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Coulomb oscillations based on band-to-band tunneling in a degenerately
doped silicon metal-oxide-semiconductor field-effect transistor

Kyung Rok Kim,® Dae Hwan Kim, Jong Duk Lee, and Byung-Gook Park
Inter-University Semiconductor Research Center (ISRC), and School of Electrical Engineering,
Seoul National University, San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea

(Received 12 November 2003; accepted 20 February)2004

We report Coulomb oscillations based on band-to-band tunneling through a valence band in silicon
metal-oxide-semiconductor field-effect transistors. Degeneratéioped channel and*-doped
source/drain enables band-to-band tunneling, which can play a major role in the transport between
the channel and source/drain. The formation of tunnel barriers and a quantum dot in a
single-electron transistor structure originates from fwo-n* tunnel junctions and @*-doped
channel with mesoscopic dimension, respectively. Coulomb-blockade oscillations with multiple
peaks were clearly observed at liquid nitrogen temperature. Using the electrical and thermal
characterization of the quantum dot, single-electron charging effect based on band-to-band tunneling
is confirmed. ©2004 American Institute of Physic§DOI: 10.1063/1.170721]7

Since Coulomb blockade of single-electron tunnelingtotal capacitance of 2 aF is demonstrated at 77 K, and the
was proposed with a theoretical predictidnand demon- basis of the tunneling mechanism through the valence band
strated in a metallic systefnthere have been extensive in- is discussed.
vestigations on single-electron charging effects in semicon- The devices were fabricated on thex40" cm™
ductor nanostructures in which quantum-mechanical effect§-doped 40-nm-thick top layer of a silicon-on-insulator
are strongly manifested. After the pioneering work of Scott-(SOI) wafer prepared by separation by implanted oxygen.
Thomas et al,* single-electron tunneling phenomena in This top layer is separated from the Si substrate by a 375-
semiconductors through an impurity potential, such as localdm-thick buried oxide. Figure(& shows a schematic of the
ized electron states or trapped chat§eyere reported in fabricated device on an SOI substrate. SOI channel wires are
moderately doped silicofSi) quantum wires or metal-oxide- formed by thesidewall spacer patterningnethod, which ef-
semiconductor field-effect transistéMOSFET) structures, fectively suppressed the unintentional potential fluctuation
which haves ample room for forming ultrasmall island and@long the narrow channel due to excellent uniforrfifty.*°

barriers by conventional process technology. As the miniaf\ftér the SOI wire was defined, the remaining oxide was
removed by wet etching and a 5-nm screen oxide was ther-

turization of device dimension continues, single-electron tun- . | ]
neling becomes a prominent and ubiquitous phenomenofally grown at 800 °C. BJ ions were implanted as channel

On the one hand, in pursuit of single-electron transistors
(SET9 with practical functionality, various SETs with on the ~ Polysi
basis of Si MOSFET structure were implemented with defi- i =
nite formation mechanisms of intentional tunnel barriers and

. F———— 200nm
quantum dotgQDs), such as point-contact geometriede- Poly<8i gato (V)
pleting electrostatically a semiconductor depletion barriers
under dual gate$undulated gate oxide or silicon filthand /
pattern deformation and band-profile modification due to
oxide-induced stres€.These mechanisms were based on un-
doped Si in order to prevent the unintentional characteristics
due to impurity potentials; thus, electron transport through a
QD occurs only along in the conduction band. Single-
electron tunneling based on band-to-band transport has been
theoretically proposetf, and some experiments were per-
formed in carbon nanotube systefis? but have not been
observed or implemented in Si-based systems yet.

This letter reports the Coulomb-blockade oscillations
based on band-to-band single-electron tunneling in a degen-
erately doped Si MOSFET without lightly doped source
drain extensions. The fabricated device has a highly repro-
ducible self-aligned structure, which provides a major advan-

tage in miniaturization. The experimental characteristics withFIG. 1. (a) Schematic of the fabricated device for a degenerately doped
sample. Cross-sectional SEM images of the 30-nm-wide SOI channel wire
and poly-Si gate. The inset shows top view representing channel léngth
dAuthor to whom correspondence should be addressed; electronic maiand widthW. (b) Schematic energy band diagram of a degenerately doped
rocky@smdl.snu.ac.kr sample along the channel surface under a gate at thermal equilibrium state.
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dopants at 25 keV with doses 0f8L0* cm™? (degenerately 2001
doped sampleand 5x 10" cm™2 (normally doped sample 1so] @ T =GR
During the formation of an oxide spacer around the SOI
channel wire to reduce gate-to-dot capacitanCg)( the
screen oxide was removed by dry etching in GHEFR,
reactive-ion plasma, and 10-nm-thick thermal oxide was
grown at 800 °C for the gate dielectrics. Subsequently, an
80-nm-thick phosphorus-doped polycrystalline silidpoly-
Si) layer was deposited and patterned by the sidewall spacer
patterning method to cross the SOI channel wire at right
angles. Scanning electron microscq8EM) images in Fig.
1(a) show the 30-nm-wide SOI channel wire and poly-Si
gate. As a result, the channel region is extremely shrunk B0 08 04 04 00 01 02 05 i
down to mesoscopic dimensions, with 30-nm physical length Gate Voltage Vgs (V)
and width. Contact areas were created by implanting the
source and drain regions with dose of arsenic ions of 5
X 10'° cm™2, which is ten times larger than that of BRons
in the degenerately doped sample. In order to activate the
dopants, the wafers were annealed at 1000 °C for 10 s in a
rapid thermal annealing system. Note that diffusion of ar-
senic ions under the gate reduces the effective channel
length. After major thermal steps, boron concentration in the
channel is about Fcm 2 for the degenerately doped
samples. In case of the normally doped samples, we can
estimate it to be about 3®cm™3 level, which is smaller than D e TR TR
the effective density of stateN() in Si valence band. Con- Gate Voltage Vs (V)
sequently, the fabricated device has empty states in the va- _ _
lnce band opdoped channel region, which enable band-{/C, . 3 SO el e dran-souse i bnion o e
to-band tunneling. Figure () shows the energy band ,omally doped 101 cm2) and degenerately doped-@G? cm ?)
diagram of the fabricated device at a thermal equilibriumsamples by the log-scale plot of the drain curreptat Vye=40 mV. The
state. Degenerate dop|ng concentration induces degenera.@gﬂ.n.ite criterion of the doping concentration is the effective density of states
in the channel §,: p side and source/draing,: n side; ™ siicon valence bandNy~10% cm ?).

