noisy blurred images, which are the kind of
images on which model (1.2) proves to perform the best, are presented in this section. Clearly
the smoothing effect sought when denoising images is not easily reconciled with the need for
sharpening in the deblurring process. It follows that image recovery for images which are
simultaneously corrupted by noise and blur is a highly ill-posed problem. The parameter
δ > 0 of the model makes it possible, however, to walk the fine line between smoothing and
sharpening and yields a viable method for a reasonable recovery. Again, the fine tuning of
the exact location of the backward regime will enable this.

Blur and noise are assumed to be known. The noise is considered to be Gaussian white
noise with variance σ2. As for blur, the reader is referred to Table 1. The exact procedure
used to generate noise and blur is described in the following sections. To deal with blur, the
model needs to incorporate a priori knowledge about the blur, so an additional term is added
to (1.2) yielding

(4.1) ut = ∇ ·
[(

1

1 + |∇u|2 + δ|∇u|p−2

)
∇u

]
+ λK ′(u0 −Ku) .

This is the gradient descent flow of the modified functional F ,

(4.2) F (u) = Ep,δ(u) + λ

∫
Ω
|u0 −Ku|2(x)dx,

which includes a blurring operator K. Its adjoint operator, which appears in (4.1), is denoted
by K ′. Numerically, the equation

(4.3) ut = ∇ ·
[(

1

1 + |∇u|2 + δ|∇u|p−2

)
∇u

]
+ λk′ ∗ (u0 − k ∗ u)

is solved with u(·, 0) = u0. The blurring operator is taken in the form Ku = k ∗ u with
a blurring kernel k. The additional forcing term is needed not only in order to boost edge
sharpening, but also to recover fine scale texture. While better choices for the forcing term
may be found, the decision was made to use the simplest one in this paper. Throughout
all experiments λ = 30. The main advantage of the proposed model is the possibility of
tuning the character of the diffusion by varying the two parameters δ and p in (1.2). The first
integrand in (1.1) is the energy functional for the Perona–Malik equation and thus introduces
the backward regime [|∇u| > 1] needed for edge sharpening. The second and regularizing
integrand in (1.1), on the other hand, shrinks the backward regime to finally give (1.3). The
effects of varying δ and p will be studied in the following sections.

In the nth iteration, one solves (4.3) for one time step with a step-dependent δn. It is
natural to assume that the values of δn need adjustment depending on the amount of noise
and blur present in the image. It was experimentally determined that behaviors of δn/δ such
as the one chosen below would be appropriate. Basically, this choice makes the denoising
effect dominant during the initial iterations, when one aims for a significant noise reduction.
The deblurring effect then takes over and becomes more pronounced as more iterations are
performed. The starting value of δ is set at 0.02, whereas

δn =

{
(1 + n/10) δ for 1 + n/10 < 5,

max[0.1, 5 − (n − n1)/10] δ for n ≥ n1,D
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1426 PATRICK GUIDOTTI, YUNHO KIM, AND JAMES LAMBERS

where n1 satisfies 1 + n1/10 < 5 ≤ 1 + (n1 + 1)/10.
In numerical experiments σ = 5, 8 were used. With noise level σ = 5, δn was chosen as

indicated above, whereas when σ = 8, the choice was

δn =

{
(1 + n/10) δ for 1 + n/10 < 7,

max[0.1, 7 − (n − n1)/10] δ for n ≥ n1,

with n1 satisfying 1 + n1/10 < 7 ≤ 1 + (n1 + 1)/10.
In Figure 3, the graph of δn/δ for the first case is shown. Numerically this graph shape

resulted in better recovery than simply using a fixed high value of δ for a few iterations followed
by a lower δ value in the remaining iterations.

Figure 3. Graph of δn/δ.

Next recovery results obtained for noisy blurred images are presented for various noise
levels and blur types (cf. Table 1). In all experiments it was observed that both edge sharp-
ening and noise reduction were effectively taking place from the very first iteration. This is
somewhat contrary to the expectation that the smoothing effect would prevail while δn grows,
and the sharpening effect would be predominant while δn decreases. It was also observed that
noise tends to reappear, even as images get sharpened, if (4.3) is solved on a longer time
interval with a small δn.

