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Electronic structure and mechanical stability of the graphitic honeycomb lattice
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Department of Physics, Seoul National University, Seoul 151-742, Korea

~Received 3 March 2000; revised manuscript received 16 May 2000!

A family of crystal structures of carbon composed of alternatingsp2 and sp3 bonds is investigated. Gra-
phitic strips are connected bysp3 bonds to form an array of hexagonal pillars exhibiting a honeycomb lattice
in the perpendicular plane. The electronic structure and elastic properties of this family of structures are
calculated using anab initio pseudopotential as well as the environment-dependent tight-binding method. Their
electronic structure has a similar size dependence to zigzag nanotubes; they are metallic if twice the strip width
is a multiple of three hexagonal units, and otherwise semiconducting with a wider range of the band gap than
for carbon nanotubes. The structural stability is studied and compared with other carbon structures.
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I. INTRODUCTION

Carbon forms stable crystals ofsp3 or sp2 hybrid orbitals
under ambient conditions. Among the crystals of puresp3

bonding are cubic diamond, hexagonal diamond, and
fourfold-coordinated metastable BC-8 structure.1 On the
other hand, there exist crystals ofsp2 bonding such as vari
ous phases of graphite and carbon nanotubes, which
attracted much interest recently due to their unusual o
dimensional structure. In graphite and carbon nanotubes
sp2 bonding gives rise to a threefold-coordinated plan
structure and the remainingpz orbitals perpendicular to the
plane produce interesting electronic structures near the F
level. In addition to puresp2 or sp3 crystals, there has bee
research on mixed structures ofsp2 and sp3 bondings.2,3

Here we focus our attention on the structures suggeste
Karfunkel and Dressler3 in which a ‘‘triptycyl moiety’’ is
connected to three neighboring triptycyl moieties by fus
benzene rings, producing an array of hexagonal pillars.
same structure has recently been suggested again by Jo4

In this structure, graphitic strips are interconnected viasp3

bonds at the junctions. When the widths of the constitu
graphitic strips are all identical, the structure can be regar
as a honeycomb lattice with each side~line segment! of the
hexagon composed of a graphitic strip perpendicular to
lattice plane. We call this a graphitic honeycomb~GH! lat-
tice in this paper. Although there was an integral numbe
fused benzene rings between two triptycyl moieties in
original suggestion,3 we study below the cases where t
width of the interconnected graphitic strip is a multiple
half the number of benzene rings as well. Since the family
GH’s has a hexagonal array of pores along one direct
they have potential applicability as one-dimensional io
conductors for batteries, shape-selective catalysts, molec
sieves and absorbents, and electron emitters. We study
electronic structure and mechanical stability of the family
GH’s with an ab initio pseudopotential as well as th
environment-dependent tight-binding method. Our calcu
tion shows that the electronic structure has a similar s
dependence to that of zigzag carbon nanotubes. It turns
that semiconducting GH’s have a wider range of band
than nanotubes, with potential applications for electronic
optical devices. The mechanical stability of GH’s turns o
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to be comparable to that of diamond and they have fa
high bulk and shear modulus.

The remainder of the paper is organized as follows.
Sec. II, we briefly describe the method of calculation. W
give a detailed description of the geometry of the GH a
present the calculated electronic structures in Sec. III.
compare the electronic structure of the GH with that of t
carbon nanotube. In Sec. IV, we obtain equilibrium latti
constants and elastic moduli and compare them with o
carbon structures. A summary is given in the last section

II. COMPUTATIONAL METHOD

We use theab initio pseudopotential method with th
plane-wave basis5 for small unit cell size GH’s. Since theab
initio band structure is well reproduced by the environme
dependent tight-binding method,6 we use the tight-binding
method with a non-orthogonal basis7 in the electronic struc-
ture calculation of larger size GH’s. In theab initio calcula-
tions, we employ the local density approximation~LDA ! to
the density functional theory. The pseudopotential for carb
is generated through the Troullier-Martins scheme8 and cast
into a fully nonlocal form.9 We adopt the Ceperly-Alder-type
exchange-correlation potential10 as parametrized by Perde
and Zunger.11 The kinetic energy cutoff in the plane-wav
expansion is 55 Ry. The Brillouin zone is sampled using
Monkhorst-Pack special points method12 with 8 to 14 k
points in the irreducible part of the Brillouin zone.

