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In this paper we present a moment closure method for stochastically modeled chemical or
biochemical reaction networks. We derive a system of differential equations which describes the
dynamics of means and all central moments from a chemical master equation. Truncating the system
for the central moments at a certain moment term and using Taylor approximation, we obtain
explicit representations of means and covariances and even higher central moments in recursive
forms. This enables us to deal with the moments in successive differential equations and use
conventional numerical methods for their approximations. Furthermore, we estimate the errors in
the means and central moments generated by the approximation method. We also find the moments
at equilibrium by solving truncated algebraic equations. We show in examples that numerical
solutions based on the moment closure method are accurate and efficient by comparing the results
to those of stochastic simulation algorithms. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3103264�

I. INTRODUCTION

A well-mixed biochemical reaction system at constant
temperature and volume has traditionally been modeled by a
system of ordinary differential equations �ODEs�. The gen-
eral form of the governing equation is

dc

dt
= VF�c�t�� , �1�

where c�t�= �c1�t� , . . . ,cn�t��, each ci�t� is the concentration
of ith species at time t, V is the stoichiometric matrix, and
F�c� is the vector of reaction rate functions, which are often
determined by mass-action kinetics. Equation �1� is deter-
ministic since it has no terms corresponding to random
events and gives a complete description of the dynamics of
the system for a given initial condition.

However, if the system is characterized by interactions
of small number of molecular species, the ODE system �1�
may not be accurate since the molecular interactions are in-
herently stochastic and the state variables for describing the
dynamics of molecular species are discrete random variables
rather than continuous deterministic variables. To describe
the random behavior of such a system and investigate how
each molecular species evolves, a stochastic description is
required.

In the stochastic description, a state variable is defined as
N�t�= �N1�t� ,N2�t� , . . . ,Ns�t��, where each Ni�t� is a random
variable that denotes the molecular number of ith species at
time t. Under Markovian assumption on the system, a gov-

erning equation, the so-called chemical master equation, is
given by

dp�n,t�
dt

= �
k

�Rk�n − Vk�p�n − Vk,t� − Rk�n�p�n,t�� , �2�

where p�n , t� denotes the probability of the state n
= �n1 , . . . ,ns� at time t, i.e., p�n , t�=Prob�N�t�=n�, Rk�n� de-
notes the so-called propensity of kth reaction at the state n,
and Vk denotes the kth column vector of the stoichiometric
matrix V.1

If one could solve Eq. �2�, the solution would completely
describe the stochastic dynamics of the system. However, it
is generally very difficult, if not impossible, to find the solu-
tion of Eq. �2� for most complex chemical systems. For this
reason, researchers often resort to simulating the dynamics of
system by stochastic simulation algorithms �SSAs� such as
Gillespie algorithm or its modifications,2–4 or turn to finding
the first moment�=mean� and the second central moment�
=covariance� instead of the probability distribution. It is un-
derstandable in that the two moments are computed more
easily than the probability distribution and also they give a
decent description for the stochastic dynamics such as aver-
aging behavior and evolution of the noise in the system.

For linear systems, an explicit expression for the first
two moments can be found.5 On the contrary, if nonlinear
reactions are involved in a given system, it is not the case
because equations of moments are not closed, i.e., any dif-
ferential equation that describes time evolution of a moment
includes one or more higher moment terms. To find each
moment for such a system, one has to solve an infinite di-
mensional ODE system. There have been several attempts to
solve this problem in the literature of population biology and
chemistry, most of which are based on the assumption that
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the distribution of the system follows a certain distribution
such as normal6–8 or log normal.9 Recently, Hespanha and
Singh10 presented a stochastic hybrid method for approxi-
mating an infinite ODE system of moments by a finite non-
linear ODE system of the first two moments and Engblom11

derived a general form of equations for higher order mo-
ments.

In this paper, we derive an ODE system of moment
equations for stochastic reaction networks and develop a mo-
ment closure method �MCM� for efficient approximation.
While a similar approach in obtaining the ODE system of
moment equations was studied,11 the derivation of the ODE
system in this paper is more explicitly developed in relation
to approximation. We further truncate the equations at a cer-
tain order of moments so that conventional numerical
schemes can be applied to them. To the authors’ knowledge,
the recursive computation of moments by the truncation of
moment equations at high order moments and the error esti-
mation generated by the truncation have not been reported
yet.

The outline of the paper is as follows. In Sec. II, we
derive a system of ODEs for means and all central moments.
In Sec. III, a MCM and numerical approximation based on
the method are developed. In Sec. IV, we illustrate its per-
formances through three examples.

II. MOMENT EQUATIONS

We consider a general stochastic chemical or biochemi-
cal network with r reactions and s species. As described in
Sec. I, the governing equation of the system is

dp�n,t�
dt

= �
k=1

r

�Rk�n − Vk�p�n − Vk,t� − Rk�n�p�n,t�� . �3�

We can also describe the dynamics of the stochastic system
by a Markov chain, by considering all possible states and
transitions between the states. In this description, the govern-
ing equation can be written as a Kolmogorov system

dP�t�
dt

= KP�t� , �4�

where P�t� is the vector whose ith entry is the probability of
the ith state ni at time t and K is the transition matrix whose
off-diagonal entries are determined by the propensities Rk

and diagonal entries by Kjj =−�i�jKij. The formal solution of
Eq. �4� is given by

P�t� = eKtP�0� ,

which presents how the system evolves exactly. Note that K
is infinite dimensional if the state space of the system is
unbounded, and even when the state space is bounded, it is a
big and sparse matrix. Due to this reason, one has difficulties
in solving Eq. �4� numerically.

A. Derivation of moment equations

In this section we derive an ODE system of any
moments for molecular species in reaction networks. Before
doing so, we assume that all reactions in the networks are at
most bimolecular, since monomolecular, bimolecular, and
thermolecular reactions essentially account for all reaction
mechanisms in chemical systems and most thermolecular re-
actions can be considered as two consecutive bimolecular
reactions. Thus, hereafter we assume that the propensities
Rk�N� are at most quadratic functions of N.

To obtain the moment equations for the first moments,
we multiply ni to Eq. �3� and sum over all accessible states
n= �n1 , . . . ,ns� and then obtain

�
n

ni
dp�n,t�

dt
= �

k
�

n

niRk�n − Vk�p�n − Vk,t�

− niRk�n�p�n,t� . �5�

By applying a transformation n−Vk→n in the first term of
the right-hand side of the above equation and then rewriting
Rk in terms of �N−�� or using the Taylor formula for Rk at
N=�, one can obtain equations for the first moments and
second central moments,

d�i

dt
= �

k

Vk,i�Rk��� +
1

2�
l,m

�2Rk���
�Nl � Nm

�lm� �6�

d�ij

dt
= �

k
�Vk,i�

�

�Rk���
�N�

� j� + Vk,j�
�

�Rk���
�N�

�i�

+ Vk,iVk,j�Rk��� +
1

2�
�,m

�2Rk���
�N� � Nm

��m�
+ Vk,i

1

2�
�,m

�2Rk���
�N� � Nm

� j�m

+ Vk,j
1

2�
�,m

�2Rk���
�N� � Nm

�i�m	 , �7�

where �ij =E��Ni−�i��Nj −� j�� and �ijk=E��Ni−�i��Nj −� j�
��Nk−�k��. Refer to Appendix for a detailed derivation.

