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ABSTRACT

In this paper, the prediction skills of five ensemble methods for temperature and precipitation are dis-

cussed by considering 20 yr of simulation results (from 1989 to 2008) for four regional climate models

(RCMs) driven by NCEP–Department of Energy and ECMWF Interim Re-Analysis (ERA-Interim)

boundary conditions. The simulation domain is the Coordinated Regional Downscaling Experiment

(CORDEX) for East Asia, and the number of grid points is 197 3 233 with a 50-km horizontal resolution.

Three new performance-based ensemble averaging (PEA) methods are developed in this study using 1)

bias, root-mean-square errors (RMSEs) and absolute correlation (PEA_BRC), RMSE and absolute cor-

relation (PEA_RAC), and RMSE and original correlation (PEA_ROC). The other two ensemble methods

are equal-weighted averaging (EWA) and multivariate linear regression (Mul_Reg). To derive the

weighting coefficients and cross validate the prediction skills of the five ensemble methods, the authors

considered 15-yr and 5-yr data, respectively, from the 20-yr simulation data. Among the five ensemble

methods, the Mul_Reg (EWA) method shows the best (worst) skill during the training period. The

PEA_RAC and PEA_ROC methods show skills that are similar to those of Mul_Reg during the training

period. However, the skills and stabilities of Mul_Reg were drastically reduced when this method was

applied to the prediction period. But, the skills and stabilities of PEA_RAC were only slightly reduced in

this case. As a result, PEA_RAC shows the best skill, irrespective of the seasons and variables, during the

prediction period. This result confirms that the new ensemble method developed in this study, PEA_RAC,

can be used for the prediction of regional climate.

1. Introduction

It is well known that as the computing power of

supercomputers increases, the global climate model

(GCM), regional climate model (RCM), and numerical

weather prediction models (NWPMs) are becoming the

most powerful tools for the understanding and fore-

casting of climate and weather, and the physics and

dynamics of numerical models are becoming more re-

alistic. The improved quality and quantity of observa-

tions are significant contributors to the performance of

various types of numerical models along with the data

assimilation system. However, although the perfor-

mance of NWPMs and GCMs/RCMs is greatly im-

proved, the current state-of-the-art models are still less

than satisfactory, especially when applied for simulation

as well as prediction of precipitation (e.g., Krishnamurti
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et al. 1999; Murphy et al. 2004; Palmer et al. 2004; Cha

and Lee 2009). The limitations of various types of models

mainly stem from the incompleteness of initial condi-

tions, boundary conditions, model physics, and dynamics

(e.g., Krishnamurti et al. 1999; Lee and Suh 2000; Palmer

et al. 2004).

Many studies have focused on resolving the limita-

tions of the current models; these include studies fo-

cusing on understanding and improving the physics and

dynamics of these models (e.g., Krishnamurti et al. 1999;

Giorgi and Mearns 2002; Palmer et al. 2004; Kang et al.

2005; Cha and Lee 2009). The ensemble method (or

superensemble) is one of the methods that is being widely

used to minimize the uncertainty of the initialization and

to improve the performance ofmodels (e.g., Krishnamurti

et al. 1999, 2000; Giorgi and Mearns 2002; Feng et al.

2011). In particular, ensemblemethods are widely used in

the community of global climate simulation, for short-

term and seasonal forecasts based on the simulation re-

sults of multiplemodels, and onmultiple initial conditions

and physical processes for the given model.

Since Krishnamurti et al. (1999, 2000) and Yun et al.

(2003) showed that the multimodel ensemble (MME) is

superior to the single model by using an ensemble of

global climate models from the Atmospheric Model In-

tercomparison Project (AMIP), various types of MMEs

have been developed and widely applied to GCMs,

RCMs, and seasonal forecast models to improve the

performance of model simulations (e.g., Peng et al. 2002;

Yun et al. 2003; Kim et al. 2004; Palmer et al. 2004; Kug

et al. 2007; Casanova and Ahrens 2009; Coppola et al.

2010). In general, the ensemble methods can be catego-

rized into three types: the first is a simple composite

method (Peng et al. 2002; Palmer et al. 2004), the second is

a version of theweighted ensemblemethod (Krishnamurti

et al. 1999; Giorgi and Mearns 2002; Kharin and Zwiers

2002; Kug et al. 2007; Christensen et al. 2010; Coppola

et al. 2010; Feng et al. 2011), and the third is a synthetic

method (Chakraborty and Krishnamurti 2006).

