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Electronic structure and mechanical stability of the graphitic honeycomb lattice
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A family of crystal structures of carbon composed of alternatipd andsp® bonds is investigated. Gra-
phitic strips are connected kp® bonds to form an array of hexagonal pillars exhibiting a honeycomb lattice
in the perpendicular plane. The electronic structure and elastic properties of this family of structures are
calculated using aab initio pseudopotential as well as the environment-dependent tight-binding method. Their
electronic structure has a similar size dependence to zigzag nanotubes; they are metallic if twice the strip width
is a multiple of three hexagonal units, and otherwise semiconducting with a wider range of the band gap than
for carbon nanotubes. The structural stability is studied and compared with other carbon structures.

[. INTRODUCTION to be comparable to that of diamond and they have fairly
high bulk and shear modulus.
Carbon forms stable crystals sp* or sp? hybrid orbitals The remainder of the paper is organized as follows. In

under ambient conditions. Among the crystals of psgg  Sec. Il, we briefly describe the method of calculation. We
bonding are cubic diamond, hexagonal diamond, and th@ive a detailed description of the geometry of the GH and
fourfold-coordinated metastable BC-8 structir®©n the present the calculated electronic structures in Sec. Ill. We
other hand, there exist crystals ° bonding such as vari- compare the electronic structure of the GH with that of the
ous phases of graphite and carbon nanotubes, which hag&rbon nanotube. In Sec. IV, we obtain equilibrium lattice
attracted much interest recently due to their unusual oneconstants and elastic moduli and compare them with other
dimensional structure. In graphite and carbon nanotubes, thgarbon structures. A summary is given in the last section.
sp? bonding gives rise to a threefold-coordinated planar

structure and t_he remz.iinirnyZ orbitals perpendicular to the . Il COMPUTATIONAL METHOD

plane produce interesting electronic structures near the Fermi

level. In addition to puresp? or sp® crystals, there has been ~ We use theab initio pseudopotential method with the
research on mixed structures sf? and sp® bondings?®  plane-wave basisor small unit cell size GH’s. Since thab
Here we focus our attention on the structures suggested bgitio band structure is well reproduced by the environment-
Karfunkel and Dresslérin which a “triptycyl moiety” is ~ dependent tight-binding methGdwe use the tight-binding
connected to three neighboring triptycyl moieties by fusedmethod with a non-orthogonal baSis the electronic struc-
benzene rings, producing an array of hexagonal pillars. Théure calculation of larger size GH’s. In thadb initio calcula-
same structure has recently been suggested again by YJong#ns, we employ the local density approximatirDA) to

In this structure, graphitic strips are interconnectedsfid  the density functional theory. The pseudopotential for carbon
bonds at the junctions. When the widths of the constituenis generated through the Troullier-Martins schéraed cast
graphitic strips are all identical, the structure can be regardetiito a fully nonlocal form? We adopt the Ceperly-Alder-type
as a honeycomb lattice with each sidi@e segmentof the  exchange-correlation potentidlas parametrized by Perdew
hexagon composed of a graphitic strip perpendicular to thend Zunger:" The kinetic energy cutoff in the plane-wave
lattice plane. We call this a graphitic honeycorftH) lat-  expansion is 55 Ry. The Brillouin zone is sampled using the
tice in this paper. Although there was an integral number ofMonkhorst-Pack special points methtddwith 8 to 14 k
fused benzene rings between two triptycyl moieties in thepoints in the irreducible part of the Brillouin zone.

original suggestiori,we study below the cases where the

width of the interconnected graphitic strip _is a multiplg of Il GEOMETRY AND THE ELECTRONIC STRUCTURE