Furthermore, after some computations, we can obtain the
equation for general mth central moments, denoted by

Mi1,. . .,is
= E��N1 − �1�i1

¯ �Ns − �s�is� ,

for m= i1+ ¯ + is�2 as follows:

134107-2 Lee, Kim, and Kim J. Chem. Phys. 130, 134107 �2009�
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dMi1,i2,. . .,is

dt
=

d

dt
E��N1 − �1�i1

¯ �Ns − �s�is� = �
k

Rk��� �
�1,�2,. . .,�s

�1+¯+�s�m

� i1

�1
�¯ � is

�s
��Vk,1�i1−�1

¯ �Vk,s�is−�sM�1,. . .,�s

+ �
k

�
q

�Rk���
�Nq

�
�1,�2,. . .,�s

�1+¯+�s�m

� i1

�1
�¯ � is

�s
��Vk,1�i1−�1

¯ �Vk,s�is−�sM�1,. . .,�q+1,. . .,�s

+
1

2�
k

�
q,r

�2Rk���
�Nq � Nr

�
�1,�2,. . .,�s

�1+¯+�s�m

� i1

�1
�¯ � is

�s
��Vk,1�i1−�1

¯ �Vk,s�is−�sM�1,. . .,�s+eq+er
− �

j=1

s

ij� j�Mi1,. . .,ij−1,. . .,is
, �8�

where � i
�

�= i ! /� ! �i−��! and the subscript �1 , . . . ,�s+eq+er

denotes adding 1 to qth and rth entries of �1 , . . . ,�s, respec-
tively. Refer to Appendix for a detailed derivation.

If an initial condition is given deterministically, i.e.,
p�n , t=0�=1 for a certain state n= �n1 , . . . ,ns�, then �i�0�
=ni for any i=1, . . . ,s, and

Mi1,. . .,is
�0� = 
1, if i1 = ¯ = is = 0

0, otherwise,
�

for any i1 , . . . , is such that i1+ ¯ + is=m�2. Thus, one can
obtain from Eq. �8�,

Mi1,i2,. . .,is
� �0� = �

k

Vk,1 ¯ Vk,sRk���0�� , �9�

which will be used when Mi1,i2,. . .,is
� �0� is computed in Sec.

III.
Furthermore, if one can find the central moments from

Eq. �8�, the time-dependent probability of the system can be
written formally by inversion theorem for characteristic
function as follows. If we denote the molecular number of a
certain species and its mean by N and �, the characteristic
function ��� , t� of �N−�� at time t is given by

���,t� = E�ei��N−��t��� = E��
m=0

�
�i�N�t� − ��t���m

m!
�m	

= �
m=0

�
im�m

m!
E��N�t� − ��t��m� = �

m=0

�
im�m

m!
Mm�t� ,

where Mm�t�=E��N�t�−��t��m�. By the inversion formula,12

one can obtain a formal expression of probability distribution

p�n = � + x,t� = p�n − � = x,t� =
1

2�
�

−�

�

e−ix����,t�d�

=
1

2�
�
m=0

�
im

m!
Mm�t��

−�

�

e−ix��md� �10�

for each x=−� ,−�+1,¯ at time t.

B. Moment equations for special cases

When all reactions are zero or first order, Rk are constant
or linear functions. In this case, one can obtain from Eqs. �6�
and �7� closed equations for the means and covariances

d�i

dt
= �

k

Vk,iRk��� , �11�

d�ij

dt
= �

k
�Vk,i�

�

�Rk���
�N�

� j� + Vk,j�
�

�Rk���
�N�

�i�

+ Vk,iVk,jRk���	 . �12�

Thus, one can explicitly find the expression for the
means and covariances by solving Eqs. �11� and �12�. Note
that in the deterministic description of zero or first order
reaction networks, the governing Eq. �1� is of a form

dci

dt
= �

k

Vk,iFk�c� , �13�

where Fk are constant or linear functions of the concentra-
tion c. Thus, one can see that the equation obtained by di-
viding Eq. �11� by the volume of the system is the same
equation as Eq. �13�.

If the system is assumed to have �approximately� a sym-
metric distribution such as multivariate normal distribution,13

one can obtain closed mean and covariance equations, since
third central moments are zero. In this case, one can rewrite
Eq. �7� as

d�ij

dt
= �

k
�Vk,i�

�

�Rk���
�N�

� j� + Vk,j�
�

�Rk���
�N�

�i�

+ Vk,iVk,j�Rk��� +
1

2�
�,m

�2Rk���
�N� � Nm

��m�	 . �14�

Thus, one can obtain the means and covariances by solving
Eqs. �6� and �14�.

Note that if the system has a second-order reaction, Eqs.
�6� and �7� are not closed, since Eq. �6� contains second
central moment terms and Eq. �7� contains third central mo-
ment terms. In general, one can see that �m+1�st central
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moment appears in mth central moment equation due to the
existence of a second-order reaction. Thus, in this case, it is
difficult, if not impossible, to find the explicit solution for the
mean, covariance, and higher central moments.

III. MOMENT CLOSURE METHOD

In this section we develop a MCM to obtain the approxi-
mate solutions of means and covariances for molecular num-
bers of species in general reaction networks. Its numerical
performance will be tested in three examples in Sec. IV.

A. Approximation of moments

Let us discuss the approximation based on the Taylor
theorem first. Due to the recursive structure of Eqs. �6�–�8�,
one can derive a numerical solution as accurate as one wants,
using Taylor theorem, as follows. First, in the case that a
system has bounded state space, the matrix K in Eq. �4� is
finite dimensional. Here note that every closed reaction sys-
tem has bounded state space, but a system with a bounded
state space is not necessarily closed, e.g., S1+S2�S3→�. In
such a system with bounded state space, the solution P�t� of
Eq. �4� is given by linear combinations of exponential terms
tie�jt, where � j are eigenvalues of K and i is a nonnegative
integer. More precisely, one can write the solution P�t� of
Eq. �4� as

P�t� = eKtP�0� = �
j
�e�jt	 j + �

i=1

N−1
ti

�i − 1�!
e�jt�Dj�i	P�0� ,

�15�

where 	 j and Dj are the eigenprojection and the eigen-
nilpotent of the eigenvalue � j of K, respectively, and N is the
order of eigen-nilpotents of K.15 Thus, each component Pi�t�
of the vector P�t� is an analytic function in the set R of real
numbers by which we mean that each Pi�t� is infinitely dif-
ferentiable and power series expandable. Therefore, for any
point t0�R, the Taylor series

�
k=0

�
Pi

�k��t0�
k!