In some previous works, assigning different weight-

ings for the ensemble members on the basis of each

member’s performance has been suggested as a way to

reduce unwanted uncertainty in climate model pro-

jections (Giorgi and Mearns 2002; Murphy et al. 2004;

Tebaldi and Knutti 2007; Weigel et al. 2010). Feng et al.

(2011) showed that multi-RCM ensembles outperform

single-RCM ensembles in many aspects; for this pur-

pose, they used intercomparison results of the arithmetic

mean, the weighted mean, multivariate linear regres-

sion, and singular value decomposition, for temperature,

precipitation, and sea level pressure. Among the four en-

semblemethods used,multivariate linear regression,which

is based on the minimization of the root-mean-square

errors (RMSEs), significantly improved the ensemble

results. Kug et al. (2007), Casanova and Ahrens (2009),

Coppola et al. (2010), and many other authors showed

that performance-based weights yield more accurate

results than those that use equal weights. However,

Christensen et al. (2010) showed that the use of model

weights is sensitive to the aggregation procedure and has

different sensitivities to the selected metrics. This con-

clusion is based on results showing that there is no

compelling evidence of an improved description of

mean climate states when using performance-based

weights in comparison to the use of equal weights.

Weigel et al. (2010) confirmed that equally weighted

multimodels, on average, outperform single models

and that projection errors can, in principle, be further

reduced by optimum weighting. However, they also

emphasized that the task of finding robust and repre-

sentative weights for climate models is certainly a dif-

ficult problem.

Relatively few ensemble works have been performed

for RCMs because of a lack of long-term simulations

with multi-RCMs (Christensen et al. 2010; Feng et al.

2011). Coordinated Regional Downscaling Experiment

(CORDEX) is a WCRP (World Climate Research

Programme)-sponsored program to organize an in-

ternational coordinated framework to produce an im-

proved generation of regional climate change projections

worldwide to allow for input into impact and adapta-

tion studies within the Fifth Assessment Report (AR5)

timeline and beyond (http://www.meteo.unican.es/en/

projects/CORDEX). CORDEX will produce an en-

semble of multiple dynamical and statistical downscaling

models that will consider multiple forcing GCMs from

the Climate Model Intecomparison Project phase 5

(CMIP5) archive. Using CORDEX for East Asia pres-

ents a good opportunity to carry out ensemble research

related to RCMs. Among the various measures used in

model evaluation studies, bias, correlation coefficients

(Corr.), and RMSE are not only simple to calculate but

also easy to interpret. In this study, the five ensemble

methods, including the three newly developed ensemble

methods based on the bias, Corr., andRMSE,were tested

to improve the RCMs’ performance for two climatic

variables, temperature and precipitation, over South

Korea; this was done by using data from the 20-yr

CORDEX East Asia experiments. The relative pre-

diction performance of the five ensemble methods for

temperature and precipitation over South Korea is ex-

plained. The paper is structured as follows. In section 2,

themodels, data, and ensemblemethods are described. In

section 3, the ensemble results and an intercomparison of

their performance are shown. In section 4, we draw our

conclusions.
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2. Data and method

a. Models

In this study, two nonhydrostatic RCMs [Seoul

National University Regional ClimateModel (SNURCM)

andWeatherResearch andForecastingmodel (WRF)] and

two hydrostatic RCMs [RegCMversion 4 (RegCM4) and

Regional Spectral Model (RSM)] were used to simulate

the 20-yr (from 1989 to 2008) regional climate over

CORDEX East Asia by using two sets of boundary

condition data. The SNURCM (Lee et al. 2004)

was based on the fifth-generation Pennsylvania State

University–National Center for Atmospheric Research

(NCAR) Mesoscale Model (MM5) (Grell et al. 1994).

An advanced and comprehensive land surface parame-

terization scheme, namely, the Community Land

Model, version 3 (CLM3) (Bonan et al. 2002), was

coupled to SNURCM for land surface and soil physical

processes. The details of SNURCM were described by

Cha and Lee (2009). Furthermore, theWRF (Skamarock

et al. 2005), version 3.0, developed byNCAR,was used to

simulate the regional climate over CORDEX East Asia.

The WRF is the most popular mesoscale model, with

various physical schemes and dynamical options that can

capture weather phenomena as well as climate features.