half the number of benzene rings as well. Since the family of OF THE GH

GH’s has a hexagonal array of pores along one direction,

they have potential applicability as one-dimensional ionic In a GH, as shown in Fig. 1, three graphite planes meet
conductors for batteries, shape-selective catalysts, molecularith one another at 120° forming a linear chairsg® bonds
sieves and absorbents, and electron emitters. We study tlaé the junction. The bonds at the junction are negligibly dis-
electronic structure and mechanical stability of the family oftorted from the ideal tetrahedral bonds of diamond according
GH’'s with an ab initio pseudopotential as well as the to our energy minimization calculation. If the width of the
environment-dependent tight-binding method. Our calculaside plane iN times the hexagonal unit of graphit®l (can
tion shows that the electronic structure has a similar sizde an integer or a half integethe GH is designated as size
dependence to that of zigzag carbon nanotubes. It turns ott. In Fig. 1(a), we present a perspective view of the bulk
that semiconducting GH'’s have a wider range of band gatructure of the GH of size 3. Only five hexagonal units in
than nanotubes, with potential applications for electronic othe pillar axis direction and seven unit cells in the perpen-
optical devices. The mechanical stability of GH’s turns outdicular plane are shown for visual clarity. A close-up view of
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FIG. 1. Structure of the graphitic honeycomb
lattice of size 3(a) Perspective view of a portion
of the lattice. Only seven unit cells of the hexago-
nal pillars and graphitic sheets of five hexagons
high in the pillar axis ¢-axis) direction are pre-
sented.(b) Bonding configuration near the junc-
tion. (c) Graphitic strip of size 3.

"/.

(a) (b) (c)

the bonding configuration near the junction is presented in
Fig. 1(b). The filled circles represent the carbon atoms pf
bonding in the plane and the open circles represent the car
bon atoms ofp® bonding at the junction. Figured shows
a single graphitic side planghe building block of the GM
of size 3. m
Now we examine the electronic structure of GH's of vari- ‘&
ous sizes. The results of environment-dependent tight->
binding calculations on the density of states using four orbit-£
als per carbon atom are presented in Fig. 2. The electronic=
structure of the GH has similar size dependence to that o
zigzag nanotubes. Whéh= (intege) X 3/2, the GH of size\ =]
is metallic, but otherwise semiconducting. We explain this
size dependence as follows. Since the side planes of the Gt
are nearly undistorted from graphitic strips, electronic states
near the Fermi level are expected to originate frerbonded
p, (perpendicular to the plamperbitals as in graphite and
carbon nanotubes. Let us approximate the electronic struc
ture by the nearest-neighbar orbital tight-binding model.
The GH of sizeN is an assembly of strips of si2éas shown =
in Fig. 1(c). Those eigenstates of an isolated strip that have’s
zero amplitudes on both ends are eigenstates of the GH a>
well, because states in one strip are completely decouple
from states of other strips owing to the zero amplitude at thev
junction. We now show that these states can all be found '”O
the eigenstates of a zigzag carbon nanotube of an appropriai®@
size. If we have two oppositely propagating plane waves of
period 4, i.e., e ande X (wherek,=2n/2L), a lin-
ear combination of opposite signs of these two waves result:
in a standing wavésin(hmx/L)] which has nodes at=0 and
L. Such a standing wave is an eigenstate of the one-
dimensional box of width.. This is the situation occurring in 8 (C)
an isolated graphite strip. Eigenstates of the nearest-neighbc 7 }
sr-orbital tight-binding Hamiltonian whose amplitudes are
zero at both edges of the strip of sikiecan be obtained by
linear combination of two states of the N20) nanotube
propagating in opposite directions around the tube. Th
m-orbital tight-binding bands of the (20) tubé® can be

expressed as
\/§ka mar | Y2
1t
1+4 co{ S(ZN +4 co§( N) ,
(N 0

2
where — w/\/3<ka<m/\3 andm=1, ... ,N. The wave
vectork here is along the tube axis and corresponds precisely FIG. 2. Density of states of the GH ¢#) size 3,(b) size 3.5,
to that of the GH along the axis. y is the nearest-neighbor and(c) size 4.