In Figure 4, two types of blur were used: 3× 3 average blur of type I and 7× 7 Gaussian
blur of type V with noise level set at σ = 5 and σ = 8, respectively.

In Figure 5, a 5 × 5 out-of-focus blur of type IV was used with the noise level set at
σ = 5, 8, respectively.

Peak signal-to-noise ratio (PSNR) values for the experiments shown in Figures 4–5 are
given in Table 2.

Finally the proposed model is compared with other state-of-the-art algorithms. In Fig-
ure 6, a 15×15 Gaussian blur of type VI was used to blur the original image, and noise of level
σ = 3 was added. The output of the proposed model is compared with the frame-based algo-
rithm presented in [7]. Table 3 offers a side-by-side comparison of the corresponding PSNR
values. The proposed model delivers acceptable results in a shorter amount of time compared
to the algorithm in [7]. This proves that a PDE-based method can indeed be very efficient.D
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Figure 4. Top row: Noisy blurred images. Bottom row: Recovered images corresponding to the above
images. Left two columns: 3 × 3 average blur of type I and noise levels σ = 5, 8, respectively. Right two
columns: 7× 7 Gaussian blur of type V and noise levels σ = 5, 8, respectively.

Figure 5. Top row: Noisy blurred images with 5×5 out-of-focus blur of type IV and noise levels σ = 5 (left
two columns), σ = 8 (right two columns). Bottom row: Recovered images corresponding to the above images.
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Table 2
PSNR values for the experiments shown in Figures 4–5.

PSNR (noisy) PSNR (recovered)

Figure 4

Left two σ = 5 29.74 33.56
columns σ = 8 27.76 32.25

Right two σ = 5 28.52 32.16
columns σ = 8 26.96 31.21

Figure 5

Left two σ = 5 26.50 30.58
columns σ = 8 26.96 31.21

Right two σ = 5 26.72 29.67
columns σ = 8 25.62 28.90

Figure 6. Recovery from a noisy blurred image of size 512× 512 with 15× 15 Gaussian blur of type VI and
noise σ = 3. Left: Noisy blurred image. Right: Recovered image.

Table 3
Recovery experiment (15 × 15 Gaussian blur and additive noise σ = 3). Figure 6 was obtained using the

proposed model. The reader is referred to [7] for further details concerning the results used as a comparison.

PSNR Time(s)

Proposed model 24.33 13.2

Single-system (κ = 1, λ = 0.005) in [7] 24.64 20.7

Two-systems (κi = 1, λi = 0.005) in [7] 24.75 63.2

Linearized Bregman (κ = 1, λ = 0.01) in [7] 24.67 126.2

Analysis approach (μ = 0.1, λ = 0.05) in [7] 24.58 32.1

In Figure 7 another comparison is offered that emphasizes the efficiency of the proposed
model as a recovery tool for noisy blurred images.

The proposed method is also compared with ROF [29], ForWaRD [27], AKTV [30], BM3D
[4], and DSDM (direct sparse deblurring method) [25] in Table 4. The same comparison
experiments presented in [25] are borrowed and performed here.D
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Figure 7. Left to right: Noisy blurred image (3× 3 average blur of type I and σ = 5), recovered image from
[18], and recovered image with proposed model.

Table 4
Root mean square error (RMSE) for different methods.

Image ROF ForWaRD Proposed Method AKTV BM3D DSDM

Text1 65.43 62.75 41.85 60.68 69.87 14.60

Rose 6.68 5.75 5.24 4.90 4.83 5.62

Koala 9.80 8.98 8.05 8.45 7.97 8.64

Castle 14.23 12.82 13.79 12.51 11.77 13.62

Notice that the proposed method performs better than ROF and ForWaRD and that it
performs as well as the AKTV and DSDM methods but in a much shorter time. In particular,
DSDM and AKTV take much longer due to dictionary learning and weight updates, respec-
tively. Figure 8 depicts, from left to right, a noisy blurred image, the output image of AKTV,
and the output of the proposed method. While AKTV was able to recover a better image,
the proposed method computed its output (on the right) in only 26 seconds. This is to be
compared with the 6457 seconds it took AKTV to deliver its output image (center). In fact,
AKTV does not even recover an image of quality comparable to that of the proposed method
in hundreds of seconds in the experiment presented in Figure 8.