�t − t0�k

converges to Pi�t� in a neighborhood of t0. The mean
E�Ni�t��=�i�t� is also an analytic function in R, since �i�t� is
the finite sum �ni

niP�i��t�, where P�i��t� denotes the probabil-
ity that Ni�t�=ni, which can be found from the probability
solution P�t�. Similarly, any mth central moments for m�2
are analytic functions in R. Thus, according to the Taylor
theorem, the exact means and variances are written as

�i�t� = �
k=0

�
�i

�k��0�
k!

tk, �16�

�ii�t� = �
k=0

�
�ii

�k��0�
k!

tk, �17�

and also one can approximate the means and variances by
Taylor polynomials of degree N,

�i�t�  �
k=0

N
�i

�k��0�
k!

tk, �18�

�ii�t�  �
k=0

N
�ii

�k��0�
k!

tk. �19�

Here N is a positive integer that denotes a truncation degree.
The errors in Eqs. �18� and �19� are

�i
�N+1��t1�

�N + 1�!
tN+1

and

�ii
�N+1��t2�

�N + 1�!
tN+1,

respectively, for certain t1 , t2� �0, t�. Note that the approxi-
mations �18� and �19� are valid under the condition that
means and moments are infinitely differentiable, which is a
weaker condition than analyticity.

In case that a system has unbounded state space, e.g.,
�→S1�S2→�, the matrix K is infinite dimensional and
therefore there is no guarantee that the solution of Eq. �4� is
analytic. Thus, in this case, the Taylor representations �16�
and �17� for mean and variance may not be valid. However,
the Taylor approximations �18� and �19� are still valid, since
it is obvious from the infinite dimensional ODE systems
�6�–�8� that the means and variances are infinitely differen-
tiable.

Once the initial distribution of the system is given, one
can find �i

�k��0� and �ii
�k��0�, k=0,1 ,2 ,¯, and therefore ap-

proximate �i�t� and �ii�t� as in Eqs. �18� and �19�. Let us
describe in detail a recursive procedure to compute �i

�k� and
�ii

�k� from Eqs. �6�–�8�. Hereafter, for the sake of simplicity,
we denote by bold types � and Mk ,k�2 the vector of means
and the vector of all kth central moments Mi1,¯,is

with i1

+ ¯ + is=k, respectively, and we denote by Mk ,k�2 any one
of kth central moments.

We first find ���0� from Eq. �6�. The first derivative of
the second central moment M2��0� is obtained from Eq. �7�
and then again, by taking differentiation on Eq. �6�, ���0� is
derived. Similarly, we compute M3��0�, M2��0�, and ��3��0� in
order, involving successive differentiations on Eqs. �6�–�8�.
Note that if the initial condition is deterministic, one can use
the simplified Eq. �9� for finding Mn��0� for any n�2. This
procedure can be visualized in a diagram,

���0� ,

M2��0� → ���0� ,

M3��0� → M2��0� → ��3��0� ,

and in general,

Mn��0� → Mn−1� �0� → ¯ → M2
�n−1��0� → ��n��0� .

This procedure generates a Taylor polynomial of degree N
for the exact mean and variance.
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Figure 1 depicts several approximations for the mean
with various truncation degree N. One can see that the ap-
proximation range gradually widens as N gets increased. A
weak point of this approximation is that although the above
recursive algorithm based on the Taylor expansion gives as
accurate numerical solutions as we want by raising the trun-
cation degree, its computational cost is generally expensive
for a practical use. As N increases, the amount of computa-
tion involved in symbolic differentiation grows at a rate of
N2, while the approximation range extends linearly with N as
in Fig. 1. Moreover, it is not easy to find explicitly a priori
estimation for the range of the approximation within a cer-
tain error; suppose we want to make the errors by Taylor
polynomial �18� of the mean �i less than a constant C as
follows:

��i
�N+1��t1�

�N + 1�!
tN+1� 
 C �20�

for some t1� �0, t�. Thus, we have

0 
 t 
 � �N + 1� ! C

��i
�N+1��t1�� �

N+1

.

Since we only know the existence of the t1 from Taylor theo-
rem, if we let Di�N+1, t�= max

s��0,t�

��i
�N+1��s��, we obtain

0 
 t 
 � �N + 1� ! C

Di�N + 1,t��
N+1

.

Then, one can obtain a priori estimation for the interval of
the approximation if one knows an upper bound for �N
+1�st derivative of the mean �i. However, it is not easy to
find an upper bound for �N+1�st derivative of �i when �i is
unknown, which is the case for nonlinear reaction systems.
Thus, an explicit a priori estimation is hardly obtainable in
general nonlinear reaction systems. The same difficulty
arises when one finds a priori estimation for the interval of
the approximation of the variance �ii.

This observation turns our attention to alternative meth-
ods for numerical integration that gives an explicit error es-
timation.

B. Truncation of the system

While Eqs. �6�–�8� actually define an infinite dimen-
sional systems of ODEs, one can reduce the system into
finite one by adopting an assumption based on the recurrence
structure of the equations. If the Nth moments MN are as-
sumed to be constantly zero, the system is separated into two
parts, finite and infinite dimensional ones. The finite dimen-
sional subsystem only contains � and low order moments
M2 , ¯MN−1 and works independently of the other part. This
truncation is well justified in terms of numerical approxima-
tion by the following Theorem 3. Once we obtain the corre-
sponding finite subsystem, we can apply conventional nu-
merical schemes to obtain numerical solutions.

The idea of truncation can be seen as a generalization of
the normal approximation.6,14 In the normal approximation,
it is assumed that nth moment Mn=0 for all odd n, and so
one can close the moment Eq. �8� at n=3. The moment
Eq. �8� enables us to improve this closure method and close
Eq. �8� at an arbitrary n�3 without placing any assumption
on M3.

Let us estimate the errors generated by the truncation
method. We can write Eqs. �6�–�8� for any means and kth
central moment Mk for k�2 as

d�

dt
= f1��� + A2M2, �21�

dMk

dt
= fk��,��,M2, . . . ,Mk� + Ak+1Mk+1, �22�

where fk ,k�1 and Ak ,k�2 are vector functions and con-
stant matrices determined by Eqs. �6� and �8�, respectively.
By setting MN=0, we truncate the infinite system �8� into
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t
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Ext. Sol.