III. GEOMETRY AND THE ELECTRONIC STRUCTURE
OF THE GH

In a GH, as shown in Fig. 1, three graphite planes m
with one another at 120° forming a linear chain ofsp3 bonds
at the junction. The bonds at the junction are negligibly d
torted from the ideal tetrahedral bonds of diamond accord
to our energy minimization calculation. If the width of th
side plane isN times the hexagonal unit of graphite (N can
be an integer or a half integer!, the GH is designated as siz
N. In Fig. 1~a!, we present a perspective view of the bu
structure of the GH of size 3. Only five hexagonal units
the pillar axis direction and seven unit cells in the perpe
dicular plane are shown for visual clarity. A close-up view
7614 ©2000 The American Physical Society
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FIG. 1. Structure of the graphitic honeycom
lattice of size 3.~a! Perspective view of a portion
of the lattice. Only seven unit cells of the hexag
nal pillars and graphitic sheets of five hexago
high in the pillar axis (c-axis! direction are pre-
sented.~b! Bonding configuration near the junc
tion. ~c! Graphitic strip of size 3.
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the bonding configuration near the junction is presented
Fig. 1~b!. The filled circles represent the carbon atoms ofsp2

bonding in the plane and the open circles represent the
bon atoms ofsp3 bonding at the junction. Figure 1~c! shows
a single graphitic side plane~the building block of the GH!
of size 3.

Now we examine the electronic structure of GH’s of va
ous sizes. The results of environment-dependent tig
binding calculations on the density of states using four or
als per carbon atom are presented in Fig. 2. The electr
structure of the GH has similar size dependence to tha
zigzag nanotubes. WhenN5~integer!33/2, the GH of sizeN
is metallic, but otherwise semiconducting. We explain t
size dependence as follows. Since the side planes of the
are nearly undistorted from graphitic strips, electronic sta
near the Fermi level are expected to originate fromp-bonded
pz ~perpendicular to the plane! orbitals as in graphite and
carbon nanotubes. Let us approximate the electronic st
ture by the nearest-neighborp orbital tight-binding model.
The GH of sizeN is an assembly of strips of sizeN as shown
in Fig. 1~c!. Those eigenstates of an isolated strip that h
zero amplitudes on both ends are eigenstates of the G
well, because states in one strip are completely decou
from states of other strips owing to the zero amplitude at
junction. We now show that these states can all be foun
the eigenstates of a zigzag carbon nanotube of an approp
size. If we have two oppositely propagating plane waves
period 2L, i.e., eiknx ande2 iknx ~wherekn52pn/2L), a lin-
ear combination of opposite signs of these two waves res
in a standing wave@sin(npx/L)# which has nodes atx50 and
L. Such a standing wave is an eigenstate of the o
dimensional box of widthL. This is the situation occurring in
an isolated graphite strip. Eigenstates of the nearest-neig
p-orbital tight-binding Hamiltonian whose amplitudes a
zero at both edges of the strip of sizeN can be obtained by
linear combination of two states of the (2N,0) nanotube
propagating in opposite directions around the tube. T
p-orbital tight-binding bands of the (2N,0) tube13 can be
expressed as

Em~k!56gF164 cosSA3ka

2 D cosS mp

2N D14 cos2S mp

2N D G1/2

,

~1!

where 2p/A3<ka,p/A3 and m51, . . . ,2N. The wave
vectork here is along the tube axis and corresponds preci
to that of the GH along thec axis.g is the nearest-neighbo
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ly FIG. 2. Density of states of the GH of~a! size 3,~b! size 3.5,
and ~c! size 4.
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FIG. 3. Thep-orbital tight-binding conduc-
tion band of~a! the graphitic strip of size 3.5 and
~b! the ~7,0! nanotube. The heavy lines indicat
the nondegenerate bands present in the nano
only.
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hopping parameter (;2.7 eV!. The 1 and 2 signs outside
the brackets denote the conduction and valence bands
spectively. With a certain choice of the unit cell, the1 and
2 signs inside the brackets correspond to the unfolded
folded bands.13 The folded band ofm (1<m<2N21) is
degenerate with the unfolded band ofm852N2m and we
have 2N21 doubly degenerate bands. A linear combinat
of opposite signs of two degenerate states results in an ei
state of the graphite strip. Corresponding tom52N, there
exist one nondegenerate folded band and one nondegen
unfolded band. To reiterate, we have 8N p electrons, which
generate 4N conduction bands and 4N valence bands in the
(2N,0) nanotube. If we count conduction bands only,
have 2N21 doubly degenerate bands and two nondege
ate bands. In the graphitic strip of sizeN, we have 4N22
~excluding two edge atoms! p electrons in the unit cell. The
2N21 conduction bands can be obtained by a linear com
nation of the corresponding degenerate states in the (2N,0)
tube. For an explicit illustration, we present the results
the graphite strip of size 3.5 and the (7,0) nanotube in Fig
The Fermi level is set to zero in this figure. Since we ha
perfect electron-hole symmetry in this model, we show o
the conduction bands (E.0). The bands of the graphiti
strip of size 3.5 exactly coincide with the degenerate ba
of the ~7,0! nanotube.