The RegCM4, developed by the International Centre for

Theoretical Physics (ICTP), is a popular RCM that has

been used for regional climate modeling studies with

seasonal to decadal time scales. In particular, RegCM4 is

the latest version, with some noteworthy improvements,

such as the coupling of a sophisticated land surfacemodel

(LSM), CLM3 (http://www.ictp.it/research/esp/models/

regcm4.aspx). In this study, we also implemented spec-

tral nudging (Von Storch et al. 2000) into RegCM4 to

reduce the systematic errors generated in long-term

simulation. The RSM (Juang et al. 1997) is a primitive

equation model using the sigma-vertical coordinate. The

performance of the RSM for the East Asia summer

monsoon was also evaluated by Kang and Hong (2008)

and Yhang and Hong (2008a). We selected these models

because their performances have been evaluated through

regional climate modeling studies for East Asia, such as

reproducing extreme climate, investigating physical pro-

cesses in East Asian climate, and downscaling GCM

scenarios.Many studies (e.g., Lee and Suh 2000; Lee et al.

2004; Park et al. 2008; Yhang and Hong 2008b; Cha and

Lee 2009; Hong and Yhang 2010; Cha et al. 2011) have

shown that each model has an ability to reproduce the

regional climate over East Asia reasonably. Moreover,

the performances of the fourmodels have been evaluated

by participating in phase 3 of the international Regional

Climate Model Intercomparison Project (RMIP) (Fu

et al. 2005), in which current and future regional climate

scenarios for East Asia are generated by downscaling the

GCM results.

b. Experiment design

The simulation domain (Fig. 1) of CORDEX East

Asia covers most of Asia, the western Pacific, the Bay of

Bengal, and the South China Sea. All models had the

same domain center (358N, 1058E) and an identical

horizontal resolution of 50 km. The zonal and meridio-

nal grid points of the SNURCM andWRF were 233 and

197, respectively, while those of the RegCM4 were 243

and 197 due to a technical problem related to paralleli-

zation. The RSM differed slightly from the other grid

models, since its map projection (Mercator projection)

was different from that of the other models (Lambert

conformal projection). The dynamic frameworks and

physical schemes used in this study are summarized in

Table 1. For each model, optimal schemes of the dy-

namical and physical processes were chosen that were

determined through the investigation of the model

sensitivities to the schemes.

In all the models, large-scale nudging methods (Von

Storch et al. 2000; Miguez-Macho et al. 2005; Kanamaru

and Kanamitsu, 2007) were applied to reduce the de-

viation due to a large-scale regime (.1000-km wave-

length) between the RCM solution and large-scale

forcing data. Large-scale nudging is an alternative ap-

proach to minimize the systematic errors in long-term

integration. A number of studies have shown that the

method can improve the performance of RCMs by

preventing the distortion of large-scale fields (e.g., Kang

et al. 2005; Miguez-Macho et al. 2005; Cha and Lee

2009). A spectral nudging technique (Von Storch et al.

2000) was applied in SNURCM and RegCM4, and

a spectral nudging method using a Newtonian cooling

(Miguez-Macho et al. 2005) was used in the WRF. In

RSM, the scale-selective bias correction (SSBC)method

(Kanamaru and Kanamitsu 2007) was applied, where

the errors in large-scale horizontal wind components are

reduced by applying spectral damping to the tendency.

To assess the models’ performance in reproducing the

statistical behavior of the Asian monsoon climate, the

simulation period was set to 20 yr, from January 1989 to

December 2008. Data from the National Centers for

Environmental Prediction/Department of Energy (NCEP–

DOE) Reanalysis 2 (R-2; Kanamitsu et al. 2002) and

European Centre for Medium-Range Weather Fore-

casts Interim Re-Analysis (ERA-Interim) data (Simmons

et al. 2006) were employed to provide the lateral boundary

conditions and initial conditions for the four RCMs.

The four RCMs are all driven by two sets of bound-

ary data, R-2 data and ERA-Interim data. The coarse

boundary data are bilinearly interpolated to the horizontal
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model grid points and are linearly interpolated to each

RCM’s sigma levels. Skin temperatures from the R-2 and

ERA-Interim data were used as sea surface temperature

(SST) for SNURCM, WRF, and RSM, while the daily

observed SST temporally interpolated from the weekly

optimum interpolation analysis (Reynolds et al. 2002) was

used for RegCM4. Thus, eight ensemble members are

used for the development of new ensemble methods.