Figure 8. Left to right: Noisy blurred image of size 512×512 (5×5 Gaussian blur of σ = 1.5 and noise with
standard deviation 8.2); recovered image by AKTV [30] (RMSE = 6.12, PSNR = 32.39, elapsed time = 6457
seconds); recovered image with proposed model (RMSE = 6.79, PSNR = 31.48, elapsed time = 26 seconds).D
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1430 PATRICK GUIDOTTI, YUNHO KIM, AND JAMES LAMBERS

Figure 9. Ideal reference images of size 256× 256.

Finallly, a concrete application to satellite images is considered. While we had no access to
images taken from satellites, the same procedure described and implemented in [8] was followed
in order to simulate the typical degradation of satellite images, in order to appropriately
compare degraded and restored images. First, the same convolution kernels were used as the
ones described in [8] corresponding to two different satellites: SPOT 5 and a specific mode of
SPOT 1.

The two convolution kernels with corresponding levels of Gaussian noise in [8] are

ĥ1(ξ, η) = e−2γξ|ξ|−2γη |η|
(
sin(2πξ)

2πξ

)(
sin(2πη)

2πη

)(
sin(πη)

πη

)
, ξ, η ∈

[
− 1

2
,
1

2

]
,

where γξ = 1.505, γη = 1.412, and the standard deviation for the Gaussian noise is σ1 = 2.4,
and

ĥ2(ξ, η) = e−2γξ |ξ|−2γη |η|
(
sin(4πξ)

4πξ

)(
sin(4πη)

4πη

)
, ξ, η ∈

[
− 1

2
,
1

2

]
,

where γξ, γη are the same as before and the standard deviation for the Gaussian noise is
σ2 = 0.5. The two reference images shown in Figure 9 will play the role of ideally clean
images and will be compared to the restored images. These reference images are obtained by
applying a prolate blur function to oversampled sharp images followed by down-sampling. The
reader is referred to [8] for more details about the experiment. In this section, a comparison
is offered between the proposed method and the simple ROF model for image restoration.

Figure 10 shows two degraded images using (h1, σ1) and (h2, σ2). Figures 11 and 12 depict
the images restored by the ROF and the proposed model, respectively. For better visual
comparisons, a few smaller regions were chosen from the reference and from the restored
images. For (h1, σ1) the proposed model performs on par with the ROF model. However,
for (h2, σ2), when there is a significant amount of blur, the proposed model outperforms the
ROF model. It is known that the ROF model does not capture small details well, and these
experiments are a further confirmation of this. The proposed model, on the other hand, is
able to recover small details as long as they are characterized by big changes in the modulus of
the gradient. This is evident in the last two columns of Figures 11 and 12. The same columns,
however, also point to a potential susceptibility to artifacts of the proposed method.D
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Figure 10. Left column: Degraded images of size 256 × 256 with (h1, σ1). Right column: Degraded images
of size 256× 256 with (h2, σ2).

4.2. Noisy case. In the following experiments, Gaussian white noise with standard devi-
ation σ = 5, 10, 15, 25, 35, 50 is considered. This section and the next will illustrate how the
proposed model’s performance is affected by the choice of the two parameters δ, p. Given a
clean image f̃ , a noisy image f is generated in MATLAB by

f = f̃ + σ × randn(size(f)) .

Then, taking u0 = f , (1.2) is solved. As explained earlier, larger p and larger δ values tend
to shrink the backward regime, thus giving way to diffusion.

This is confirmed by numerical experiments. Values of p close to 2 are too strong to
preserve edge sharpness while denoising, even for a short amount of time. Hence, preference
is given to p values close to 1. As for the other parameters, δ = 0.2 and dt = 0.007 are used
throughout all of the experiments unless otherwise stated. In addition, since solving (1.2) for
a long period of time delivers a stationary solution, it is hoped that a significant noise removal
effect can be obtained by solving (1.2) for a short amount of time before sharp edges start
getting dull. This is exactly what is observed.

Figure 13 shows how the quality of the recovered images is affected by different choices of
the parameter p.D
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1432 PATRICK GUIDOTTI, YUNHO KIM, AND JAMES LAMBERS

Reference image I ROF, (h1, σ1) Our Model, (h1, σ1) ROF, (h2, σ2) Our Model, (h2, σ2)

Figure 11. For visual comparisons, the method used for recovery and the information of blur and noise are
noted at the bottom of each column.