N=10 N=30 N=50 N=70

FIG. 1. �Color online� Comparison of the MCM with
various degrees of truncations. The example of the re-
versible bimolecular reaction in Sec. IV A is used with
the initial condition n1�0�=50 and k1, k−1=1.
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finite set of equations only with means and first N−1 central
moments as follows:

d�

dt
= f1��� + A2M2, �23�

dMi

dt
= fi��,��,M2, . . . ,Mi� + Ai+1Mi+1,

for i = 2, . . . ,N − 2, �24�

dMN−1

dt
= fN−1��,��,M2, . . . ,MN−1� . �25�

In the following theorem, the big O notation O�hn� is
adopted, by which we mean there is a constant K�0 such
that

lim
h→0
�O�hn�

hn � 
 K .

Theorem 1: Suppose that we truncate systems �21� and
�22� by letting Nth central moment MN�t�=0 at any t in a
time interval �0,h�, then the error between the exact mean
and the approximated mean obtained from the truncated
equations is O�hN−1� and the error in second central moments
M2�t� is O�hN−2� for any t� �0,h�.

Proof: Note that since MN�t� is a continuous function
and so it is bounded in �0,h�, there is a constant C�0 such
that for any Nth moments MN,

�MN�t�� 
 C

for any t�0 in a time interval �0,h�. Thus, for any t in �0,h�,
one can obtain the solution of Eq. �22� for k=N−1,

MN−1�t� = �
0

t

fN−1ds + AN�
0

t

MNds � �
0

t

fN−1ds + C�N − 1,t� .

�26�

Here note that the vector function C�N−1, t� is the error in
MN−1 generated by letting MN=0 and its ith component
Ci�N−1, t� is bounded by

�Ci�N − 1,t�� = �AN
i · �

0

t

MNds�

 �AN

i ���
0

t

MNds�

 �AN�hC � hDN,

where AN
i denotes ith row vector of AN, �v� denotes the

length of the vector v, and �AN�=max
i

��AN
i ��. Moreover, for

the vector MN−2 of �N−2�nd moments,

dMN−2

dt
= fN−2��,��,M2, . . . ,MN−2� + AN−1MN−1

= fN−2��,��,M2, . . . ,MN−2�

+ AN−1��
0

t

fN−1ds + C�N − 1,t�� ,

and so

MN−2�t�  �
0

t

fN−2ds + AN−1�
0

t ��
0

s

fN−1dr�ds ,

where the approximation error in any ith component of MN−2

is

�AN−1
i · �

0

t

C�N − 1,s�ds� 
 �AN−1
i ���

0

t

C�N − 1,s�ds�

 �AN−1�h2DN � h2DN−1,

where �AN−1�=maxi��AN−1
i ��. Similarly, one obtains

MN−3�t�  �
0

t

fN−3��,��, . . . ,MN−3�ds + AN−2�
0

t ��
0

s

fN−2dr

+ AN−1�
0

s ��
0

r

fN−1du�dr�ds ,

where the approximation error in any ith component of MN−3

is less than �AN−2�h3DN−1�h3DN−2 and �AN−2�
=maxi��AN−2

i ��. By applying the same argument repeatedly,
one can see that the approximation errors in M2 and ��t� are
O�hN−2� and O�hN−1�, respectively. This completes the proof
of the theorem.

The theorem guarantees consistency of truncation as a
numerical approximation. Raising truncation order N gener-
ally improves approximation. However, if the chosen order N
is even, one can most likely obtain a better result with the
order N−1. To explain this interesting phenomenon, one
needs to understand in the above proof that the order of
magnitude of errors depends proportionally on the bound C
of the truncated moment MN. We argue that truncation at an
even order, say k, is generally less beneficial for approxima-
tion than truncation at the preceding odd order k−1, since
Mk−1 is likely smaller than Mk in magnitude. Particularly,

�Mk−1�t�� 
 �Mk�t��, t � �0,h� . �27�

This can be roughly justified as follows. Observing a kth
moment Mk=Mi1,i2,. . .,is

=�ni
�n1−�1�i1

¯ �ns−�s�isp�n , t�, one
can see that all summands of Mk are positive. On the con-
trary, each summand of the Mk−1 is either positive or nega-
tive, depending on the sign of each factor ni−�i. This makes
Mk−1 most probably less than Mk. �For a detailed proof for
the case of a single variable, refer to Appendix.� Moreover,
for a system with a sufficiently large volume, Eq. �27� can be
seen as a consequence of Kurtz’s limit theorem14 mentioned
in Sec. II B, that is, the distribution of the system is known to
approach a multivariate normal distribution as the volume of
the system increases, and the fact that the multivariate nor-
mal distribution has zero central moments at all odd orders
and positive central moments at all even orders.

134107-6 Lee, Kim, and Kim J. Chem. Phys. 130, 134107 �2009�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Mon, 10 Nov 2014 08:41:41



Now suppose we truncate the system at n=N by letting
MN=0. Although the original infinite dimensional system is
reduced to finite dimensional one, in most cases it is still too
complicated to find an exact solution. Therefore one has to
apply a certain numerical scheme to integrate the truncated
system numerically. In this respect, the numerical approxi-
mation using the MCM is a combination of two procedures:
truncation and numerical integration.

The error generated at the first procedure, which is the
difference between the exact solution of the original system
��t� and the exact solution of the truncated system �T�t�, is
shown to be O�hN−1� in the previous theorem, where h is a
small time step. Application of a numerical scheme also gen-
erates the second error between �T�t� and the numerical so-
lution �R�t�. Thus, the final error is bounded as

���t� − �R�t�� 
 ���t� − �T�t�� + ��T�t� − �R�t�� . �28�

If the numerical scheme being used has the local error
O�hM�, then the local error of the MCM is generally O�hL�,
where L=min�M ,N−1�.This means that in order to improve
numerical approximation, one should raise not only the order
of the numerical scheme but also the order of truncation
together. A similar argument can be made for variance �ii.

C. Approximation of equilibriums

It is generally challenging to find equilibriums of com-
plex stochastic reaction systems, either analytically or com-
putationally. The examples in Sec. IV show that the MCM
carries out great performances in tracking the solutions and
capturing its steady states numerically. However, if finding
steady states is the only concern, that is, if we do not need
the transition trajectory of the solution but its equilibriums,
we can easily find them by solving algebraic equations in-
stead of performing numerical integration.

One can see that for truncated systems �23�–�25� with
the truncation order N, the constant solutions for
� ,M2 , . . . ,Mn−1 at an equilibrium satisfy

0 = f1��� + A2M2, �29�

0 = fn��,0,M2, . . . ,Mn� + An+1Mn+1, for n = 2, . . . ,N − 2,

�30�

0 = fN−1��,0,M2, . . . ,MN−1� . �31�

Note that the derivatives on the left hand side are all zero, so
the original differential equations now turn into the algebraic
equations. Solving these equations gives an approximation
for the steady-state solutions, which would be obtained by
the application of the above MCM with a very small time
step. This is rather a shortcut to approximation for the
steady-state solutions in that solving algebraic equations is
far less expensive in computational cost, especially when the
system takes long time to settle down to equilibrium.