From the simulation results for 20 yr, the data for

15 yr were considered as training data for the de-

velopment of ensemble algorithms; the other data for

the remaining 5 yr were used to evaluate the developed

ensemble methods. The detailed evaluation of simu-

lated precipitation and temperature was conducted by

using hourly precipitation and surface air temperature

data obtained at 59 stations across South Korea for the

20 yr from 1989 to 2008; these data were obtained from

the Korea Meteorological Administration (KMA).

c. Ensemble methods

1) EVALUATION STRATEGY

The performance of each model is evaluated by using

the ground observation data based on the observation

TABLE 1. The main characteristics of the four RCMs used in this study. PBL 5 planetary boundary layer. YSU 5 Yonsei University.

Kain–Fritsch 2 5 new Kain–Fritsch cumulus parameterization. MIT–Emanuel 5 Massachusetts Institute of Technology and Kerry

Emanuel. SAS 5 Simplified Arakawa–Schubert. CLM3 5 CLM, version 3. CLM 5 Community Land Model. CCM2 5 Community

Climate Model, version 2. RRTM5Rapid Radiative Transfer Model. CCM35 CCM, version 3. GFDL5Geophysical Fluid Dynamics

Laboratory longwave scheme. Dudhia 5 Dudhia scheme. GSFC 5 Goddard Space Flight Center shortwave scheme.

SNURCM WRF RegCM4 RSM

No. of grid points (lat 3 lon) 197 3 233 197 3 233 197 3 243 198 3 241

Vertical levels s-24 s-27 s-18 s-22

Dynamic framework Nonhydrostatic Nonhydrostatic Hydrostatic Hydrostatic

PBL scheme YSU YSU Holtslag YSU

Convective scheme Kain–Fritch 2 Kain–Fritch 2 MIT–Emanuel SAS

Land surface CLM3 Unified Noah CLM NOAH LSM

Longwave radiation scheme CCM2 RRTM CCM3 GFDL

Shortwave radiation scheme CCM2 Dudhia CCM3 GSFC

Spectral nudging Yes Yes Yes Yes

FIG. 1. Domain used for RCM simulations over the CORDEX East Asia.
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points. The nearest four grid points from the observation

point are bilinearly interpolated to the observation point.

The interpolation of temperature has been performed

with a constant lapse rate of 60.658C (100 m)21 after

the correction of topography differences between the

observation point and the grid points. In this study, the

entire evaluation is performed based on the monthly-

mean temperature (8C) and daily mean precipitation

(mm day21).

2) EQUAL-WEIGHTED AVERAGING (EWA)

The spatially averaged bias (DTi) of the ith model for

temperature (or precipitation) is defined by Eq. (1).

Here, Np, Tisp, and Top are the number of validation

points, the surface air temperature (or precipitation)

simulated by the ith model, and the observed air tem-

perature (precipitation) at point p, respectively:

DTi 5
1

Np

�
N

p

p51

(Tisp2Top) . (1)

The Tisp value is calculated by the bilinear interpolation

of the nearest four grid points around the observation

point. The RMSE and spatial (temporal) Corr. for each

model and their equal weighting ensemble can also be

calculated through a similar process. The model-averaged

bias (simple ensemble or equal-weighting ensemble)

of the total number of ensemble members (NM) over

the analysis domain can be obtained from Eq. (2) as

follows:

DT5
1

NM

�
N

M

i51

DTi . (2)

As has been shown in many studies, this method is not

only convenient but also powerful for increasing fore-

casting performance because there is no need to pre-

process with observation data (e.g., Christensen et al.

2010).

3) PERFORMANCE-BASED ENSEMBLE AVERAGING

In general, the simulation performance of each model

is significantly different for models, variables, levels,

seasons, and geographic regions. Therefore, it is neces-

sary to take into consideration the simulation perfor-

mance of each model to improve the ensemble results.

Three types of weighted ensemble methods are being

developed based on the simulation performance of the

ensemble members. The weighting coefficients are

mainly derived from the model evaluation results with

observations. Hence, the weighting coefficients should

be calculated by using the simulation results for the

historical climate and observed data through a corre-

sponding statistical approach, that is, data training, to

apply this method to the multimodel ensemble pre-

dictions of future climate.