As can easily be expected, numerical experiments (Figure 13) do confirm that larger p
values require smaller time steps for decent recovery, but still do not preserve edges as well as
smaller p values. This is apparent in Figure 14.

The image obtained with p = 1.05 is clearly better than the one obtained with p = 2
in that edges are sharper, i.e., better preserved. There does not, however, appear to be
monotonicity in p in this sense as smaller p values prove unable to remove noise compared to
larger p values. For this reason a good choice appears to be p = 1.1, a value which is used
throughout denoising experiments.

Next the noise removal capabilities of the proposed model are tested on images cor-
rupted with noise of varying intensity. Figure 15 depicts the results of experiments with
σ = 10, 15, 20, 25, 35, 50 obtained after 10, 15, 25, 30, 45, 55 iterations, respectively. Com-
putational time for every 10 iterations was approximately 3.6 seconds. In order to betterD
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Reference image II ROF, (h1, σ1) Our Model, (h1, σ1) ROF, (h2, σ2) Our Model, (h2, σ2)

Figure 12. For visual comparisons, the method used for recovery and the information of blur and noise are
noted at the bottom of each column.

Figure 13. Noise level is σ = 10, δ = 0.2, and dt = 0.005. Left to right: Noisy image and recovered images
with p = 1.1 and p = 1.3 after 20 iterations.

characterize the enhancement process, PSNR values are shown in Table 5. It is recalled that

PSNR(f0, f1) = 20 log10

(
255√

MSE(f0, f1)

)
.
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1434 PATRICK GUIDOTTI, YUNHO KIM, AND JAMES LAMBERS

Figure 14. Noise level is σ = 10. Best denoising results with p = 1.05 and p = 2, respectively.

Figure 15. δ = 0.2, p = 1.1, dt = 0.007. First row, from left to right: Noisy images with σ = 10, 15, 20.
Third row, from left to right: Noisy images with σ = 25, 35, 50. Second and fourth rows: Images recovered from
the corresponding noisy images right above.
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Table 5
PSNR values for the noisy and recovered images corresponding to the experiments shown in Figure 15.

Noise level σ = 10 σ = 15 σ = 20 σ = 25 σ = 35 σ = 50

PSNR (noisy) 28.14 24.66 22.12 20.16 17.25 14.15

PSNR (recovered) 33.70 31.79 30.01 29.09 27.44 26.15

Figure 16. δ = 0.2, p = 1.1, dt = 0.007. Top row, from left to right: Noisy images with σ = 10, 15, 25.
Middle row: Images recovered from the noisy images right above. Bottom row: Images recovered with a state-
of-the-art denoising algorithm, BM3D [4], for comparison.

Denoising experiments with various kinds of images follow below. These experiments
highlight how well the proposed model preserves sharp edges while removing noise. For
comparison purposes, images recovered with a state-of-the-art denoising algorithm, BM3D
[4], are also shown in Figures 16 and 17. Let us emphasize again that BM3D is by nature
superior to the proposed model for pure image denoising, but it is not applicable for recovery
from noisy blurred images.D
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Figure 17. δ = 0.2, p = 1.1, dt = 0.005. Top row, left to right: Noisy images with σ = 10, 15, 25. Middle
row: Recovered images corresponding to the noisy ones right above. Bottom row: Images recovered with a
state-of-the-art denoising algorithm, BM3D [4], for comparison.

4.3. Blurry case. Gray-scale images are considered along with six different types of blur-
ring kernels described in Table 1. While it is assumed that p ∈ (1, 2], the case p = 1 was also
tested for comparison purposes. It obviously corresponds to the use of TV as a regularizer
for Perona–Malik. In Figure 18, a blurring kernel of type I was used with δ = 0.002 and
dt = 0.06.

It is expected that larger p values would lead to more diffusion. This is indeed con-
firmed by the experiment. Table 6 contains the PSNR values computed every 50 itera-
tions. This gives some insight into the recovery process for the chosen values of p, i.e., for
p = 1, 1.01, 1.1, 1.3, 1.5, 1.7, 1.9, 2.