Solving the algebraic equations naturally leads to mul-
tiple sets of solutions, suggesting existence of multiple equi-
libriums of the original systems. It is interesting that the
number of solution sets that one can find in the approxima-
tion depends on the truncation order. In many cases, most of
those solutions turn out to be negative or complex numbers,
and therefore physically invalid. There is commonly one or
two valid solution sets derived from the truncated systems.
For multiple equilibriums, one can carry out the linear sta-
bility analysis on the system and classify the equilibrium of
the system according to the initial conditions.

IV. APPLICATIONS

In the following three examples, we present numerical
performances of the MCM developed in Sec. III. To show
clearly how the MCM works, we first consider two simple
but important reaction systems, a reversible bimolecular re-
action and an enzyme-substrate model. The third example
compares the results of the MCM with those of the �-leaping
method in computational cost.

A. A reversible bimolecular reaction

We consider a simple nonlinear reversible reaction

S1 + S2�
k2

k1

S3.

Let Ni�t� be the number of molecules of species Si at time t
for each i=1,2 ,3. Note that the reaction network is a closed
system, which has two conservation relations n1+n3=A and
n2+n3=B, where Ni�t�=ni, i=1,2 ,3 at a time t, and A and B
are positive integers. Also, the stoichiometric matrix V is
given by

V = �− 1 1

− 1 1

1 − 1
�

and propensity functions R1 and R2 are given by

R1 = k1N1N2 = k1N1�B − A + N1�, R2 = k2N3 = k2�A − N1� .

Since �R1 /�N1=k1�B−A+2N1�, �2R1 /�N1
2=2k1, �R2 /�N1

=−k2, and �2R2 /�N1
2=0, by Taylor series expansion of R1

and R2 at N=�, one can obtain

R1�N1� = k1�1�B − A + �1� + k1�B − A + 2�1��N1 − �1�

+ k1�N1 − �1�2, �32�

R2�N1� = k2�A − �1� − k2�N1 − �1� . �33�

Hereafter, for convenience of notation, we drop the subscript
“1” of N1 and n1 and use only N and n instead of N1 and n1,
respectively. Using Eqs. �6� and �8�, one can find the equa-
tion for the mean � of the species S1,

d�

dt
= �− 1��k1��B − A + �� + k1M2� + k2�A − �� , �34�

and the equation for mth central moment Mm=E��N−��m�
for m�2,
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dMm

dt
=

d

dt��n

�n − ��mp�n,t�� = �
n

�n − ��mdp�n,t�
dt

− m���
n

�n − ��m−1p�n,t�

= k1��B − A + ����
k=0

m−1 �m

k
��− 1�m−kMk� + k1�B − A + 2����

k=0

m−1 �m

k
��− 1�m−kMk+1�

+ k1��
k=0

m−1 �m

k
��− 1�m−kMk+2� + k2�A − ����

k=0

m−1 �m

k
�Mk�

− k2��
k=0

m−1 �m

k
�Mk+1� − m��Mm−1, �35�

where M0�t�=E�1�=1 and M1�t�=E�N−��=0 for all t�0.
For approximation, we truncate the system of Eqs. �34�

and �35� at various order, N=3,5 ,7. On each truncated sys-
tem, we apply the Runge–Kutta method of order 4 �RK4�,
which is one of the most popular numerical schemes for
ODEs.

Figure 2 depicts the approximate solutions for the mean
� and the variance M2. One can see that the numerical result
improves gradually as the truncation order rises. However, it
does not generate much improvement at N=9, which is un-
derstandable considering that the order of approximation us-
ing the MCM is constrained by both the order of truncation
and that of the numerical scheme. Refer to Eq. �28�.

Although the above numerical solutions successfully
capture the equilibrium solutions for � and M2, one can de-
rive even better approximation for equilibriums using the
method mentioned in Sec. III C. We turn Eqs. �34� and �35�
into algebraic equations by setting d� /dt=dMm /dt=0.
Solving the corresponding algebraic equations about
� ,M2 , . . . ,MN−1 gives the steady-state solutions. Note that

this result is the same as what we would obtain by the appli-
cation of the MCM with infinitely small step size h. Table I
shows the errors at equilibrium obtained from the method in
Sec. III C.

The errors seem to agree well with the final errors ap-
pearing in Fig. 2. However, they are much better in that we
obtained the same results even without numerical integra-
tion. If the system would take longer time to settle down to
equilibrium, this difference in computational cost would be
huge. Therefore, especially when our concern is to approxi-
mate only equilibriums and not the whole trajectories of the
system evolution, the suggested method provides a definite
shortcut.

TABLE I. Errors at equilibrium of the reversible bimolecular reaction.

� M2

N=3 8.1053�10−4 8.3307�10−3

N=5 1.3115�10−5 1.3481�10−4

N=7 3.9524�10−7 4.0627�10−6
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FIG. 2. �Color online� When N1�0�
=20, N2�0�=10, k1=1, and k2=0.1 in
the dimerization, exact mean and vari-
ance of molecular number of species
S1 �upper two graphs� and their errors
in log10 generated from RK4 with step
size h=0.01 and truncation at N
=3,5 ,7, that is, log10�exact solution
−approximate solution� �lower two
graphs�. Here exact mean and variance
are computed directly by solving the
Kolmogorov equation dp /dt=Kp.
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B. Enzyme-substrate kinetics

We consider the enzyme-substrate model

E + S�
k2

k1

ES→
k3

E + P , �36�

where E is an enzyme, S is a substrate, ES is an enzyme-
substrate complex, and P is a product. Let N�t�
= �N1�t� ,N2�t� ,N3�t� ,N4�t�� be the vector of numbers of mol-
ecules of E, S, ES, and P at time t, respectively. Note that
this reaction network has two conservation relations, n1+n3

�A and n2+n3+n4=B, where A and B are positive integers
and Ni�t�=ni, i=1,2 ,3 ,4 at time t. Since n3=A−n1 and n4

=B−n2−n3=B−A+n1−n2, one can see that the system is
characterized by two independent variables n1 and n2. The
stoichiometric matrix V is given by

V = �
− 1 1 1

− 1 1 0

1 − 1 − 1

0 0 1
�

and propensity functions R1�N�, R2�N�, and R3�N� are
given by

R1�N� = k1N1N2, R2�N� = k2N3 = k2�A − N1�,

R3�N� = k3N3 = k3�A − N1� .

Thus,

�R1

�N1
= k1N2,

�R1

�N2
= k1N1,

�2R1

�N1
2 =

�2R1

�N2
2 = 0,

�2R1

�N1N2
= k1,

�R2

�N1
= − k2,

�R2

�N2
= 0,

�2R2

�NiNj
= 0 for i, j = 1,2,

�R3

�N1
= − k3,

�R3

�N2
= 0,

�2R3

�NiNj
= 0 for i, j = 1,2.

