
Envelope-kinetic analysis of the electron kinetic effects on Raman backscatter and
Raman backward laser amplification
Min Sup Hur, Seung Hoon Yoo, and Hyyong Suk 
 
Citation: Physics of Plasmas (1994-present) 14, 033104 (2007); doi: 10.1063/1.2646493 
View online: http://dx.doi.org/10.1063/1.2646493 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/14/3?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Kinetic enhancement of Raman backscatter, and electron acoustic Thomson scatter 
Phys. Plasmas 14, 013104 (2007); 10.1063/1.2431161 
 
Inflation threshold: A nonlinear trapping-induced threshold for the rapid onset of stimulated Raman scattering
from a single laser speckle 
Phys. Plasmas 14, 012702 (2007); 10.1063/1.2426918 
 
Nonlinear backward stimulated Raman scattering from electron beam acoustic modes in the kinetic regime 
Phys. Plasmas 13, 072701 (2006); 10.1063/1.2210929 
 
Slowly varying envelope kinetic simulations of pulse amplification by Raman backscattering 
Phys. Plasmas 11, 5204 (2004); 10.1063/1.1796351 
 
Kinetic inflation of stimulated Raman backscatter in regimes of high linear Landau damping 
Phys. Plasmas 9, 1745 (2002); 10.1063/1.1471235 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Wed, 12 Nov 2014 01:01:07

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/79700267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1630139184/x01/AIP-PT/Pfeiffer_PoPArticleDL_110414/13265_PV_Product_Range_Banner.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Min+Sup+Hur&option1=author
http://scitation.aip.org/search?value1=Seung+Hoon+Yoo&option1=author
http://scitation.aip.org/search?value1=Hyyong+Suk&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.2646493
http://scitation.aip.org/content/aip/journal/pop/14/3?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/14/1/10.1063/1.2431161?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/14/1/10.1063/1.2426918?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/14/1/10.1063/1.2426918?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/13/7/10.1063/1.2210929?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/11/11/10.1063/1.1796351?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/9/5/10.1063/1.1471235?ver=pdfcov


Envelope-kinetic analysis of the electron kinetic effects on Raman
backscatter and Raman backward laser amplification

Min Sup Hur
Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon,
Kyongnam 641-120, Korea

Seung Hoon Yoo
Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon,
Kyongnam 641-120, Korea and Department of Physics, Chung-Ang University, Seoul 156-756, Korea

Hyyong Suka�

Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon,
Kyongnam 641-120, Korea

�Received 17 November 2006; accepted 19 January 2007; published online 8 March 2007�

The electron kinetic effects on Raman backscattering and Raman backward laser amplification were
analyzed. The analysis is based on the envelope-kinetic equations of a plasma wave, which are
composed of the conventional envelope equation of a fluid plasma and the kinetic term. One major
goal of this paper is to close the envelope-kinetic model by analyzing the kinetic term, which was
not fully covered in the previous work �M. S. Hur et al., Phys. Rev. Lett. 95, 115003 �2005��. It was
found that the closed envelope-kinetic equation in the nontrapping regime takes the same form as
the envelope equation of the fluid plasma used in the three-wave model. For the closure in the
trapping-dominant regime, the test particle technique is employed to calculate the kinetic term.
Results from the full kinetic and test particle simulations agree well with each other, while the latter
has a great advantage in computation speed. The frequency shift and resonance breaking by the
trapped particles are discussed with the help of a new diagnostic inserted in the full kinetic averaged
particle-in-cell code. © 2007 American Institute of Physics. �DOI: 10.1063/1.2646493�

I. INTRODUCTION

The Raman backward scattering �RBS� of a laser pulse
in a plasma has been an interesting issue due to its wide
applications as well as rich physics in itself. For instance, the
reflection of lasers in a plasma by RBS and the stimulated
Brillouin scattering �SBS� has been studied intensively in
connection with inertial confinement fusion research.1–6 One
of the major issues in those works was the kinetic effect on
the saturation or enhanced Raman reflectivity. It was found
there by kinetic simulations and analysis that the trapped
electrons reduce the linear Landau damping in a high tem-
perature plasma. The result was the enhanced RBS over the
prediction from the fluid model.5 It was also found that RBS
is saturated by trapping-induced secular phase shift between
the Langmuir wave and the lasers. Another important physics
was pointed out by Brunner et al., where they found that the
Langmuir wave breakup induced by the trapped particle in-
stability can lead to the saturation and periodic bursting of
the RBS.6

The importance of the similar kinetic effects7 could also
be found in the Raman backward laser amplifier �RBA�.8

