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We investigate ambipolar to unipolar transition by the effect of ambient air on the carbon nanotube
field-effect transistor. A unipolar transport property of the double-walled nanotube field-effect
transistor and its conversion from ambipolar behavior are observed. We suggest that adsorptions of
oxygen molecules, whose lowest-unoccupied-molecular-orbital state is around the midgap of the
carbon nanotube, could suppress the electron channel formation and, consequently, result in the
unipolar transport behavior. ©2005 American Institute of Physics. fDOI: 10.1063/1.1869548g

Since the discovery of carbon nanotubessCNTsd,1 their
various aspects have been explored in different fields of sci-
ence and technology. In particular, the unique one-
dimensional geometry and the excellent transport property
have made CNTs the most promising building blocks for the
next-generation electronic devices.2,3 The most important ap-
plication in electronics is the CNT field effect transistor
sFETd.4 However ambipolar behavior in CNT-FETsRef. 5d
limits in the development of nanotube-based integrated cir-
cuit application by unexpected leakage current before the
turn-on bias.

In this work, we show a unipolar transport property of
the double-walled nanotubesDWNTd FET and its conversion
from ambipolar behavior. We choose DWNT-FET to maxi-
mize ambipolar behavior6 since it is mainly ascribed to the
smaller band gap arising from the large diameter of outer
shell. Purified DWNTs were suspended in a solvent and spin
coated on the SiO2 grown on heavily dopedp-type Si sub-
strate. Scanning probe microscopy locates individually sepa-
rated nanotubes on the substrate. After generating patterns
for metal contact by electron-beam lithography, metal elec-
trodes with 100 nm Pd were defined by the lift-off process.
Typical system resistances without gate bias were in the
range of several hundreds of kV to MV. Electrical measure-
ment was carried out in a probe station chamber equipped
with a pumping unit, which can pump down the chamber to
10−6 Torr.

In Fig. 1, we present the current-voltagesIds-Vgd curves
of the DWNT-FET measured with various source and drain
voltagessVdsd under the influence of ambient air. A typical
p-channel behavior is observed in our DWNT-FET. It could
be described as a device operating inp-channel depletion
mode, whose turn-off voltages are aboutVg=4 V. With care-
ful examination, it is observed that there are small bumps in
the Ids-Vg curves at about 3 V above the turn-off voltage. In
the latter part, we discuss that the observed small bumps and
traces of current in the positive side of gate voltage could
indicate the suppression of electron channel formation.

We now turn to investigate the transfer characteristics of
CNT-FET in different vacuum conditions. In Fig. 2, we plot
the Ids-Vg curves of DWNT-FET at several intermediate
pumping stages from ambient air to vacuum of 3
310−6 Torr. The n-channel starts to emerge and the FET
gradually shows an ambipolar behavior as it passes through
the several pumping stages. After 72 h of pumping, we have
a complete conversion of transport property of DWNT-FET
from unipolar to ambipolar. In fact, the overall conversion
process can be reversible and can reproduce the patterns that
are shown in Fig. 2.

Heinzeet al.7 discussed that the work function variation
in the electrode leads to an asymmetric change in theIds-Vg

curve, inducing less current for one polarity of gate bias and
more current for the opposite polarity under the influence of
ambient air. Such a change has largely attributed to the oxy-
gen effect. Deryckeet al.8 reported that the exposure to air or
oxygen induced an increase in the work function of the gold
electrode, which resulted in ambipolar behavior. Indeed, we
observe a similar effect of ambient air on our DWNT-FET
which shows an increase in thep-channel transport as well as
a decrease in then-channel conduction, leading to asymmet-
ric Ids-Vg patterns. It is noticed that theIds-Vg curve for our
DWNT-FET shows a symmetriclike transport behavior under
the high-vacuum condition, but this symmetry goes away as
the system is slowly exposed to air.

Although a part of our results is consistent with previous
works,7,8 the unipolar behavior of DWNT-FET in ambient
air, as shown in Fig. 1, needs more comprehensible argu-
ments. It is reasonable to assume that there are significant
molecular adsorptions on the wall of CNT as well as on the
surface of metal electrode. Provided that the lowest unoccu-
pied molecular orbitalsLUMOd levels of the adsorbators sit
somewhere in the gap of the CNT, electrons would occupy
the molecular levels under a positive gate voltage, as shown
in Figs. 3sad and 3sbd. As a result, the electrostatic potential
generated by the negatively charged adsorbators screens the
gate field and, consequently, suppresses the electron channel
formation. The nanotube bands in the channel region would
resist a downshift because of the presence of charged adsor-
bators. Two upward arrows in Fig. 3sbd describe the effect of
such an electrostatic potential generated by the charged ad-
sorbators. On the other hand, conduction bands of a clean
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nanotube shift down allowing electron current under such a
positive gate voltage, as shown in Fig. 3scd. It is noticed that
theVg difference between the onset voltage ofp-channel and
the bumps in Figs. 1 and 2 is about 3 V, which is similar to
the off-state range of the DWNT-FET under a vacuum. Thus,
based on this theory, the small bumps in theIds-Vg curves
and subsequent small traces of the current tailing in the posi-
tive side of Vg would be precursors ofn channels in the
otherwise ambipolar DWNT-FET.