In the experiment, the nth iteration consists in solving (4.3) for one time step with δn = δ
n

in place of δ. It does not seem possible to achieve the same deblurring effect by solving
(4.3) alone with fixed δ because of the strong attraction of (1.2) toward constant stationaryD
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Figure 18. 3×3 average kernel, blur type I. Left to right and top to bottom: Blurry image; recovered image
with p = 2, p = 1.9, p = 1.01, p = 1; original image.

Table 6
PSNR values corresponding to the enhancement of the blurry image from Figure 18 with a PSNR of 26.49

for the blurry image. Computational time for 50 iterations is approximately 17 seconds.

Iterations p = 1 p = 1.01 p = 1.1 p = 1.3 p = 1.5 p = 1.7 p = 1.9 p = 2

50 34.75 34.72 34.65 34.48 33.45 30.99 27.24 25.96

100 36.00 35.97 35.94 35.70 34.95 32.85 28.75 26.98

150 36.67 36.65 36.60 36.39 35.70 33.81 29.77 27.74

200 37.14 37.15 37.06 36.88 36.22 34.46 30.52 28.35

250 37.47 37.49 37.41 37.22 36.60 34.92 31.11 28.86

300 37.73 37.76 37.70 37.50 36.89 35.28 31.58 29.30

solutions. In other words, diffusion seems to prevail even if it is quite small. Solving (4.3) using
a smaller δ in the nth iteration makes it possible to preserve the edge-sharpening property
of the Perona–Malik equation. This is true in spite of the fact that the proposed model is
well-posed.

Experiments confirm that any value of p close to 1 will be suitable for image deblurring.
Values of p larger than 1.5 lead to stronger diffusion, and smaller δ values need to be used in
this case in order to compensate for it. Loosely speaking, p and δ are inversely proportional.
It should be observed, however, that much smaller δ values do not consistently work well all
the time.

In Figure 19, a closer look is taken at the case p = 1.01. The output image after 10 itera-
tions is already a good approximation to the original image, and one can see that additional
iterations add more texture to the output images.D
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Figure 19. A closer look at the case p = 1.01 in Table 6. First row, from left to right: Blurry image, output
images after 10 and 20 iterations (PSNR values: 26.49, 31.20, 32.91). Second row, from left to right: Output
image after 30, 40, and 50 iterations (PSNR values: 33.76, 34.30, 34.72). Computational time for 10 iterations
amounts to approximately 3.6 seconds.

Next we consider other types of blurring kernels which are found in the list given earlier.
A value p ∼ 1 is fixed for the reason given before. In all experiments, the parameters δ = 0.002
and dt = 0.06 are fixed, whereas δn = δ

n is used in the nth iteration as before. Figure 20
shows experiments performed on images blurred with type II kernels, while Figure 21 depicts
experiments of blur type IV and Figure 22 experiments of blur type V. In all these experiments,
edges of the blurry images do get sharpened almost instantaneously (within the first few
iterations), while texture is recovered subsequently along with still sharper edges.

Furthermore, comparing the output boat images from Figures 20, 21, and 22, it is noticed
that there are more artifacts in the case of blur type II. It is checked numerically in Figure 23
that size and smoothness of blur are the determining factors for recovery quality. This is to
say that fewer artifacts are observed in smoother blur cases. While edges of the processed
boat image (blur type II case) do look sharper, more artifacts can be found in the image than
in the other two processed boat images. As for the second woman image, the recovered images
(blur types V and VI) look sharper and contain significantly fewer artifacts than the one with
blur type II.

Figure 24 depicts the results of a blind deconvolution. This is to determine how much the
edge-sharpening property of the model helps to reconstruct a better image in the absence of
any knowledge concerning the type of blur. Two images were used which were taken at night
with an ordinary digital camera. A simple guess for the blur present in the blurry images
without estimating the actual blur might be an out-of-focus blur or an average blur. As one
can notice, the blurry images do become sharper with the help of such a simple guess on the
blur, and texture is recovered.D

ow
nl

oa
de

d 
11

/1
3/

14
 to

 1
14

.7
0.