RBA is a novel scheme of laser amplification using Raman
backscattering in a plasma, which was proposed to overcome
the material damage threshold of gratings in the conventional
chirped-pulse-amplification �CPA�.9 The major advantage of
the RBA is that it does not require stretch and recompression

of the laser pulse since the critical power the plasma can bear
�Pcr�17�2 /�p

2 GW� �Ref. 10� is much higher than those of
other gaseous or solid materials. The idea of RBA has been
investigated by theories and simulations8,11–13 and it also has
been realized successfully in many experiments.14–16 As in
the inertial confinement fusion system mentioned above,
RBA is also influenced considerably by the kinetic effects
such as the Langmuir wave breaking and particle trapping.
From the full kinetic simulations, it was found that the pump
depletion can be significantly reduced7,11,12 when the RBA is
operated over the Langmuir wave breaking limit. Recently it
was shown from detailed study of the electron phase space
that not a complete wave breaking but just a small fraction of
trapped particles inside the unbroken plasma wave could
lead to a much earlier RBS saturation.7 The most important
feature of that work is the derivation of the envelope-kinetic
equation for a plasma wave, which is composed of the usual
envelope equation used in the fluid three-wave model and a
new kinetic term.

The analysis of the trapping effects in the previous
work,7 however, was not fully closed in the sense that the
kinetic term was measured from independent simulations,
not from the model itself. In this paper we present the test
particle method to complete the envelope-kinetic model of
the plasma wave. This method is based on using a small
number of test particles to calculate the kinetic contribution.
With the kinetic term computed at a given time step from the
test particles, the electric field is upgraded to the next time
step by solving the envelope-kinetic plasma equation. Thena�Electronic mail: hysuk@keri.re.kr
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the test particle motion is determined by the electric field and
the ponderomotive force of the lasers. It will be shown that
the test particle simulations agree well with the full kinetic
simulations. In addition to closing the model in the trapping
regime, we present a detailed analysis of the kinetic term in
the nontrapping regime. The envelope-kinetic plasma equa-
tion is generalized to higher harmonic envelopes. The ther-
mal shift of the Langmuir wave frequency and the linear
Landau damping are derived from the linear analysis of the
kinetic term. Its third-order expansion is found to be can-
celled by the harmonic of the same order. The resultant
closed form of the envelope-kinetic equation in the nontrap-
ping regime is the same as what is used in the conventional
three-wave fluid model. This result also implies that there
should be no nonrelativistic frequency shift in the plasma
wave frequency at least up to the third order when the par-
ticle trapping is not involved.

This paper is organized as follows: In Sec. II a general
envelope-kinetic plasma equation is derived. It is followed
by analysis of the kinetic term in the nontrapping regime in
Sec. III. In Sec. IV the effects of the trapped particles on the
RBA are investigated. We also present the test particle
method to describe the kinetic term. Finally the summary is
given in Sec. V.

II. ENVELOPE-KINETIC EQUATIONS
OF A PLASMA WAVE

Envelope-kinetic equations for lasers are commonly
used in free-electron-laser �FEL� simulations. Similar equa-
tions were applied to RBS problem first by Shvets et al. in
Refs. 17 and 18 to study the laser amplification in the super-
radiant regime. The equations take the following forms:

�a1

�t
+ c

�a1

�z
= − i

�p
2

2�1
a2�e+i�j� ,

�1�
�a2

�t
− c

�a2

�z
= − i

�p
2

2�2
a1�e−i�j� ,

where a1,2 are the envelopes of the seed and pump lasers
respectively, �1,2 the laser frequencies, � j is the ponderomo-
tive phase of the jth particle defined by � j =−�k2+k1�zj

− ��2−�1�t. The position of jth particle, zj, is a function of
time. Note that we are considering the case where the seed
laser is propagating to the right and the pump laser in the
opposite direction. Equations �1� were combined with the
conventional particle-in-cell �PIC� method to produce the av-
eraged particle-in-cell �aPIC� code for the kinetic simulations
of RBS and the laser amplification.13

In this paper, we derive the envelope-kinetic equation for
a nonrelativistic one-dimensional plasma wave. Extending
the previous work,7 the derivation is generalized to higher
harmonics of the plasma wave. The starting equations are the
Poisson equation and the harmonic expansion of the electric
field. When there is a collection of point charges �electrons�
as a source term, the Poisson equation takes the following
form:

�Ez

�z
= −

e

�0
�

j

��z − zj� , �2�

where the Dirac delta function represents the point charge
density of each electron located at zj. The electric field is
expanded by harmonics as

Ez =
1

2�
n

Ên�t�ein� + c.c., � = kz − �t , �3�

where k and � are the wave number and frequency of the

plasma wave, respectively. The nth harmonic envelope Ên

can be obtained by inserting Eq. �3� into the Poisson equa-
tion �2� and spatially averaging over a plasma wavelength �
weighted by e−in�. Then

ik

2
nÊn = −

e

��0
�

j

e−in�j , �4�

where � j =kzj −�t and the index j goes over the particles
inside a plasma wavelength, i.e., k 	zj −z 	 ��. In the deriva-
tion of Eq. �4�, the averaging operation on the envelope was

neglected from the assumption that the envelope Ên is a
slowly varying function of time and space. A dimensionless
variable Fn is defined by the nth envelope normalized by the

wavebreaking limit of a cold plasma, Fn
eÊn /mc�p. Then
from Eq. �4�

Fn = i
2�p

nck
�e−in�j� , �5�

where �p is the cold plasma frequency. It is assumed that the
wave frequency, which is the same as the driving frequency,
is very close to �p �almost resonant driving�. The angular
bracket is defined by �Qj�=� jQ /N0, where N0=np� is the
initial �unperturbed� number of electrons in a plasma wave
bucket in the one-dimensional limit.