By Taylor series expansion of R1, R2, and R3 at N=�, one
can obtain

R1�N� = k1�1�2 + k1�2�N1 − �1� + k1�1�N2 − �2�

+ k1�N1 − �1��N2 − �2� , �37�

R2�N� = k2�A − �1� − k2�N1 − �1� , �38�

R3�N� = k3�A − �1� − k3�N1 − �1� , �39�

where �1=E�N1� and �2=E�N2�. For second or higher order
central moments, we let Mi,j�t�=E��N1−�1�i�N2−�2� j� for
i+ j�2. Note that M2,0�t�=E��N1−�1�2� is the variance of
N1 and M0,2�t�=E��N2−�2�2� is the variance of N2.

From Eqs. �6� and �8�, one can find the equations for the
means �1 and �2,

d�1

dt
= − k1�1�2 + �k2 + k3��A − �1� − k1M1,1, �40�

d�2

dt
= − k1�1�2 + k2�A − �1� − k1M1,1, �41�

and the equation for Mi,j,

dMi,j

dt
=

d

dt
E��N1 − �1�i�N2 − �2� j�

= k1�1�2��
k=0

i−1

�
�=0

j � i

k
�� j

�
��− 1�i−k�− 1� j−�Mk,� + �

�=0

j−1 � j

�
��− 1� j−�Mi,�	

+ k1�2��
k=0

i−1

�
�=0

j � i

k
�� j

�
��− 1�i−k�− 1� j−�Mk+1,� + �

�=0

j−1 � j

�
��− 1� j−�Mi+1,�	

+ k1�1��
k=0

i−1

�
�=0

j � i

k
�� j

�
��− 1�i−k�− 1� j−�Mk,�+1 + �

�=0

j−1 � j

�
��− 1� j−�Mi,�+1	

+ k1��
k=0

i−1

�
�=0

j � i

k
�� j

�
��− 1�i−k�− 1� j−�Mk+1,�+1 + �

�=0

j−1 � j

�
��− 1� j−�Mi+1,�+1	

+ k2�A − �1���
k=0

i−1

�
�=0

j � i

k
�� j

�
�Mk,� + �

�=0

j−1 � j

�
�Mi,�	 − k2��

k=0

i−1

�
�=0

j � i

k
�� j

�
�Mk+1,� + �

�=0

j−1 � j

�
�Mi+1,�	

+ k3�A − �1���
k=0

i−1 � i

k
�Mk,j	 − k3��

k=0

i−1 � i

k
�Mk+1,j	 − i�1�Mi−1,j − j�2�Mi,j−1. �42�
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To approximate the system, we truncate Eqs. �40�–�42�
by setting Mi,j�t�=0 for i+ j=3,5 ,7 and then apply RK4 on
the truncated system. In Figs. 3 and 4, the numerical results
for the means and the variances are compared with the exact
solutions, which are obtained by solving the governing equa-
tion dp /dt=Kp. Truncation at higher order i+ j generates
smaller errors as expected. Figure 5 shows that the error
decreases by reducing the step size h. Although the error at
the steady state decreases for smaller h, the convergence rate
gradually slows down as h→0. However, one can obtain a
better result for the steady state by using the method in Sec.

III C, which happens to yield the exact equilibrium in this
case as �1=10, �2=0.

C. A decaying-dimerizing reaction network

In this section, we consider a decaying-dimerizing reac-
tion network and present the computational efficiency of our
method on it in comparison to SSAs. The decaying-
dimerizing reaction network is known as a stiff system and
studied in Refs. 3, 10, and 16. This network contains three
distinct species interacting through four reaction channels as
follows:
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FIG. 3. �Color online� When n1=10,
n2=20, n3=0, and n4=0 at time t=0
and k1=5, k2=5, k3=1 exact means
of molecular numbers of species E and
S �upper two figures� and errors
in log10 generated by RK4 with
h=0.005 and each truncation at N
=3,5 ,7, that is, log10�exact mean
−approximate mean� �lower two
graphs�.
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FIG. 4. �Color online� When n1=10,
n2=20, n3=0, and n4=0 at time t=0
and k1=5, k2=5, k3=1 variances
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E and S �upper two figures�
and the errors log10�exact mean
−approximate mean� generated by
RK4 with h=0.005 and each trunca-
tion at N=3,5 ,7 �lower two figures�.
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2A1�
k2

k1

A2→
k3

A3, A1→
k4

� .

We let N1, N2, and N3 as random variables that denote the
number of molecules of A1, A2, and A3, respectively. As in
Refs. 16 and 10, we assume reaction rate constants k1=10,
k2=1000, k3=0.1, and k4=1 and an initial condition
�N1 ,N2 ,N3�= �400,798,0�, so that the system is stiff. The
stoichiometric matrix V and propensity functions R1�N�,
R2�N�, R3�N�, and R4�N� are given by

V =�− 2 2 0 − 1

1 − 1 − 1 0

0 0 1 0
�,R�N� =�

R1�N�

R2�N�

R3�N�

R4�N�
�=�

k1

2
N1�N1 − 1�

k2N2

k3N2

k4N1

� .