7.
20

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FORWARD-BACKWARD-FORWARD DIFFUSION IMAGE RECOVERY 1439

Figure 20. 5 × 5 average kernel of blur type II. Left: Blurry images, PSNR = 22.86 (woman) and 24.60
(boat). Middle: Output images, PSNR = 30.03 (woman) and 29.88 (boat) after 50 iterations. Right: Output
images, PSNR = 32.23 (woman) and 32.49 (boat) after 300 iterations.

Figure 21. 5×5 out-of-focus blur of type IV. Left: Blurry image, PSNR = 25.01 (woman) and 26.98 (boat).
Middle: Output, PSNR = 30.14 (woman) and 32.28 (boat) after 50 iterations. Right: Output, PSNR = 33.69
(woman) and 35.21 (boat) after 300 iterations.

D
ow

nl
oa

de
d 

11
/1

3/
14

 to
 1

14
.7

0.
7.

20
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1440 PATRICK GUIDOTTI, YUNHO KIM, AND JAMES LAMBERS

Figure 22. 7×7 Gaussian blur of type V. Left: Output, PSNR = 24.75 (woman) and 26.35 (boat). Middle:
Output, PSNR = 27.68 (woman) and 30.29 (boat) after 50 iterations. Right: Output, PSNR = 30.96 (woman)
and 31.54 (boat) after 300 iterations.

Figure 23. Comparison between the three blur types, II, V, and VI after 300 iterations. Left (type II):
PSNR = 32.49 (boat) and 31.98 (woman). Middle (type V): PSNR = 31.54 (boat) and 32.60 (woman). Right
(type VI): PSNR = 29.85 (boat) and 31.05 (woman).
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Figure 24. Blind deconvolution of night scenes, size reduced to 512 × 512. Recovered with a simple guess
of a radially symmetric blurring kernel.

As a final remark it is noted that numerical experiments indicate that better recovery is
achieved for blurring kernels with rounder support. The stability properties of the chosen
discretization of (1.2) seem to deteriorate if the extra term in (4.3) contains a blurring kernel
whose support significantly deviates from radial symmetry. Figure 25 with blurs of motion
type is evidence for this. Recovery indeed improves as soon as horizontal motion blur becomes
nonhorizontal. Table 7 shows the three blurring kernels used in Figure 25. However, we cannot
determine whether this is due to the model or is a shortcoming of the chosen implementation.
It seems that this is not only a defect of our proposed model, though, since it is also observed
in the ROF model, which is shown in the last row of Figure 25, where we applied the gradient
descent method to compute the images with parameters λ = 3, Δt = 0.001 fixed. All six
images in the last two rows were obtained by stopping at proper iterations before the imagesD
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Figure 25. Recovery results. Top row: Blurry images. Middle row: Recovered images by our proposed
model. Bottom row: Recovered images by the ROF model. Left column: 1× 5 horizontal motion blur. Middle
column: 3× 5 blurring kernel A in Table 7. Right column: 3× 5 blurring kernel B in Table 7.

Table 7
Three blurring kernels corresponding to the experiments in Figure 25.

� � � � �

�

�

� � � � � � � �� � � � �

� � �

� � �

1× 5 horizontal blur 3× 5 blurring kernel A 3× 5 blurring kernel B

deteriorated further. Nevertheless, the ROF model is not affected as much as our proposed
model is by the intermediate blur types A and B in Table 7. In particular, the ROF model
was stable in the case of the blurring kernel B with much bigger Δt = 0.1.D
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5. Conclusion. A new class of anisotropic forward-backward diffusion equations of Perona–
Malik type is proposed, and a comprehensive set of experiments are designed and run to prove
the usefulness of the model. The main feature of the model is that it exhibits both smoothing
and/or sharpening depending on the modulus of the solution gradient. In other words, the
model delivers smoothing in regions of small or large gradient modulus, whereas it delivers
sharpening in an intermediate region. This leads to good recovery from noisy blurred images.
Unlike the Perona–Malik equation, the model is well-posed and produces good quality images
from noisy blurred images faster than other state-of-the-art recovery algorithms. A noticeable
advantage of the model is its ability to allow for control over the desired smoothing and sharp-
ening effect. The parameter δ, in particular, controls the size of regions where smoothing or
sharpening takes place, whereas p controls the overall regularity of the solution, and values
p ∼ 1 seem to lead to optimal performance.
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