We performedab initio density-functionalsDFTd calcu-
lations using the basis of plane-wave set with the cutoff en-
ergy of 500 eV.9,10 The ultrasoft pseudopotentials are imple-
mented for the ionic potentials,11 and the generalized
gradient approximationsGGAd is used for the exchange-
correlation potential.12 Since it is well known that the influ-
ences of O2 and H2O are significant on the device perfor-
mance of CNT-FET,7,8,13 it is necessary to investigate the
effect of these molecules on the CNT. Thes10,0d CNT,

whose band gap is found to be 0.7 eV, is exploited as an
example for a typical semiconducting CNT. Despite the fact
that commonly synthesized nanotubes may have a larger di-
ameter than thes10,0d nanotube, the results, which will be
discussed in this paragraph, can be applied for such large
diameter semiconducting nanotubes. Twice the minimal unit
cell of the zigzag nanotubes<8.49 Åd is used for the unit
cell along the axial direction of the CNT. Along the perpen-
dicular direction to the axis, the nanotube is separated from
its replica with a large vacuum region of about 10 Å. As
shown in Fig. 4, the fully relaxed O2 position is located in
between two C–C bonds with a binding energy of 0.013 eV,
which is in an overall agreement with the previous
works.14,15 The dispersion forces are not dealt within the
DFT calculations. However, a proper consideration of disper-
sion forces would increase the binding energy about 0.1 eV
over that of the GGA value.14 In fact, we observe that the
LUMO level of oxygen lies somewhere in the gap of the
CNT. Since the oxygen adsorption on the surface of nano-
tube is a weak physisorption with negligible charge
transfer,15,16 two half-filled ppp* states should be around the
Fermi level of the CNT. In other words, there should be
unoccupied molecular levels at or just above the Fermi level,
irrespective of the diameter of the semiconducting CNT.

The effect of oxygen adsorption on CNT has been con-
troversial. An earlier study suggested that the binding energy
of O2 on CNT wall is strong, and thus the substantial charge
transfer results in the hole doping of the CNT.17 Subsequent
studies have declined the possibility of the O2-induced hole
doping.14–16 However, we have found that the LUMO level
of O2 adsorbators could provide the charge trapping centers,

FIG. 1. sColord sad The upper panel showsIds-Vg curves of the DWNT-FET
under the influence of ambient air condition with various source-drain volt-
ages. A schematic drawing of the device is given in inset.sbd Scanning
electron microscopy figure of the DWNT-FET and high-resolution transmis-
sion electron microscopy figure of DWNT used for this work.

FIG. 2. sColord Transfer characteristics of DWNT-FET under ambient air,
vacuum of 3310−6 Torr, and at intermediate pumping stages.

FIG. 3. sColord Schematic band structure of the carbon nanotubesblued and
the LUMO level of the adsorbatorssredd, with respect to the Fermi level.

FIG. 4. sColord Adsorption geometry of oxygen molecule on the wall of the
s10,0d nanotube andab initio band structure the oxygen adsorbed nanotube
system. Arrows insbd indicate oxygen molecular states.
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irrespective of the possibility of a practical hole doping by
the oxygen adsorption. These charge trapping centers could
screen the electric field from the positively biased gate, re-
sulting in the suppression of electron channel formation.

We performed the same calculation for the water-
adsorbed CNT, adopting the adsorption geometry discussed
in literature.18 It is found that the LUMO level of H2O is
about 4 eV above the Fermi level of the CNT. Thus, it is
believed that the effect of water vapor on the aforementioned
suppression of then-channel formation is insignificant.19

In summary, we observed a unipolar behavior of DWNT-
FET under ambient air. We suggest that electrons trapped by
the adsorbators, whose LUMO level is in the band gap of the
CNT, suppress then-channel formation on the positive gate
voltage, leading to a unipolar transfer characteristic. Through
ab initio density-functional calculations, we concluded that
the oxygen molecule could be the most probable candidate
for such an adsorbator, which induces the conversion of
DWNT-FET into a unipolar behavior.
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National University for their cooperation. This research
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rea National Research Program.
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