)
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tz' <2 FIG. 3. Them-orbital tight-binding conduc-
3 ) tion band of(a) the graphitic strip of size 3.5 and
w w (b) the (7,0) nanotube. The heavy lines indicate
1t 1 the nondegenerate bands present in the nanotube
only.
0 : : : : 0 : , : :
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hopping parameter~2.7 e\). The + and — signs outside applications, e.g., those requiring low-leakage current. Fur-
the brackets denote the conduction and valence bands, rihermore, the gap is in practice directAtwith almost no
spectively. With a certain choice of the unit cell, theand  dispersion of the highest valence band and the lowest con-
— signs inside the brackets correspond to the unfolded anduction band in thd’KM plane, with possible applications
folded bandg? The folded band ofm (1<m=2N-1) is utilizing optical properties. We note that the GH of size 1 or
degenerate with the unfolded bandmf=2N—m and we size 0.5(not shown does not have anyr-bonded chains in
have 2N— 1 doubly degenerate bands. A linear combinationthe side plane and the above argument based on graphitic
of opposite signs of two degenerate states results in an eigestrips is not applicable. The GH of size 1 turns out to be a
state of the graphite strip. Correspondingnte=2N, there  semimetal in ourb initio calculation as demonstrated by the
exist one nondegenerate folded band and one nondegeneraiend structure presented in Fig. 5. The GH of size 0.5 in our
unfolded band. To reiterate, we havBl 8r electrons, which  convention is actually hexagonal diamond in which all atoms
generate & conduction bands andNtvalence bands in the form sp® bonding. The results for the electronic structure of
(2N,0) nanotube. If we count conduction bands only, wethe previous calculaticrdiffer significantly from ours in that
have 2N—1 doubly degenerate bands and two nondegeneithe GH of size 1 or size 3 has a band gap that is greater than
ate bands. In the graphitic strip of sibé we have N—2 5 eV. The magnitude of the band gap of the size 2 GH has
(excluding two edge atomsr electrons in the unit cell. The also been overestimated compared with the present calcula-
2N—1 conduction bands can be obtained by a linear combition.
nation of the corresponding degenerate states in tiheQ)2 While the side planes of the GH have “armchair” edges
tube. For an explicit illustration, we present the results foron both sides as shown in Fig(cl, we can build another
the graphite strip of size 3.5 and the (7,0) nanotube in Fig. 3structure whose side planes have zigzag edges. This structure
The Fermi level is set to zero in this figure. Since we havegurns out to have triclinic symmetry according to our calcu-
perfect electron-hole symmetry in this model, we show onlylation. The bonding at the junction resembles the tetrahedral
the conduction bandsE(>0). The bands of the graphitic o bond of cubic diamond. Bothb initio and tight-binding
strip of size 3.5 exactly coincide with the degenerate bandsalculations show that, irrespective of their size, this family
of the (7,0) nanotube. of structures is always metallic; they have nearly flat bands
The above discussions focus on thebonded states and near the zone edge as in other calculations on graphitic strips
their dispersion in the-axis direction. Now we present the with zigzag edge$!*®
band structure of the GH of size 2 obtained from dlhanitio
pseudopotential calculation with the LDA in Fig. 4. Al- 4
though orbitals of other thap, character may be involved y
and mixing of7r ando bonds is fully allowed in thab initio
calculation, the results show that the bands near the Ferm 2} — /\
level are fairly flat along the direction perpendicular to the ] /\
axis and the charge density of these states is very(lmt
shown at the junction. This indicates that the above tight-
binding model(giving a completely flat band in the perpen-
dicular direction and zero charge density at the jungtisra Al
reasonable approximation for the states near the Fermi level
The size of the gap=£1.3 eV) also agrees with that of the
tight-binding calculation. This is in contrast to other group 4
IV intrinsic semiconductor$Si and Ge where the indirect
gap is badly underestimated by use of the LDA. The gap size
here is significantly greater than that of carbon nanotubes -6
The experimentally realizable gap size of the carbon nano-
tubes is within 1 eV and the typical semiconducting nano- FIG. 4. Band structure of the GH of size 2 obtained usinggitne
tube (with a diameter of~1.4 nm has a gap of~0.6 eV. initio pseudopotential method with the LDA. The inset is the first
This property may be useful for certain electronic deviceBrillouin zone.
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VV/\ \/ TABLE I. Elastic moduli of GH’s in GPa.
Cll C12 ClS C33 C44 Yll Y33
Size 1/2 1254 103 13 1338 485 1338 1235
~ L \ Size 1 529 118 0 1132 279 1132 500
Lo Size 3/2 382 118 24 765 174 763 345
? \ L Size 2 324 15 0 618 132 618 324
c
Woy ] \/ / e
v 4 7\ o Yas= T2 = Cygt Cpgl 24 22 4
" é \/ I 33 3t Cug gt e )
X %ﬁ\ o where the Poisson’s ratios are
-6
K r M K H A L Hr AM L e, B e, B CllClS_ C12C13 .
FIG. 5. Band structure of the GH of size 1 obtained usinggie e; €3 cz-c2, ©
initio pseudopotential method with the LDA. The labeling of the
first Brillouin zone is the same as in Fig. 4. In the same way, the Young’s modulus in the direction per-
pendicular to thes axis is
IV. STRUCTURAL STABILITY
In this section, we investigate equilibrium lattice con- Y11=Cq1t+ 012%+C13E, (6)
stants and elastic stability of GH’Ab initio calculations for ! !
small size GH’s (:N=2) indicate that thep? bond length  \yhere
in the c-axis direction is about 1.41 A and othep? bond
lengths are about 1.39 A, compared with the experimental e CanCroe C2
graphite bond length of 1.42 A, whereas #& bond length 2= M’,
at the junction in thec-axis direction is about 1.53 A and €1 CyCyCly
othersp® bond lengths are about 1.52 A, compared with the
experimental diamond bond length of 1.545 A. The elastic e; C11C13— C1C1o
energy density of the hexagonal structirean be written in PO — (7)
the form ! C11C33~Cis