In general, bias (B), RMSE, and Corr. are the most

widely used parameters in the evaluation of models. For

this study, we have developed new ensemble methods

based on these evaluation parameters, assuming that

the simulation performance of RCM is inversely pro-

portional to the bias and RMSE but proportional to the

temporal correlation coefficients. In this study, the pre-

liminary weighting value, Pwi, is defined in three ways

[Eqs. (3)–(5)] using various combinations of the model’s

evaluation parameters. The weighting in Eq. (3) is in-

versely proportional to the product of bias and RMSE,

so theweighting is drastically reduced for low-performance

models, as in Giorgi and Mearns (2002), who consider

the product of a model’s bias and the distance between a

given model’s change and the reliability ensemble average

change. However, in Eq. (4), the weighting is only in-

versely proportional to the RMSE, as follows:

Pwi5

(
1.

[Abs(Bi)11.0]

)(
1.0

(RMSEi11.0)

)
Abs(Corri),

(3)

Pwi 5
1.0

(RMSEi 1 1.0)
Abs(Corri), and (4)

Pwi 5
1.0

(RMSEi1 1.0)
Corri (5)

To avoid the mathematical problem of division by zero,

we added 1 to the bias and theRMSE, and converted the

bias and the temporal correlation coefficients into ab-

solute values. We can easily see that the Pwi is inversely

proportional to the bias and to the RMSE but pro-

portional to the temporal correlation coefficients. If the

RCM’s temporal correlation coefficient is positive, then

there is no difference between Eqs. (4) and (5), as with

the temperature. However, if the correlation is negative,

then there will be a significant difference between Eqs.

(4) and (5). The normalized weighting (NPwi) of each

model is obtained by Eq. (6), as follows:

NPwi 5
Pwi

�
N

M

i51

Pwi

. (6)

When Pwi is defined byEq. (3), the weighted ensemble of

each model’s variables can be calculated by Eq. (7). We
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call the result performance-based ensemble averaging

using bias, RMSE, and correlation (PEA_BRC). In Eq. (7),

no bias correction is applied because the bias term is ex-

plicitly included in Eq. (3), as shown:

~T5 �
N

M

i51

NPwiTi (7)

If Pwi is defined by Eqs. (4) and (5), then the weighted

ensemble of each model’s variables can be calculat-

ed by Eq. (8). We call the result PEA using RMSE

and absolute correlation coefficient (PEA_RAC) and

PEA using RMSE and original correlation coefficient

(PEA_ROC). In Eq. (8), bias correction is applied

because the bias term is not explicitly included in

Eqs. (4) and (5), as shown:

~T5 �
N

M

i51

NPwiTi2 �
N

M

i51

NPwiDTi ; (8)

Ti in Eqs. (7) and (8) is the temperature simulated by the

ith model.

4) MULTIVARIATE LINEAR REGRESSION

The ensemble method based on multivariate linear

regression (Mul_Reg) is widely applied to ensemble

studies. Feng et al. (2011) showed that multivariate lin-

ear regression, based on the minimization of the RMSE,

significantly improved the ensemble results. In this

method, the ensemble results are calculated by the lin-

ear combinations of the simulation results of each en-

semble member. In this study, we used the method

described in section 6 of Feng et al. (2011).

3. Ensemble results

a. Simulation performance of RCMs

Figure 2 shows the seasonal variations of the 20-yr

averaged monthly-mean temperature and daily pre-

cipitation simulated by eight ensemble members over

South Korea. In general, most of the RCMs simulate the

annual cycle of temperature and precipitation well.

However, the seasonal amplitudes of temperature and

precipitation are significantly underestimated, espe-

cially for precipitation; this underestimation can be

attributed to strongly underestimated amounts of pre-

cipitation during summer and overestimated amounts of

precipitation during winter. The strong underestima-

tion of summer precipitation can be partly attributed

to the low spatial resolution (50 km) because summer

precipitation over South Korea is caused by mesoscale

convective systems embedded in the changma front

and, sometimes, by typhoons. The RCM simulation with

50-km grid size also significantly underestimates the

height of the topography in South Korea; the resolution

is too coarse to capture orographic influences on the

rainfall. The impacts of grid and domain sizes on the

RCM’s rainfall simulation have been well documented

in many works (e.g., Leduc and Laprise 2009; Qian and

Zubair 2010).