To derive the equation of Fn, we start from the first and
second time derivatives of Fn�z , t�,

�Fn

�t
= 2�p�� je

−in�j� + in�Fn, �6�

and

�2Fn

�t2 = 2�p��̇ je
−in�j� − 2inck�p�� j

2e−in�j�

+ 2in��p�� je
−in�j� + in�

�Fn

�t
, �7�

where � j =v j /c and v j =dzj�t� /dt is the jth particle velocity.

The acceleration �̇ j can be obtained from the equation of
motion of a single electron

�̇ j = −
e

mc
E�zj,t� + P�zj,t� , �8�

where P�zj , t� is any kind of a driving force. Later in Sec. IV
where RBS and the RBA are addressed, P�zj , t� will be re-
placed by the ponderomotive force of the two counterpropa-
gating lasers. From Eqs. �7� and �8� and eliminating
�� je

−in�j� using Eq. �6� yields
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�2Fn

�t2 = −
2e�p

mc
�E�zj,t�e−in�j� + 2�p�P�zj,t�e−in�j�

− 2inck�p�� j
2e−in�j� + n2�2Fn + 2in�

�Fn

�t
. �9�

The averaged electric field term in Eq. �9� is, from Eqs.
�3� and �5�,

�E�zj,t�e−in�j� = − i
mc2k

4e �
n�=1

n−1

�n − n��Fn�Fn−n� +
mc�p

2e
Fn

− i
mc2k

4e
n �

n�=1

	

Fn+n�Fn�
* . �10�

From Eqs. �9� and �10�, the equation of Fn becomes

�Fn

�t
+

i

2n�
��p

2Fn − n2�2Fn� −
ck�p

�
�� j

2e−in�j� +
i

2n�

�2Fn

�t2

= −
ck�p

4n�
�

n�=1

n−1

�n − n��Fn�Fn−n� −
ck�p

4�
�

n�=1

	

Fn+n�Fn�
*

+ i
�p

n�
�P�zj,t�e−in�j� . �11�

The second term in the left-hand side �LHS� of Eq. �11�
describes the detuning between the driving frequency � �and
its harmonics� and the characteristic frequency �p of an un-
driven plasma wave. The third one in the LHS is the kinetic
term which reflects the kinetic features such as thermal ef-
fect, Landau damping, and particle trapping. The second
time derivatives are generally neglected by assuming a
slowly varying envelope.

We pursue up to n=2 of Eq. �11�. For n=1 Eq. �11�
becomes

�F1

�t
+ i��F1 −

ck�p

�
�� j

2e−i�j�

= −
ck�p

4�
F2F1

* + i
�p

�
�P�zj,t�e−i�j� , �12�

where ��=�p−�. We neglected ��2 assuming a very small
mismatch between the driving and the plasma frequency. We
keep the third harmonic because the leading order of the
kinetic term for a cold plasma is the third in the nontrapping
regime. If the driving force P�zj , t� is replaced by the pon-
deromotive beat wave by two counterpropagating lasers, Eq.
�12� becomes the same as the result in Ref. 7. Similarly for
n=2,

�F2

�t
+

i��p
2 − 4�2�
4�

F2 −
ck�p

�
�� j

2e−2i�j�

= −
ck�p

8�
F1

2 −
ck�p

4�
F3F1

*. �13�

The external driving P�zj , t� is omitted from Eq. �13� assum-
ing the case where the high harmonic component in the driv-
ing force is only slowly varying. Note that no assumption on
the plasma temperature was made in obtaining Eqs. �12� and

�13�. Thus these envelope-kinetic equations are valid for
general temperature plasmas including Raman backward la-
ser amplification and inertial confinement fusion plasmas. In
the following sections, we focus more on the Raman back-
ward amplification, where the thermal velocity of the plasma
is comparable to or less than the phase velocity of the plasma
wave.