We let �i�t� as the mean of Ni at time t and let Mi1,i2,i3
�t� as

the central moment E��N1−�1�i1�N2−�2�i2�N3−�3�i3� at time

t. Note that M0,0,0�t�=1, and when i1+ i2+ i3=1, Mi1,i2,i3
�t�

=0 for any time t.
Using Eqs. �6� and �8�, one can find the equations for

means

d�1

dt
= − k1�1��1 − 1� + 2k2�2 − k4�1 − 2k1M2,0,0,

d�2

dt
=

k1

2
�1��1 − 1� − k2�2 − k3�2 + k1M2,0,0,

d�3

dt
= k3�2,

and the equation of the mth moment for m= i1+ i2+ i3�2,

dMi1,i2,i3

dt
=

k1

2
�1��1 − 1� �

�1+�2�i1+i2

� i1

�1
�� i2

�2
��− 2�i1−�1M�1,�2,i3

+ k2�2 �
�1+�2�i1+i2

� i1

�1
�� i2

�2
�2i1−�1�− 1�i2−�2M�1,�2,i3

+ k3�2 �
�2+�3�i2+i3

� i2

�2
�� i3

�3
��− 1�i2−�2Mi1,�2,�3

+ k4�1 �
�1=0

i1−1 � i1

�1
��− 1�i1−�1M�1,i2,i3

+
k1

2
�2�1 − 1� �

�1+�2�i1+i2

� i1

�1
�

�� i2

�2
��− 2�i1−�1M�1+1,�2,i3

+ k2 �
�1+�2�i1+i2

� i1

�1
�� i2

�2
�2i1−�1�− 1�i2−�2M�1,�2+1,i3

+ k3 �
�2+�3�i2+i3

� i2

�2
�� i3

�3
�

��− 1�i2−�2Mi1,�2+1,�3
+ k4 �

�1=0

i1−1 � i1

�1
��− 1�i1−�1M�1+1,i2,i3

+ k1 �
�1+�2�i1+i2

� i1

�1
�� i2

�2
��− 2�i1−�1M�1+2,�2,i3

− i1�1�Mi1−1,i2,i3
− i2�2�Mi1,i2−1,i3

− i3�3�Mi1,i2,i3−1.
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FIG. 5. �Color online� log10�error� for �2 vs a step size
h where k1, k2=1, and k3=0.1 and the initial condition
n1=10, n2=20, and n4=0. The errors are measured at
t=7. The numerical solution diverges for h�0.06 when
N=5.
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The numerical results are illustrated in Fig. 6. We compare
the results to those of the SSA. Since simulation of the stiff
system by the exact SSA requires a large amount of time, we
utilize a more efficient SSA, the so-called �-leaping method.3

The tests were carried out with two different initial condi-
tions to study their ability to cope with stiffness of the sys-
tem. In Fig. 6�a�, we set the initial condition as N1=400,
N2=780, and N3=0, which renders more stiffness and long
time for the system to converge to equilibrium.

One can see that the results of two methods agree well in
both Figs. 6�a� and 6�b�. However, the comparison in CPU
time shows that the MCM is computationally more efficient
than the �-leaping method in Table II.

In Fig. 6�a�, the MCM is more than 15 times faster than
the �-leaping method of 1000 realizations and 50 times faster
than that of 3000 realizations. However, as the results from
1000 realizations suffer from severe fluctuation, we adopt
only the results from 3000 realizations to compare with
MCM in Fig. 6. The ratio between two methods decreases
from 50:1 to 35:1 in Fig. 6�b� as the stiffness of the system
becomes relatively low. This suggests not only that MCM is
computationally more efficient than the �-leaping method in
computation of mean and standard deviation, but also that
the former is less sensitive against stiffness.

V. DISCUSSION

In this paper, we presented a MCM for stochastic reac-
tion networks. We first derived an infinite dimensional sys-
tem of ODEs for mean and all central moments from the
chemical master equation. This enabled us to construct the
mean and variance up to the order that we want by a Taylor
series expansion. Each derivative term of the Taylor series
was obtained recursively from the moment equations de-
rived. Furthermore, we extracted a finite ODE system of the
moments by truncations at second or higher order central
moments. Applying conventional numerical schemes to the
truncated system, we obtained numerical approximations for
the mean and second or higher central moments. The errors
in this approximation were estimated in a rigorous way and
shown to be controllable by adjusting the truncation order.
Moreover, by simple algebraic manipulation on the truncated
system, we found the means and moments at equilibriums
even without numerical integration.

We have shown in examples that the approximation
based on the MCM provides an efficient and accurate alter-
native way to simulate stochastic reaction networks, espe-
cially stiff systems for which simulation by SSAs requires
intensive and expensive computations.
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TABLE II. Comparison of moment closure and �-leaping methods in CPU
time.

MCM
�-leaping

�1000�
�-leaping

�3000�

�N1 ,N2 ,N3�= �400,798,0� 3.1420�102 5.0892�103 1.5975�104

�N1 ,N2 ,N3�= �10,10,0� 5.1921�101 5.5916�102 1.8250�103
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FIG. 6. �Color online� Comparison of
MCM and the �-leaping method in two
cases with different initial conditions.
For the �-leaping method, the illus-
trated results were obtained by averag-
ing 3000 realizations. The parameter 
is set at 0.1 in both �a� and �b�. The
step sizes for MCM are h=0.000 15
and h=0.0009 in �a� and �b�, respec-
tively, and truncation order is N=3 for
both �a� and �b�.

134107-12 Lee, Kim, and Kim J. Chem. Phys. 130, 134107 �2009�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Mon, 10 Nov 2014 08:41:41



APPENDIX: DERIVATION OF EQUATIONS „6…–„8… AND
PROOF OF EQUATION „27…

1. Derivation of Equations „6… and „7…

By applying a transformation n−Vk→n in the first term
of the right side of Eq. �5�,

�
n

ni
dp�n,t�

dt
= �

k
�

n

niRk�n − Vk�p�n − Vk,t�

− niRk�n�p�n,t� ,

we obtain

dE�Ni�
dt

= �
k

�
n

��ni + Vk,i�Rk�n�p�n,t� − niRk�n�p�n,t��

= �
k

�
n

Vk,iRk�n�p�n,t� = �
k

Vk,iE�Rk�N�� ,

where we utilize the fact that E�Rk�N��=�
n

Rk�n�p�n , t� and

Vk,i denotes ith component of the vector Vk. Let �i�t� denote
the mean E�Ni�t�� of the ith species at time t and let ��t�
= ��1�t� , . . . ,�s�t��.

To obtain second central moments, we multiply �ni

−�i��nj −� j� to Eq. �3� and sum over all accessible states n
and then obtain

�
n

�ni − �i��nj − � j�
dp�n,t�

dt

= �
k

�
n

��ni − �i��nj − � j�Rk�n − Vk�p�n − Vk,t�

− �ni − �i��nj − � j�Rk�n�p�n,t�� .

Applying the transformation n−Vk→n again in the first term
of the right-hand side gives

dE��Ni − �i��Nj − � j��
dt

= �
k

�
n

��ni + Vk,i − �i��nj + Vk,j − � j�Rk�n�p�n,t�

− �ni − �i��nj − � j�Rk�n�p�n,t��

= �
k

�
n

��Vk,i�nj − � j�

+ Vk,j�ni − �i� + Vk,iVk,j�Rk�n�p�n,t��

= �
k

�Vk,iE��Nj − � j�Rk�N�� + Vk,jE��Ni − �i�Rk�N��

+ Vk,iVk,jE�Rk�N��� .

Up to now, we can obtain equations for mean and covariance
as

dE�Ni�
dt

= �
k

Vk,iE�Rk�N�� , �A1�

dE��Ni − �i��Nj − � j��
dt

= �
k

�Vk,iE��Nj − � j�Rk�N�� + Vk,jE��Ni − �i�Rk�N��

+ Vk,iVk,jE�Rk�N��� , �A2�

for each i, j=1, . . . ,s.
Since each Rk is at most quadratic, we derive by writing

Rk in terms of �N−�� or using the Taylor formula at N=�,

Rk�N� = Rk��� + �
�

�Rk���
�N�

�N� − ���

+
1

2�
�,m

�2Rk���
�N� � Nm

�N� − ����Nm − �m� . �A3�

Since E�N�−���=0 and � is nonrandom, from Eq. �A3� we
obtain

E�Rk�N�� = Rk��� +
1

2�
�,m

�2Rk���
�N� � Nm

E��N� − ����Nm − �m�� ,

�A4�

and for each i,

E�Rk�N��Ni − �i��

= �
�

�Rk���
�N�

E��Ni − �i��N� − ����

+
1

2�
�,m

�2Rk���
�N� � Nm

E��N� − ����Nm − �m��Ni − �i�� .