Figure 3 shows the 20-yr biases of monthly-mean

temperature and daily precipitation simulated by the

eight ensemble members for four selected months over

South Korea. As was mentioned before, the simulation

performances of the eight ensemble members over

South Korea are clearly dependent on the models,

boundary conditions, season, year, and parameters. The

large spread of simulation results, irrespective of the

variables and months, suggests that the current state-of-

the-art RCMs are very diverse and less suitable for long-

term prediction. In January, the spread of temperature

biases is greater than that of precipitation. In contrast, in

July, the spread of precipitation biases is much greater

than that of temperature. Furthermore, most RCMs

underestimate the temperature and precipitation, es-

pecially during summer. The spread of the temperature

simulated by RCMs is relatively smaller during summer

than during other seasons. Conversely, the large spread

of simulated precipitation values for each ensemble

member during July shows that the uncertainty of the

simulated precipitation by RCMs is relatively large

during summer.

Figures 4 and 5 show the bias, spatial correlation co-

efficients, and RMSE of the 20-yr averaged seasonal

mean temperature and precipitation over South Korea

simulated by the eight ensemble members. The sizes of

the boxes and triangles are proportional to the magni-

tude of theRMSE. The spatial correlation coefficients of

the eight ensemble members for temperature are simi-

lar, with a minimum and a maximum in summer and

winter, respectively. However, the bias and RMSE of

temperature vary according to the models and seasons,

although strong cold biases are very dominant in all

four seasons. The impacts of boundary conditions (dif-

ferences between boxes and triangles) on the RCM’s

temperature simulations are not systematic and are

relatively weak.

The bias, spatial correlation coefficients, and RMSE

of precipitation vary significantly according to the

models and seasons. The simulation performance for

precipitation is clearly lower than that for temperature

in all seasons, especially during summer. The simulation

performances of the eight ensemble members for pre-

cipitation during summer are characterized by large

7072 JOURNAL OF CL IMATE VOLUME 25



RMSE, dry bias, and a low correlation coefficient. Aswith

temperature, the performances of the eight ensemble

members for precipitation are better during winter than

during summer. The diverse and less satisfactory per-

formance of RCMs regarding the current climate, driven

by the reanalysis data, indicate that postprocessing, such

as ensemble averaging, is needed to provide more reli-

able information to the climate-related community.

b. Performance of prediction

Figure 6 shows the interannual variations of temper-

ature and precipitation anomalies from the 20-yr aver-

ages of observations according to the ensemble methods,

with observations. The weighting coefficients for each

ensemble method were obtained by using all 20 yr of

data. As in Feng et al. (2011)’s work, Mul_Reg provides

the most accurate results for both precipitation and

temperature, although the number of ensemblemethods

is different. The new ensemble methods, PEA_RAC

and PEA_ROC, show very similar performance com-

pared to that of Mul_Reg, although PEA_BRC is sig-

nificantly inferior to Mul_Reg. The reason for the

inferior performance of PEA_BRC compared to

PEA_RAC and PEA_ROC can be attributed to the

choice of Eqs. (7) and (8), that is, whether a bias cor-

rection is included. EWA shows the largest negative

anomalies, both in temperature and precipitation, be-

cause most of the eight ensemble members predicted

lower temperatures and less precipitation than was

observed.

FIG. 2. Seasonal variations in 20-yr averaged monthly-mean temperature (8C) and daily

precipitation (mm day21) simulated by the eight ensemble members over South Korea.
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To test the prediction performance and stability

of the five ensemble methods for temperature and

precipitation over South Korea, the 20-yr data simu-

lated by the eight ensemble members are separated

into data for a training period (15 yr) and data for a

prediction period (5 years). The total number of

trainings and evaluations is 20, using a cyclic method.

The weighting coefficients for the ensemble members

corresponding to the selected ensemble method were

obtained by Eqs. (3)–(6) using the selected 15 yr of

training data.