III. ANALYSIS OF THE KINETIC TERMS
IN THE NONTRAPPING REGIME

It is useful to have some rough estimations of the kinetic
term before doing any rigorous analysis. The velocity can be
expanded as �=�t+�1+�2+¯, where �t represents the
thermal velocity �or a beam component, which is not consid-
ered in this paper�. Other terms represent the oscillations by
the electric field of the plasma wave and by the ponderomo-
tive force of the lasers. Note that the order of �t does not
always need to be larger than those of �n’s. The kinetic term
for n=1 is estimated by �� j

2e−i�j�����t,j
2 �+2��t,j�1,j�

+ ��1,j
2 �+¯��e−i�j����t

2+ 	F1	2�F1, where we assumed

��t�1�� �̄t�̄1�0 for a symmetric initial velocity distribution
and used �1�F1. The estimation combined with i��F1 in
Eq. �12� gives the total detuning ��total���p+�t

2+ 	F1	2�
−�=
p−�. The contribution of �t

2 to the modified plasma
frequency 
p corresponds to the thermal shift in the Lang-
muir wave frequency, which is described by �L��p�1
+1.5k2vt

2 /�p
2�. The second-order frequency modification

from 	F1	2 seems like a nonlinear shift in the plasma fre-
quency, which was once controversial in the past.19–22 The
conclusion was that there is no nonlinear frequency change
other than the relativistic effect. Our formulation is also con-
sistent with this conclusion; it will be shown later that 	F1	2
in 
p is cancelled by F2 term in the RHS of Eq. �12�.

In this section, the exact form of the thermal shift
�1.5k2vt

2 /�p
2� is derived from the kinetic term. To do this, we

use the velocity distribution function and the Vlasov equa-
tion. During the derivation, the linear Landau damping coef-
ficient is also obtained. The second harmonic F2 is repre-
sented in terms of F1, whose result is the same as what can
be obtained from the fluid equations. The third-order terms
are also investigated, and they are shown to be cancelled by
each other.

A. Thermal Langmuir frequency and Landau damping

For the particle distribution function g�z ,� , t�, the ki-
netic term can be represented by

−
ck�p

�
�� j

2e−in�j� = −
ck�p

��
�

�

dz� d�g�z,�,t��2e−in�,

�14�

where � is the plasma wavelength. The velocity distribution
g�z ,� , t� is assumed to be expanded as

g�z,�,t� = g0��� + 1
2 �ĝ1���ei� + c.c.�

+ 1
2 �ĝ2���e2i� + c.c.� + O�3� . �15�

Note that the amplitudes g0 and ĝ1,2 do not have any depen-
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dence on z, since the integration is performed over one
plasma wavelength on which the change in the plasma wave
envelope can be neglected by the slowly varying assumption.
From �ein�dz=0 for n�0, the first and second kinetic terms
are represented by

−
ck�p

�
�� j

2e−i�j� = −
ck�p

2�
� ĝ1����2d� �16�

and

−
ck�p

�
�� j

2e−2i�j� = −
ck�p

2�
� ĝ2����2d� . �17�

The amplitudes ĝ1 and ĝ2 are determined by the linearized
and the second-order Vlasov equations. Then

ĝ1 = i�pF1
��g0

� − ck�
�18�

and

ĝ2 = −
�p

2

4
F1

2 ��
2g0

�� − ck��2 −
ck�p

2

4
F1

2 ��g0

�� − ck��3

+ i
�pF2

2

��g0

� − ck�
. �19�

Note that the acceleration by the ponderomotive force was
not included in Eqs. �18� and �19�. This is valid in the Raman
regime, where the ponderomotive driving is much smaller
than the electrostatic force.

The kinetic term with n=1 is calculated from Eqs. �16�
and �18�. Using the Plemelj formula, we obtain

−
ck�p

�
�� j

2e−i�j� = −
ick�p

2F1

2�
�� d�

�2��g0

� − ck�

+
i��2

c3k3 	��g0	�=�/ck�
= ick�p

2F1� d�
g0�

�� − ck��2

−
ic2k2�p

2F1

2�
� d�

g0�2

�� − ck��2

+
���p

2F1

2c2k2 	��g0	�=�/ck. �20�

By expanding the denominator �1/ ��−ck��2� up to the
square of �, Eq. �20� is reduced to

−
ck�p

�
�� j

2e−i�j� = i
1.5�p

2c2k2F1

�3 � d�g0�2

+
���p

2��g0

2c2k2 F1. �21�

With a Gaussian distribution g0���=c�m /2�T
�exp�−c2m�2 /2T� in Eq. �21� the equation of F1 in the non-
trapping regime becomes

�F1

�t
+ i��F1 + i

1.5k2T

�pm
F1 +

��p
3

2c2k2 �	��g0	�=�/ck�F1 + K3

= −
ck�p

4�
F2F1

* + i
�p

�
�P�zj,t�e−i�j� . �22�

We neglected T�� /�p in Eq. �22�. The term involving T in
Eq. �22� is the thermal part of the Langmuir wave frequency
and the last term is the linear Landau damping coefficient. K3

is the third-order expansion of the kinetic term, which will be
given later.