The above discussions focus on thep-bonded states an
their dispersion in thec-axis direction. Now we present th
band structure of the GH of size 2 obtained from theab initio
pseudopotential calculation with the LDA in Fig. 4. A
though orbitals of other thanpz character may be involved
and mixing ofp ands bonds is fully allowed in theab initio
calculation, the results show that the bands near the Fe
level are fairly flat along the direction perpendicular to thec
axis and the charge density of these states is very low~not
shown! at the junction. This indicates that the above tig
binding model~giving a completely flat band in the perpe
dicular direction and zero charge density at the junction! is a
reasonable approximation for the states near the Fermi le
The size of the gap (.1.3 eV! also agrees with that of th
tight-binding calculation. This is in contrast to other gro
IV intrinsic semiconductors~Si and Ge! where the indirect
gap is badly underestimated by use of the LDA. The gap s
here is significantly greater than that of carbon nanotub
The experimentally realizable gap size of the carbon na
tubes is within 1 eV and the typical semiconducting nan
tube ~with a diameter of;1.4 nm! has a gap of;0.6 eV.
This property may be useful for certain electronic dev
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applications, e.g., those requiring low-leakage current. F
thermore, the gap is in practice direct atG with almost no
dispersion of the highest valence band and the lowest c
duction band in theGKM plane, with possible application
utilizing optical properties. We note that the GH of size 1
size 0.5~not shown! does not have anyp-bonded chains in
the side plane and the above argument based on grap
strips is not applicable. The GH of size 1 turns out to be
semimetal in ourab initio calculation as demonstrated by th
band structure presented in Fig. 5. The GH of size 0.5 in
convention is actually hexagonal diamond in which all ato
form sp3 bonding. The results for the electronic structure
the previous calculation3 differ significantly from ours in that
the GH of size 1 or size 3 has a band gap that is greater
5 eV. The magnitude of the band gap of the size 2 GH
also been overestimated compared with the present calc
tion.

While the side planes of the GH have ‘‘armchair’’ edg
on both sides as shown in Fig. 1~c!, we can build another
structure whose side planes have zigzag edges. This stru
turns out to have triclinic symmetry according to our calc
lation. The bonding at the junction resembles the tetrahe
s bond of cubic diamond. Bothab initio and tight-binding
calculations show that, irrespective of their size, this fam
of structures is always metallic; they have nearly flat ban
near the zone edge as in other calculations on graphitic s
with zigzag edges.14,15

FIG. 4. Band structure of the GH of size 2 obtained using theab
initio pseudopotential method with the LDA. The inset is the fi
Brillouin zone.
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IV. STRUCTURAL STABILITY

In this section, we investigate equilibrium lattice co
stants and elastic stability of GH’s.Ab initio calculations for
small size GH’s (1<N<2) indicate that thesp2 bond length
in the c-axis direction is about 1.41 Å and othersp2 bond
lengths are about 1.39 Å, compared with the experime
graphite bond length of 1.42 Å, whereas thesp3 bond length
at the junction in thec-axis direction is about 1.53 Å an
othersp3 bond lengths are about 1.52 Å, compared with
experimental diamond bond length of 1.545 Å. The elas
energy density of the hexagonal structure16 can be written in
the form

U5
1

2
C11~e1

21e2
2!1

1

2
C33e3

21
1

2
C44~e4

21e5
2!

1
1

2
~C112C22!e6

21C12e1e21C13~e1e31e2e3!,

~2!

where thee’s are conventional strain components. By diffe
entiating the elastic energy density with respect to str
components, we have the following stress-strain relation

s15C11e11C12e21C13e3 ,

s25C12e11C11e21C13e3 ,

s35C13e11C13e21C33e3 . ~3!