�A5�

Substitution of Eqs. �A4� and �A5� into Eqs. �A1� and �A2�
gives

dE�Ni�
dt

= �
k

Vk,i�Rk��� +
1

2�
�,m

�2Rk���
�N� � Nm

E��N� − ���

��Nm − �m��� �A6�

and
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dE��Ni − �i��Nj − � j��
dt

= �
k
�Vk,i�

�

�Rk���
�N�

E��Nj − � j��N� − ���� + Vk,j�
�

�Rk���
�N�

E��Ni − �i��N� − ���� + Vk,iVk,j�Rk���

+
1

2�
�,m

�2Rk���
�N� � Nm

E��N� − ����Nm − �m��� + Vk,i
1

2�
�,m

�2Rk���
�N� � Nm

E��Nj − � j��N� − ����Nm − �m��

+ Vk,j
1

2�
�,m

�2Rk���
�N� � Nm

E��Ni − �i��N� − ����Nm − �m��� .

If we denote �ij =E��Ni−�i��Nj −� j�� and �ijk=E��Ni−�i��Nj −� j��Nk−�k��, the equations for the first moments and second
central moments can be found as

d�i

dt
= �

k

Vk,i�Rk��� +
1

2�
�,m

�2Rk���
�N� � Nm

��m� ,

d�ij

dt
= �

k
�Vk,i�

�

�Rk���
�N�

� j� + Vk,j�
�

�Rk���
�N�

�i� + Vk,iVk,j�Rk��� +
1

2�
�,m

�2Rk���
�N� � Nm

��m�
+ Vk,i

1

2�
�,m

�2Rk���
�N� � Nm

� j�m + Vk,j
1

2�
�,m

�2Rk���
�N� � Nm

�i�m	 .

2. Derivation of the moment Equation „8…

To obtain Eq. �8�, we first denote the central moments by

Mi1,. . .,is
= E��N1 − �1�i1

¯ �Ns − �s�is�

for i1+ ¯ + is�2. Then one can compute

dMi1,i2,. . .,is

dt
=

d

dt
E��N1 − �1�i1

¯ �Ns − �s�is�

= �
n

�n1 − �1�i1
¯ �ns − �s�is

dp�n,t�
dt

− �
n

�
j=1

s

ij� j��n1 − �1�i1
¯ �nj − � j�ij−1

¯ �ns − �s�isp�n,t�

= �
k

�
n

��n1 − �1 + Vk,1�i1
¯ �ns − �s + Vk,s�is − �n1 − �1�i1

¯ �ns − �s�is�Rk���p�n,t� − �
j=1

s

ij� j�Mi1,. . .,ij−1,. . .,is

= �
k

�
n
� �

�1=0

i1 � i1

�1
��n1 − �1��1�Vk,1�i1−�1

¯�
�s=0

is � is

�s
��ns − �s��s�Vk,s�is−�s − �n1 − �1�i1

¯ �ns − �s�is	
��Rk��� + �

q

�Rk���
�nq

�nq − �q� +
1

2�
q,r

�2Rk���
�nq � nr

�nq − �q��nr − �r�	p�n,t� − �
j=1

s

ij� j�Mi1,. . .,ij−1,. . .,is

= �
k

�
n

�
�1,�2,. . .,�s

�1+¯+�s�m

� i1

�1
� ¯ � is

�s
��Vk,1�i1−�1

¯ �Vk,s�is−�s�n1 − �1��1
¯ �ns − �s��s

��Rk��� + �
q

�Rk���
�nq

�nq − �q� +
1

2�
q,r

�2Rk���
�nq � nr

�nq − �q��nr − �r�	p�n,t� − �
j=1

s

ij� j�Mi1,. . .,ij−1,. . .,is
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= �
k

Rk��� �
�1,�2,. . .,�s

�1+¯+�s�m

� i1

�1
� ¯ � is

�s
��Vk,1�i1−�1

¯ �Vk,s�is−�sM�1,. . .,�s
+ �

k
�

q

�Rk���
�nq

�
�1,�2,. . .,�s

�1+¯+�s�m

� i1

�1
� ¯ � is

�s
�

���Vk,1�i1−�1
¯ �Vk,s�is−�sM�1,. . .,�q+1,. . .,�s

+
1

2�
k

�
q,r

�2Rk���
�nq � nr

�
�1,�2,. . .,�s

�1+¯+�s�m

� i1

�1
� ¯ � is

�s
�

���Vk,1�i1−�1
¯ �Vk,s�is−�sM�1,. . .,�s+eq+er

− �
j=1

s

ij� j�Mi1,. . .,ij−1,. . .,is
,

where the subscript �1 , . . . ,�s+eq+er denotes adding 1 to qth
and rth entries of �1 , . . . ,�s, respectively.

3. Proof of Equation „27… for a system with a single
variable

Suppose that there is only one single independent vari-
able n in the system such as the reversible bimolecular reac-
tion system in Sec. IV A. Further suppose that the largest
possible value of n is A for any time t� �0,h�. Let a=A
−� and b= ���−�, where ��� denotes the largest integer less
than or equal to �. Then clearly, −1�b
0 and 0�b+1

1. If we let x=n−�, x ranges from −� to a, that is, x=
−� , . . . ,b , b+1, . . . ,a. We can write Mk−1�t� as the sum of
positive and negative terms, Mk−1�t�=�x=−�

b xk−1p�x , t�
+�x=b+1

a xk−1p�x , t�, where the first summation part is negative
and the second one is positive. For the case Mk−1�0,

�Mk−1�t�� − �Mk�t�� = �
x=−�

a

xk−1p�x,t� − �
x=−�

a

xkp�x,t� , �A7�

= �
x=−�

b

xk−1�1 − x�p�x,t� + �
x=b+1

a

xk−1�1 − x�p�x,t� . �A8�

In Eq. �A8�, the only positive term is �b+1�k−1�−b�p�b
+1, t�. Therefore we have

�Mk−1�t�� − �Mk�t�� 
 0,

unless

�b + 1�k−1�− b�p�b + 1,t�

� � �
x=b+2

a

xk−1�1 − x�p�x,t� + �
x=−�

b

xk−1�1 − x�p�x,t�� .

�A9�

Note that inequality �A9� would be valid only in an excep-
tional case that the probability of the state n= ���+1 is much
greater than that of all other states. Thus we can conclude
that Eq. �27� holds in most cases. Likewise, the other case
Mk−1�0 leads to the same conclusion.
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