B. Equation of F2

The second �n=2� kinetic term in the nontrapping re-
gime can be expanded from Eqs. �17� and �19� in the same
manner as the n=1 case. After some algebra,

�� j
2e−2i�j� = − � �p

2

4�2 +
27c2k2�p

2

8�4 � g0�2d��F1
2

− i
3ck�p

4�2 F2� g0�2d�

+
��p�2

4c3k3 �	��g0	�=�/ck�F2. �23�

For a Gaussian velocity distribution and from Eqs. �13� and
�23�, the equation of F2 in the nontrapping regime becomes

�F2

�t
+ i�� �p

2

4�2 − 1�F2 + i
3k2�p

2T

4�3m
F2

−
��p

2�

4c2k2 �	��g0	�=�/ck�F2 + K4

= −
ck�p

8�
�1 +

2�p
2

�2 �F1
2 −

27ck3�p
3T

8m�5 F1
2 −

ck�p

4�
F3F1

*,

�24�

where K4 is the fourth-order expansion from the kinetic term
�not derived here�.

The second harmonic is not directly driven by the exter-
nal force. Due to �tF2��F2 in the slowly varying limit, a
quasisteady state of F2 is assumed. For the low temperature
plasma, the linear Landau damping is negligible. The fourth-
order terms, K4 and F1

*F3, are not considered in the deriva-
tion of the second-order equation. Using �=�p−�� and
keeping up to the linear order of T and ��, Eq. �24� becomes

�1 −
8��

3�p
−

k2T

m�p
2�F2 = − i

ck

2�1 − 2��/�p�

��1 −
2��

3�p
+

9k2T

m�p
2 �F1

2.

Dividing both-hand-sides by �1−8�� /3�p−T /�p
2� yields
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F2 = − i
ck

2�p

�1 −
2��

3�p
+

9k2T

m�p
2 �

�1 −
14��

3�p
−

k2T

m�p
2�F1

2

� − i
ck

2�p
�1 +

4��

�p
+

10k2T

map
2 �F1

2. �25�

C. The third-order expansion of the first
kinetic term

Here we derive K3 in Eq. �22�, i.e., the third-order ex-
pansion of the kinetic term for n=1. From this calculation it
will be confirmed that there exists no nonrelativistic source
of plasma frequency shift at least up to the second order.
Instead of pursuing g3 from the Vlasov equation, which re-
quires a massy algebra, we take the product of separate ex-
pansions of � and � in �� j

2e−i�j�. To do this we assume a low
temperature regime where the thermal velocity is much
smaller than the oscillation velocity. When the thermal effect
is negligible, the n=1 kinetic term is lead by the third order.
Thus it is enough to consider only the linear terms of � and
�. From the equation of motion,

� j = −
iF1

2
ei�j0 + c.c., �26�

where � j0=kzj0−�t and zj0 the initial position of the jth
particle. The position of the jth particle can be written as

zj =zj0+ j�zj0 , t�. The displacement  is, from c�= ̇,

 =
cF1

2�p
ei�j0 + c.c. �27�

From Eqs. �26� and �27�, K3 becomes

K3 = −
ck�p

�
��� j

2e−i�j��3rd

�
ck�p

4�
��F1ei�j0 − c.c.�2�1 − ik�zj0,t��e−i�j0�

= −
ic2k2

8�
��F1

2ei�j0 − 2	F1	2e−i�j0 + F1
*2e−3i�j0�

��F1ei�j0 + F1
*e−i�j0�� =

ic2k2

8�
	F1	2F1. �28�

Note that use was made of �eni�j0�=0 for n�0. Using Eq.
�25� with ��F1

2���F1 and the thermal effect neglected in
the low temperature limit, the third-order term in Eq. �22�
can be represented by ic2k2 /8�	F1	2F1, which is the same as
Eq. �28� and thus cancelled.

In the steady state where the driving and the time deriva-
tive terms disappear, Eq. �22� becomes ��p−�
+1.5k2T /�pm�F1=0. In the undriven case, � can be inter-
preted as the characteristic frequency of the plasma wave.

Thus the disappearance of every third-order term means that
the steady state plasma wave frequency is not modified by
the nonlinear harmonics. In the driven case also, this is valid
as long as the electric field is dominant over the ponderomo-
tive driving �Raman regime�. Then the equation of F1 in the
nontrapping regime takes the following form:

�F1

�t
+ i��F1 + i

1.5k2T

m�p
F1 = i

�p

�
�P�zj,t�e−i�j� . �29�

Equation �29� is the closed form of the envelope-kinetic
equation in the nontrapping regime, which takes the same
form as the envelope equation of the plasma wave in the
three-wave model.