We also investigate the cohesive energy and bulk modulus of
GH’s and compare them with other carbon structures. The
cohesive energies are presented in Table Il. The bulk
modulug® of the hexagonal crystal is obtained from the re-

1 2, 2 L » 1 2, 2
U:§C11(91+ez)+§C3393+§C44(e4+35)

1 lation
+5(Cu— Copes+Cieie,+Cig(eres+esey),
AC43+2Cy5
) = Tzl’ (8
where thee’s are conventional strain components. By differ- ere
entiating the elastic energy density with respect to strain
components, we have the following stress-strain relations: Cyy+Cp—2Cis
=, 9
C33_ C13

01=Cp1€;+C1e+Cyae3,

TABLE II. Cohesive energy of GH’s, diamond, and graphite in

02=C11+Cri€+Coges, eV/atom.
Present calc. Other works
03=Cys811 Cra8rt Cazes. 3
o 3 Cubic diamond 8.754 7%28.17

The Born criterid’ for the stability of the hexagonal crystal Graphite 8.846 79
require  that C;;,C11—Cyp,Cay, and C11+C1)Ciz  Size 1/2(hex. diamond 8.749 (c.d=0.002f, 8.14
—2CZ%, should all be greater than zero. As shown in Table I,gjze 1 8.313
the GH’s well satisfy the criteria. From these elastic con-gjze 3/2 8.563
stants, we can calculate Poisson’s ratio, Young's modulusg;,e 2 8.641

and bulk modulus. If we load a tensile stress on the GH
specimen in thes-axis direction with the sides of the speci- Reference 20.
men left free(i.e., 0;=0 ando,=0), we have the Young's PReference 19.
modulus ‘Reference 1. The number is with respect to cubic diam@ri).
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TABLE llI. Bulk modulus of GH’s and diamond in GPa. sive energy of 0.7 eV/atom smaller than that of diam&hd.
The bulk modulus is fairly large as shown in Table Ill. For
B Present calc. Other work comparison, the bulk modulus of silicon is 99 GPa. Since the
cohesive energy is comparable to diamond and the Born cri-

C_u bic dlamond. 458 449, 457, 444 teria are satisfied as mentioned above, GH’s are expected to
S!ze 1/2(hex. diamony 456 448, 440 be stable once they are formed.
Size 1 252
Size 3/2 214 V. SUMMARY
Size 2 133

We have calculated the electronic structure and mechani-
& or a cubic crystalB=(C;;+2C;,)/3. cal properties of the GH’s using ab initio pseudopotential
bReference 1. as well as the environment-dependent tight-binding method.
‘Reference 19. The electronic structure of the GH has a similar size depen-

dence to that of zigzag nanotubes. When the kizdefined
1jn Sec. lll) is equal to an(intege) times 3/2, the GH is

and presented in Table Ill. The difference in the heat o walli d otherwi iconducti The GH is elasi
formation between diamond and graphite in the previou§nea IC, and otherwise semiconducting. The IS €elast-
cally stable and has fairly high shear modulus. Having a

calculatiort is roughly the same as the corresponding differ- | lectronic struct o the 2i b q
ence in the cohesive energy in our calculation. But the preg".rnI ar electronic structure o the zigzag nanotubé and a

vious calculation with the semiempirical method seems to b |grc11er sheatr mgduldus n t'he plane p;ilrep;endmul?r k’;ccthms
inaccurate in that the GH’s of size 2 and size 3 are moreand & greater band gap in some ¢ N nanotube ropes,

stable than diamond, which is quite unlikely from the experi- he GH may have interesting applications beyond those of

mental point of view. In our calculation, the cohesive energ)panotubes.

of the GH of_ size 2 is 0.1 eV/atom .smaller thgn that of ACKNOWLEDGMENTS
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