Figures 7 and 8 show the performance for annual

mean temperature and precipitation averaged over the

20 cases by the five ensemble methods, both for the

training period and the prediction period. The bias of

Mul_Reg is not only very small but also consistent, in

both the training and prediction periods. Further, the

biases of PEA_RAC and PEA_ROC are almost zero and

consistent for the training and prediction periods. How-

ever, the biases and RMSE of EWA and PEA_BRC are

consistently large compared to those values for the other

three ensemble methods, in both the training and

FIG. 3. Scatterplots of biases of monthly-mean temperature (8C) and daily precipitation (mm day21) simulated by the eight ensemble

members for four selected months.
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prediction periods. The same results for EWA in both the

training and prediction periods are attributed to the 20-yr

cyclic tests. The worst performance of EWA is related to

the fact that most of the RCMs systematically un-

derestimate the temperature and precipitation. As with

the bias, Mul_Reg shows the lowest RMSE during the

training period, but the RMSE of Mul_Reg abruptly

increases when it is applied to the prediction of tem-

perature. The degradation of Mul_Reg can be related to

overfitting problems arising from an insufficient number

of samples used for the retrieval of regression co-

efficients. In contrast, the RMSEs of PEA_RAC and

PEA_ROCare slightly larger than that ofMul_Reg, and

the RMSEs of PEA_RAC and PEA_ROC are very

consistent when they are applied to prediction. Despite

the sampling problems, we can conclude that PEA_RAC

and PEA_ROC improve the results for precipitation and

temperature, and that they are superior to Mul_Reg for

all the evaluation parameters and for the 5 yr when the

data are applied to prediction.

To evaluate the time dependency of the new ensemble

methods, they are applied to the seasonal mean climate.

Table 2 shows the statistical evaluation results for sum-

mer mean temperature and precipitation from the ob-

servations, and the five sets of ensemble results for the

training period (15 yr) and the evaluation period (5 yr)

according to the ensemble methods. As in other stud-

ies, the performance of all five ensemble methods is

much better for temperature than for precipitation. As

can be seen in Figs. 7 and 8, Mul_Reg and EWA are the

most accurate and least accurate, respectively, during

the training period for each evaluation parameter.

However, the performance of Mul_Reg is significantly

decreased when it is applied to prediction. Contrary to

the Mul_Reg method, the prediction performances of

PEA_RAC and PEA_ROC are relatively stable in

prediction. As a result, the prediction performances of

PEA_RAC and PEA_ROC are superior to that of

Mul_Reg for each evaluation parameter. Compared to

temperature, the performance of all ensemblemethods

is significantly low for precipitation because the model

errors for that parameter are generally high. As with

temperature, the Mul_Reg method shows the best

performance among the five ensemble methods during

FIG. 4. Scatterplots of biases, spatial correlation, and RMSE of 20-yr averaged seasonal mean temperature (8C)
simulated by the eight ensemble members.
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the training period. However, PEA_RAC shows the

best performance during the prediction period and

a slightly better performance than PEA_ROC. The dif-

ferent temporal correlation coefficients of precipita-

tion resulted in different performances by PEA_RAC

and PEA_ROC. This indicates that at least one RCM

shows negative correlation for precipitation. The per-

formances of all ensemble methods, except for EWA,

are significantly decreased during the prediction period

compared to their performances during the training

period.

Table 3 lists the prediction performance of the five

ensemble methods for winter mean temperature and

precipitation over South Korea. As in summer, during

the training period Mul_Reg and EWA are the most

accurate and least accurate, respectively, for both tem-

perature and precipitation. PEA_RAC shows a very

consistent and accurate performance during the pre-

diction period. The statistical evaluation results confirm

that PEA_RAC and PEA_ROC are the most accurate

and stable methods for predicting temperature and pre-

cipitation among the five ensemble methods. As can be

seen in Tables 2 and 3, the performance of PEA_RAC is

skillful and very consistent, irrespective of seasons and

variables.

4. Summary

In this paper, the prediction performance for temper-

ature and precipitation of five ensemble methods—equal

weighted averaging (EWA), three performance-based

ensemble averaging methods (PEA_BRC, PEA_RAC,

PEA_ROC), and multivariate linear regression (Mul_

Reg)—were discussed by using simulation results for

20 yr obtained from four RCMs driven by two sets of

boundary data, namely, R-2 and ERA-Interim. The

simulation domain of CORDEX East Asia covers most

of Asia, the western Pacific, the Bay of Bengal, and the

South China Sea; the number of grid points is 1973 233

with a 50-km horizontal resolution. The four RCMs

used in this study are SNURCM, WRF, RegCM4, and

RSM. The new performance-based ensemble methods

developed in this study—PEA_BRC, PEA_RAC, and

FIG. 5. As in Fig. 4, but for precipitation.
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PEA_ROC—assign weights to each model based on

its performance through various combinations of sta-

tistical evaluation parameters, such as bias, RMSE,

and temporal correlation coefficient. As the RCM’s

performances are clearly dependent on the variables,

location, vertical layers, and season, the weights also

are functions of the variables, geographic location,

and season. Fifteen years and 5 yr of data from the

20-yr set of simulation data were used to derive the

weighting coefficients and to cross validate the pre-

diction performance, respectively, of the five ensem-

ble methods.