Note that the cancellation of the third-order terms, K3

and F1
*F2 in Eq. �22� is exactly true for cold plasmas. For

nonzero temperature, the fluid calculation suggests a second-
order frequency shift �2 proportional to 	F1	2c2k4vt

2 /�p
3,

where vt is the thermal velocity of the plasma. The factor of
this term depends on the plasma distribution: for a waterbag
model, it is 15/4.23–25 For a Gaussian distribution, the fluid
equation gives approximately 9/8. The second frequency
shift is generally small due to its dependence on the ampli-
tude square, but can be comparable to the linear thermal
effect 1.5k2T /�pm near the wavebreaking F1�1. In that
case, however, �2 influences just the peak region of the driv-
ing lasers, whose bandwidths are wide enough to cover the
additional frequency shift. Furthermore, the wavebreaking
occurs with much lower plasma wave amplitude �F1�1�
�Ref. 23� for a thermal plasma. Hence, the effect of the sec-
ond frequency shift is even more reduced. It can be proved
from three-wave simulations that the second frequency shift
is negligible. Figure 1 shows the numerical solution of the
fluid three-wave model,

FIG. 1. Numerical solutions of the three-wave model with �solid� and with-
out �dotted� the second-order frequency shift w2. Here ��0=1.5k2T /m�p

the linear thermal shift of Langmuir wave frequency, and �2 is the second-
order frequency shift.
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�a1

�t
+ c

�a1

�z
= −

�p

2
a2F1

*,
�a2

�t
− c

�a2

�z
=

�p

2
a1F1, �30�

and

�F1

�t
+ i��F1 + i�1.5k2T

m�p
+ A

c2k4T

m�p
3 	F1	2�F1

= −
c�k1 + k2�

4
a1

*a2. �31�

We used the pump amplitude a2=0.008 and the seed a1

=0.001. The results with A=0 �w2=0� and A=2 are com-
pared in Fig. 1. Though the ratio of �2 to the linear Langmuir
frequency shift 1.5k2T /m�p reaches up to 0.6, the resultant
seed laser profiles show just a minor difference.

IV. TRAPPING EFFECT ON RBS

In this section, we focus on the effects of trapped elec-
trons on Raman backscattering and the laser amplification
�Raman backward amplifier, RBA�. Three different ap-
proaches are taken for the analysis of the kinetic term: ki-
netic simulations, a heuristic theory, and the test particle
method. For self-consistent simulations of the trapping ef-
fects, we used the aPIC code,13 where the plasma is treated
fully kinetically and the lasers are calculated from the
envelope-kinetic laser equations �1�. For comparisons, the
fluid three-wave simulations with Eqs. �30� and �31� are also
presented. The results of the three-wave model agree excel-
lently with kinetic simulations as long as the pump intensity
is low enough to keep the plasma wave under the wave-
breaking limit.11–13 The limit of the pump amplitude to avoid
the wavebreaking is roughly a2�0.005 for �p /�laser�0.1.
Figure 2 shows the aPIC simulation and the three-wave
model for a2=0.004 and Te=5 eV. It is showing the typical
behavior of the three-wave model;8 the seed is initially
broadened �Fig. 2�a�� in the linear regime and shortened �Fig.
2�b�� as the pump is depleted. The electron trapping near the
peak of the seed is very minor �Fig. 2�c��.

When the pump intensity is high enough to induce se-
vere particle trapping, the fluid and kinetic simulations gen-
erate quite different results. Figure 3 represents simulations
in such a regime, where we used the pump amplitude a2

=0.02 and plasma temperature Te=50 eV. Note that the en-
hanced pump intensity and plasma temperature �i.e., en-
hanced over the case of Fig. 2� help efficient particle trap-
ping. The discrepancy between the aPIC simulation and the
three-wave calculation is not large in the early stage of the
amplification, where trapping is rarely observed. However at
t=1.4 ps when electrons are severely trapped, the amplifica-
tion obtained from the aPIC is much lower than that from the
three-wave model. The suppression of the amplification is
closely related to the broken resonance between the driving
�the beat of the lasers� and the plasma wave frequencies. In
the nontrapping regime, it was shown that the kinetic term

generated just a thermal shift of the Langmuir frequency.
When the electron trapping is significant, the kinetic term
generates another frequency downshift via a small fraction of
trapped electrons.