The Born criteria17 for the stability of the hexagonal crysta
require that C11,C112C12,C44, and (C111C12)C13

22C13
2 should all be greater than zero. As shown in Table

the GH’s well satisfy the criteria. From these elastic co
stants, we can calculate Poisson’s ratio, Young’s modu
and bulk modulus. If we load a tensile stress on the G
specimen in thec-axis direction with the sides of the spec
men left free~i.e., s150 ands250), we have the Young’s
modulus

FIG. 5. Band structure of the GH of size 1 obtained using theab
initio pseudopotential method with the LDA. The labeling of t
first Brillouin zone is the same as in Fig. 4.
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Y335
s3

e3
5C331C13S e1

e3
1

e2

e3
D , ~4!

where the Poisson’s ratios are

e1

e3
5

e2

e3
52

C11C132C12C13

C11
2 2C12

2
. ~5!

In the same way, the Young’s modulus in the direction p
pendicular to thec axis is

Y115C111C12

e2

e1
1C13

e3

e1
, ~6!

where

e2

e1
52

C33C122C13
2

C11C332C13
2

,

e3

e1
52

C11C132C13C12

C11C332C13
2

. ~7!

We also investigate the cohesive energy and bulk modulu
GH’s and compare them with other carbon structures. T
cohesive energies are presented in Table II. The b
modulus18 of the hexagonal crystal is obtained from the r
lation

B5
DC3312C13

D12
, ~8!

where

D5
C111C1222C13

C332C13
, ~9!

TABLE I. Elastic moduli of GH’s in GPa.

C11 C12 C13 C33 C44 Y11 Y33

Size 1/2 1254 103 13 1338 485 1338 123
Size 1 529 118 0 1132 279 1132 50
Size 3/2 382 118 24 765 174 763 34
Size 2 324 15 0 618 132 618 324

TABLE II. Cohesive energy of GH’s, diamond, and graphite
eV/atom.

Present calc. Other works

Cubic diamond 8.754 7.2a, 8.17b

Graphite 8.846 7.4a

Size 1/2~hex. diamond! 8.749 (c.d.20.002)c, 8.14b

Size 1 8.313
Size 3/2 8.563
Size 2 8.641

aReference 20.
bReference 19.
cReference 1. The number is with respect to cubic diamond~c.d.!.
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and presented in Table III. The difference in the heat
formation between diamond and graphite in the previo
calculation3 is roughly the same as the corresponding diff
ence in the cohesive energy in our calculation. But the p
vious calculation with the semiempirical method seems to
inaccurate in that the GH’s of size 2 and size 3 are m
stable than diamond, which is quite unlikely from the expe
mental point of view. In our calculation, the cohesive ene
of the GH of size 2 is 0.1 eV/atom smaller than that
diamond. This means that the GH is energetically m
stable than the BC-8 structure, which is metastable at at
spheric pressure and room temperature with a reported c

TABLE III. Bulk modulus of GH’s and diamond in GPa.

B Present calc. Other work

Cubic diamond 458a 449b, 457b, 444c

Size 1/2~hex. diamond! 456 448b, 440c

Size 1 252
Size 3/2 214
Size 2 133

aFor a cubic crystal,B5(C1112C12)/3.
bReference 1.
cReference 19.
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sive energy of 0.7 eV/atom smaller than that of diamond.19,1

The bulk modulus is fairly large as shown in Table III. F
comparison, the bulk modulus of silicon is 99 GPa. Since
cohesive energy is comparable to diamond and the Born
teria are satisfied as mentioned above, GH’s are expecte
be stable once they are formed.

V. SUMMARY

We have calculated the electronic structure and mech
cal properties of the GH’s using anab initio pseudopotential
as well as the environment-dependent tight-binding meth
The electronic structure of the GH has a similar size dep
dence to that of zigzag nanotubes. When the sizeN ~defined
in Sec. III! is equal to an~integer! times 3/2, the GH is
metallic, and otherwise semiconducting. The GH is ela
cally stable and has fairly high shear modulus. Having
similar electronic structure to the zigzag nanotube and
higher shear modulus in the plane perpendicular to thec axis
~and a greater band gap in some cases! than nanotube ropes
the GH may have interesting applications beyond those
nanotubes.
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