Overall, the ensemble results for temperature are

better than those for precipitation in all five ensemble

methods. The ensemble results for temperature and

precipitation during winter are better than those during

summer. According to the analysis of annual and sea-

sonal mean, the performance of the five ensemble

methods is proportional to the averaging time scale.

Further, the performances of the Mul_Reg and the

bias-correction methods (PEA_RAC, PEA_ROC) are

much better than those of the EWA and PEA_BRC

ensemble methods, irrespective of the variables and

averaging time scales. The biases (RMSE) of EWA

and PEA_BRC are consistently larger than those of

PEA_RAC and PEA_ROC. The spatial correlation

coefficients of EWA and PEA_BRC are significantly

lower than those of PEA_RAC and PEA_ROC. The

relatively low performance of PEA_BRC was partly

caused by overweighting through the combined use of

bias and RMSE. The identical result of PEA_RAC and

PEA_ROC for temperature was caused by the consis-

tent positive temporal correlation coefficient. However,

the different temporal correlation of precipitation resul-

ted in different performances for PEA_RAC and

PEA_ROC.

FIG. 6. Interannual variations in annual-mean temperature (8C) and precipitation (mm day21)

anomalies according to the ensemble methods with observations over South Korea.
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FIG. 7. The 20 cases average of statistical validation results of the five ensemble methods for

temperature over South Korea during the 15-yr training and 5-yr prediction periods.
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FIG. 8. As in Fig. 7, but for precipitation.
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Among the five ensemble methods, the Mul_Reg

method shows the best performance, irrespective of

seasons and parameters, during the training period.

The bias and RMSE of Mul_Reg for temperature and

precipitation are consistently small during the training

period. This result is consistent with Feng et al.’s (2011)

results, who found that Mul_Reg is the most efficient

ensemble method for temperature and precipitation.

However, the EWA method shows the worst perfor-

mance, with a large bias and RMSE, irrespective of sea-

sons and variables, during the training period. PEA_RAC

shows a performance very similar to that of Mul_Reg

for temperature and precipitation during the training

period. However, the performance and stability of

Mul_Reg are drastically reduced when the method is

applied to prediction of both temperature and pre-

cipitation, although the performance of PEA_RAC

for temperature and precipitation prediction is only

slightly reduced. As a result, PEA_RAC shows the best

performance, irrespective of seasons and variables,

during the prediction period. The training and pre-

diction process of the ensemble methods could be ap-

plied in future RCM projections driven by GCMs. The

historical simulation results of RCMs driven by GCMs

can be used as training data, making it possible to then

apply the ensemble methods to future projection re-

sults. Although the assumption of stationariness under

a changing climate can be an issue (Christensen et al.

2008), these results confirm that the new ensemble

method developed in this study, PEA_RAC, can be used

for the prediction of regional climate, irrespective of the

variables or averaging time scale. Casanova and Ahrens

(2009) also showed that the impact of weighting on

multimodel ensemble forecasts is independent of spatial

scales and forecast ranges. The simplicity of the deri-

vation process for the weighting coefficients and appli-

cations is also a strong point of the ensemble method.

However, as Christensen et al. (2010) asserted, a sub-

jective selection of a limited set of metrics with a pri-

ori largely unknown interdependency is unavoidable.

Furthermore, application methods for weighting co-

efficients, products of individual weightings of a metrics

set with equal weighting or different weighting, are also

subjectively designed. Weigel et al. (2010) also men-

tioned the difficulties of finding robust and repre-

sentative weights for climate models due to (i) the

inconveniently long time scales considered, which

strongly limit the number of available verification sam-

ples; (ii) nonstationarities of model skill under a chang-

ing climate; and (iii) the lack of convincing alternative

ways to accurately determine skill. Hence, intensive

testing with various combinations of weightings per-

formed with simulation data of longer duration is
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recommended, especially for the improvement of the

quality of the projected regional climate.
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