To confirm the remark by simulations, a special diagnos-
tic was inserted into the averaged PIC code to monitor
��trap /�p during the amplification process. The first har-

FIG. 2. Laser amplification in the nontrapping regime. The pump amplitude
is a2=0.004 and the initial seed amplitude is a1=0.000942. The wavelengths
of the seed and pump are �1=0.873 �m and �2=0.8 �m, respectively. The
plasma density is ne=1.2�1019 cm−3 and the temperature of the plasma is
5 eV. �a� In the early stage of the amplification, the seed is amplified and
broadened. �b� The amplification is in the nonlinear regime �the �-pulse
regime�. �c� The electron phase space near the peak of the seed in �b�.
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monic amplitude F1 is factored out from the kinetic term as

−
ck�p

�
�� j

2e−i�j� = −
ck�p

�	F1	2
�F1r�� j

2 cos � j�

− F1i�� j
2 sin � j��F1

+ i
ck�p

�	F1	2
�F1i�� j

2 cos � j�

+ F1r�� j
2 sin � j��F1, �32�

where F1r,i represent the real and imaginary parts of F1, re-
spectively. The factor of F1 in the imaginary part of Eq. �32�
is the frequency shift �
, which includes both the thermal
and trapping effects �1.5k2T /m�p and ��trap, respectively�.
Then

�
 =
ck�p

�	F1	2
�F1i�� j

2 cos � j� + F1r�� j
2 sin � j�� . �33�

The real part of Eq. �32� is a damping �F1, where � is de-
fined by

� = −
ck�p

�	F1	2
�F1r�� j

2 cos � j� − F1i�� j
2 sin � j�� . �34�

Note that the real part is caused by the Landau damping and
the energy loss by the plasma wave into the acceleration of
the trapped particles. Figure 4 shows �
 and � measured
from the simulation, where the same parameter set as Fig. 3
was used. In the early stage of the amplification �Fig. 4�a��,
where the trapping has not occurred yet, � is almost zero and
�
 is very close to the thermal correction of the Langmuir
frequency as can be expected from the linear analysis in the
previous sections. As trapping occurs �Fig. 4�b��, a conspicu-
ous decrease of �
 is observed with 25% drop at its maxi-
mum. The phase spaces at different locations show that the
frequency shift has a strong correlation with the particle
trapping.

The trapping-induced frequency shift can also be esti-
mated heuristically as follows. The contribution from the
trapped particles to the kinetic term can be written as

�ck�� j
2e−i�j��trap � ck�� j

2��e−i�j� = i�
c2k2

2�p
�trap

2 F1, �35�

where �trap is the maximum velocity of the particles trapped
and accelerated inside a plasma wave trough and � is the
fraction of the trapped particles near the maximum velocity,

FIG. 3. Laser amplification in the trapping regime. The
pump amplitude is a2=0.02. The laser wavelengths and
the initial seed amplitude are the same as in Fig. 2. The
plasma density and temperature are ne=1.05
�1019 cm−3 and 50 eV, respectively. �a�, �b� The am-
plifications at t=0.57 ps and 1.4 ps, respectively. �c�,
�d� Corresponding electron phase spaces near the peaks
of the seeds.

FIG. 4. Measurement of �
 �Eq. �33�� and � �Eq. �34�� from the aPIC
simulation. The simulation parameters are the same as in Fig. 3.
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typically less than 5%. We used Eq. �5� to obtain Eq. �35�.
From the equation of motion �̇��pF1, the trapped electrons
get the energy of �2=4�pF1 /ck in the frame comoving with
the phase velocity of the plasma wave ���=�p /ck�. This
corresponds to the maximum velocity in the lab frame

�trap � �� + 2��p

ck
F1. �36�

Equation �35� can be set as i��trapF1, where ��trap is the
frequency shift by the trapped particles. From Eqs. �35� and
�36�,

��trap

�p
�

�

2
�1 + 4�F1

��

+
4F1

��
� . �37�

The trapping occurs near the wavebreaking limit, where the
amplitude of the electron velocity is larger than the phase
velocity of the plasma wave. Thus the phase velocity in Eq.
�37� can be approximated as �����F1. From an empirical
parameter ��0.05 along with this approximation, the fre-
quency shift by the trapped particles are found to be about
20% of the plasma frequency ���trap /�p�0.2�, which is
consistent with the simulation in Fig. 4.

In the previous analysis of the trapping effects,7 the
envelope-kinetic model for the plasma wave was established
but it was not fully closed. In Sec. III, the closure in the
nontrapping regime was presented from the linear analysis of
the kinetic term. We found that the conventional three-wave
fluid model is exact up to the third order in this regime.
Analytic theory which predicts the fraction � and other fac-
tors in Eq. �37� more exactly is expected to be published
soon.25 In this paper, we suggest the test particle method to
numerically close Eq. �12�. In this scheme, we assume that
the kinetic term can be split into the thermal frequency shift,
third-order contribution, and the trapping terms. The first two
terms were investigated in Sec. III, which are assumed to be
scarcely modified by the trapped particles because the frac-
tion of the trapped particles is very small and main bulk of
the plasma remains untrapped. Then Eq. �12� can be rewrit-
ten as

�F1

�t
+ i��� +

1.5k2T

m�p
�F1 + Kt = −

c�k1 + k2�
4

a1
*a2, �38�

where the trapping portion of the kinetic term Kt is
defined by

Kt = −
ck�trapped

� j
2e−i�j

N
. �39�

In Eq. �39�, N is the total number of particles in �b. The
summation goes over the trapped particles only. Note that in
Eq. �38� the third-order contribution from the kinetic term
was used to cancel out ck�pF2F1