P
thus, the chemical potentials on theside («,,) andp side
(mp) are located within the allowed energy state on the confrom the reciprocal of peak conductance in the measured
duction bandE; and valence ban&, , respectively. If the  characteristic{Fig. 2(b)], which is much higher than the
channel dimensions shrink down to the mesoscopic regimgssistance quantumh(e?~25.813 K)). Thus, universal
with this configuration of energy band, the extremely small.onductance fluctuations on the order efhl”1® are not

chanTeI ﬁCtS as an island connected to the source and drajpsrgpriate to explain these oscillatory features. Therefore,
viap’—n" tunnel junctions, through which tunneling occurs g gevice is considered to satisfy the two main require-

to conduct current, and the '”S“'?ted poly-Si gate can contrgh e s for observing clear single-electron charging effects of
the surface channéisland potentials. typical single-electron devicég,

The device was characterized by a precision Semicon - pyo the measured results, total capacitance of QD is
ductor parameter analyzéHP 4155A. Figure 2a) shows -~ .
; : evaluated a<Cy,=2.02 aF. If we assume the island has a
the drain current 4 measured at 77 K as a function of the . .
disk shape because the gate controls the surface potentials,

gate voltageVys and the drain—source voltagé,s for the . : )
he C,.y COrresponds to the self-capacitance of the disk with
degenerately doped sample. The clear rhombus-shaped VA Ctotal . :
g y dop P b diameter of 14.4 nm. Therefore, the effective size of the

ley caused by the Coulomb blockade is observed at quuici"D . i dtob ller than 14.4 hich is off
nitrogen temperature. From the slope of each side of th@ Is estimated to be smaller than 14.4 nm, which Is eftec-

rhombus-shaped Coulomb blockade region, we can extradvely shrunken by the reduced effective channel length and
the ratio of the gate-dod), drain-dot C), and source-dot inherent depletion width of the tunnel Junctlon§. Tag of .
(Co) capacitance a€,:Cq:Co=1:1.34:0.435. Therefore, 0.73 aF correspongis to 40% of the gate capacitance .obtalned
the gain modulation factow is estimated to be 0.36. The bY the approximation of two parallel electrodes having the
single-electron addition enerdy, is well approximated by dielectrics of a 10-nm-thick oxide layer with a geometrically
the sum of the Coulomb charging energ}/C,,, and the defined area. We also investigated the difference between
quantized level separatiokE in the Si QD systems. Using normally doped and degenerately doped samples, as shown
@, we can converE, to the gate voltage spacing between in Fig. 2(b). For a normally doped sample, typiagichannel
current peaks {Vy):AVy=E,/ae. From Fig. Zb), AVyis ~ MOSFET characteristics were observed at 77 K, while the
about 220 meV. The single-electron addition enekyyis  degenerately doped sample shows a clear current oscillation
thus estimated to be 79.2 meV-(@0kgT). In addition, tun- in the subthreshold region. The origin of these oscillation
neling resistance of the tunnel junctions can be extractegdeaks shouid be distinguished from work done on a similar
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Thus, these characteristics also confirm that single-electron
charging effects originate from band-to-band tunneling via
the valence band. In addition, the maximum temperature at
which we can still observe the drain current oscillation is 220
K, which is superior to previously reported results in the Si
MOSFETs without any additional electrodes or materials for
tunnel barrier$;?° since our device has a definite mechanism
of tunnel barriers and extremely small channel dimensions. If
4 : ) . ) the patterning technology guarantees a sub-30 nm scale in
08 04 02 00 02 04 the definition of channel region, the operation temperature
2 Seais Voluigpih, ) can be increased to the room temperature. Considering the

® V,=50mvV present value of charging energy and chanuel) size, it
I can be concluded that the channel length, width, and SOI
thickness should be scaled down to 10 nm for the achieve-
ment of the room-temperature operation with the single-
200 K electron addition energ¥,~1V, which is sufficient for
SrdPeak 140K practical applications.

; In summary, we have implemented a degenerately doped

T SOl MOSFET with a mesoscopic-dimension channel region.

. . Detailed analysis has been carried out to elucidate the degree
of doping concentration, and the electrical and thermal char-
acterization of degenerately doped QDs. The experimental
FIG. 3. (a) 14sVgs Characteristics as a function ¥ for a degenerately results show that Single'eleCtron tun.ne”ng is based on band-
doped sample at 77 R/ is varied from 30 to 90 mV with 20 mV step)  to-band transport through a Si QD with a degenerately doped
I 4s—Vgs Characteristics as a function of the temperaturé gt 50 mV. The valence band, and that SETs can be made by degenerate
second peak with the highest band-to-band tunneling probability was Obdoping in SOI MOSFETs. Coulomb oscillations were ob-
served, even at 220 K. . . _
served even at 220 K by a geometrically well-defined island

) ) 0 and twop*—n" tunnel junctions in the self-aligned structure
type of conventional bulk-Si or SOI MOSFEF’ These by the conventional process technology.
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