* /4� in Eq. �12� and the
general driving force P�zj , t� was replaced by the pondero-
motive force of the two counterpropagating lasers. Now let
us describe the outline of the test particle scheme as follows.
The equations to be solved are Eqs. �30� and �38�, which are
the same as the three-wave fluid equations except the trap-
ping term Kt. To include Kt self-consistently in the numerical

solution of Eq. �38�, we employ a small number of test par-
ticles �electrons�, which follow the equation of motion but do
not generate any electric field. Every time step the trapping
term Kt is calculated from the test particles, and the renewed
value of Kt is used again to upgrade the electric field by
solving Eq. �38�. Then the test particles are pushed to the
next time step by the new electric field and the ponderomo-
tive force of the lasers.

Though the lasers are driven only by the first harmonic
F1, the particles follow the full harmonics of the electric
field. The effects of higher harmonics can be important in the
sense that the trapping can be enhanced by the sharp nodes
generated by the high frequency components and also the
particle acceleration inside the plasma wave should be dif-
ferent from a single harmonic case. In our simulations, the
electric field is pursued up to the third order

eE

mc�p
=

1

2
�F1ei� + F2e2i� + F3e3i�� + c.c., �40�

where F1 and F2 are calculated from Eqs. �25� and �38�,
respectively, and F3 is determined by F3=−3c2k2F1

3 /8�p
2.

The third harmonic F3 was obtained from the simple expan-
sion of the fluid equations.

The test particle scheme is numerically advantageous,
because the number of simulation particles can be much
smaller than in the full kinetic aPIC simulations. This is pos-
sible due to the fact that only the electrons in the tail of the
Gaussian velocity distribution are relevant to the trapping.
We do not need to load the whole N particles in a beat wave-
length, but have only to follow a much smaller number of
particles located in the high velocity region. In the simula-
tions presented in this paper, we loaded particles whose ve-
locities are between −0.5� and −3.0� for the Gaussian ve-
locity distribution exp�−v2 /�2�. In this case the number of
test particles per a beat wavelength corresponds to 0.25N.
Note that the absence of the Poisson solver make the test
particle simulation even faster. Typical gain in the computa-
tion speed over the aPIC simulation was about 10.

Some benchmarkings of the test particle scheme were
made against the full aPIC and fluid simulations. Figure 5
shows the comparison of the aPIC, test particle, and three-
wave simulations for a strong pump case a2=0.02. The test
particle simulation reproduces well the leading peak of the
amplified seed laser. In the tail part of the seed, the aPIC
simulation shows that the plasma wave is destroyed com-
pletely by the wavebreaking and the interaction between the
three-waves stops. In the test particle model, however, such a
wave breaking cannot be properly described, which is
thought to be the source of the discrepancy in the tail. Figure
6 represents a similar simulation with a weaker pump laser
�a2=0.01�. The trapping is still dominant and the aPIC re-
sults are much lower than the fluid calculation. The test par-
ticle simulation shows a good agreement with the aPIC
results.

V. SUMMARY

The electron kinetic effects on the RBS were studied in
the framework of the envelope-kinetic model of a plasma
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wave. The envelope-kinetic equations were derived for gen-
eral harmonics of the plasma wave. The equation for the first
harmonic envelope F1 takes a form similar to what is used in
the three-wave fluid model but a kinetic term is introduced.
One major goal of this paper was to close the envelope-
kinetic equation of the plasma wave, which was not covered
in the previous work.7 To close the envelope-kinetic equa-
tion, we analyzed the kinetic term in the nontrapping and
trapping cases in the low temperature regime. When the
pump laser amplitude is small �typically a2�0.005 for
�p /��0.1�, the electron trapping is negligible �nontrapping

regime�, and the kinetic term generates the thermal shift of
the Langmuir wave frequency. The resulting closed equation
is the same as that used in the three-wave fluid model. This
implies that the three-wave model for RBS is exact at least
up to the third order. In the regime of severe electron trap-
ping �but the fraction is still small, typically less than 5%�
which is caused by a large pump intensity and a high tem-
perature of the plasma, the trapped electrons shift down the
plasma wave frequency considerably �it was 20% of the
plasma frequency for a2=0.02�. The resonance breaking by
this shift significantly suppresses RBS and the laser amplifi-

FIG. 5. Simulations of the strong pump case �parameters are the same as in
Fig. 3� using aPIC, test particle scheme, and the three-wave fluid model.

FIG. 6. Comparisons of the three different schemes. Parameters are the
same as in Fig. 5, except the pump amplitude a2=0.01.
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cation. The envelope-kinetic model in the trapping regime
could be closed by the test particle method. We obtained a
good agreement between the simulations from the full ki-
netic �aPIC� and test particle codes.
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