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The authors investigated the gyrotropic linear and nonlinear motions of a magnetic vortex in soft
magnetic cylindrical nanodots under in-plane oscillating magnetic fields of different frequencies and
amplitudes, by employing both micromagnetic simulations and the numerical solutions of Thiele’s
equation of motion �Phys. Rev. Lett. 30, 230 �1973��. Not only noncircular elliptical vortex-core
orbital trajectories in the linear regime but also complex trajectories including stadiumlike shape in
the nonlinear regime were observed from the micromagnetic simulations and were in excellent
agreement with the numerical solutions of the analytical equations of motion. It was verified that the
numerical solutions of Thiele’s equation are promisingly applicable in order to predict and describe
well such complex vortex gyrotropic linear and nonlinear motions in both the initial transient and
later steady states. These results enrich the fundamental understanding of the linear and nonlinear
motions of vortices in confined magnetic elements in response to oscillating driving forces. © 2007
American Institute of Physics. �DOI: 10.1063/1.2783272�

A magnetic vortex �MV�, which consists of out-of-plane
magnetizations �Ms� at its core region and in-plane curling
Ms around the vortex core �VC�, has been observed in
continuous1 or patterned2,3 soft magnetic films. In addition to
the unique static M configuration, it also has nontrivial dy-
namic properties such as the gyrotropic motion as verified by
theory and experiments.4–7 Hence the MV continues to grow
in interest, especially because it is practically applicable to
information storage owing to its thermal stability and tiny
size �several tens of nanometer�,8,9 and is also applicable to
resonators owing to the resonance of the MV motions under
oscillating magnetic fields10 or alternating electric currents.11

More specifically, the VC in magnetic dots rotates around its
center position with a certain eigenfrequency �0 that is de-
termined by the dot geometry and material,4–7 which is
known as the gyrotropic motion with circular �no damping�
or spiral �with damping� orbits in a finite-size magnetic
element.4 This motion, as studied theoretically, experimen-
tally, and by simulations, is the simplest excitation mode
among the MV excitations perturbed by pulsed magnetic
fields,5–7 oscillating magnetic fields,10 and electric currents.11

Very recently, it has been found that the orientation of
the VC �either up or down� can be switched dynamically not
only by small-amplitude oscillating magnetic fields12–15 but
also by alternating currents.16,17 Moreover, the physical ori-
gin and criteria for the dynamic switching are expected to be
closely related to the VC gyrotropic motion.14,17,18 Such low-
power VC switching is considered to be an important step
toward realizing high-performing magnetic memory devices
using arrays of VCs.9 Therefore, it is now crucially important
to fundamentally understand the VC motions, particularly at
resonance, including the linear and nonlinear motions driven
by the alternating magnetic fields or currents. In this letter,
we report results of micromagnetic simulations on VC gyro-

tropic motions under oscillating in-plane magnetic fields, in-
cluding not only elliptical trajectories and their shape change
with the field frequency and amplitude but also complex VC
trajectories in the initial transient state, and stadiumlike tra-
jectories with small-amplitude circular orbits at both ends in
the steady state. In order to interpret those simulation results
we numerically solved Thiele’s equations of motion19 by as-
suming a “side-charge-free” model.4

In the present micromagnetic simulations and theoretical
calculations, we used, as a model system, a cylindrical Per-
malloy �Ni80Fe20�Py�� nanodot of a diameter 2R=300 nm
and a thickness L=10 nm, as shown in Fig. 1�a�. Using the
OOMMF code20 and a unit cell size of 2�2�10 nm3 at the
zero temperature, we investigated the M dynamics of an
equilibrium vortex state with the downward core orientation
in the nanodot under H�t�=A sin�2��t�y with different fre-
quency � and amplitude A values, where the field is applied
along the y axis.14 For the Py material parameters, we used
the saturation magnetization Ms=8.6�105 A/m, the ex-
change stiffness Aex=1.3�10−11 J /m, the damping constant
�=0.01, �=2.21�105 m/As, an anisotropic constant K=0.
In Fig. 1�b�, the VC orbital trajectories observed in the
steady states are generally elliptical in shape, and their shape
and size �amplitude� depend markedly on both � and A. For
example, for a relatively low A value �e.g., A /As=0.2�, the
ratio of the major to minor axis equals �0 /� or � /�0, and the
major axis is perpendicular �parallel� to the direction of the
applied field for the case of ���0 ����0�21 �Fig. 1�c��.
Here, the eigenfrequecy and the static annihilation field are
estimated to be �0=330 MHz and As=500 Oe, respectively,
in the given dot and geometry. The circular orbit10,11 for �
=�0 is a specific case of these elliptical orbits. For the given
� /�0=0.3, however, the size of the orbital ellipse increases
with increasing A �Ref. 14�. For a sufficiently large A �e.g.,
A /As=0.6�, the VC trajectory shape is stadiumlike with
smaller-amplitude circular orbits at both ends of the major
axis.

a�Author to whom correspondence should be addressed. Electronic mail:
sangkoog@snu.ac.kr
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Simulation results on the VC trajectories of vortex mo-
tion for both earlier transient and later steady-states, as well
as their frequency spectra are shown in Fig. 2�a�. For each
case of the field parameters as noted, the VC starts to move
from its initial center position with the corresponding com-
plex orbit in the transient state �upper left side�, and then
reaches a steady state with the elliptical orbit of a character-
istic shape, �lower right� depending on both � and A. For the
case of �=�0, the transient motion is spiral-like, and the
steady motion is of a single circular orbit. To elucidate such
complex gyrotropic motions to different field parameters, we
plotted their frequency spectra from the fast fourier trans-
forms �FFTs� of the time evolution of the x component of the
VC position, obtained from micromagnetic simulations, as
shown in the bottom of Fig. 2�a�. In the frequency spectra
there exist only two main peaks: one is a sharp high peak at
the corresponding external field frequency ��=0.2, 0.33, and
0.5 GHz� and the other is a small, relatively wide peak at
�0=330 MHz. For the special case of �=�0, the driving-
field-corresponding and eigenfrequency peaks are over-
lapped. Since the steady-state motions are driven by the ex-
ternally applied oscillating fields, the sharp peak corresponds
to this steady-state motion. The other peak at �=�0 corre-
sponds to the initial transient motion that results from the VC
resonant excitation in the given dot. It is interesting that the
transient complex VC motions observed from the micromag-
netic simulations have only one frequency, i.e., �0. This in-
dicates that the transient VC motion, which appears to be
complex or chaotic, is not chaotic but predictable with an
effective equation of motion for the vortex collective coordi-
nates.

In order to analytically interpret the field-parameter de-
pendent VC motions and their underlying physics, we first
consider small-amplitude orbital motions corresponding to
the gyrotropic linear regime. Assuming that M distributions
in the dot are independent of the z coordinate along the dot
thickness �i.e., two-dimensional model �see Ref. 6��, the vor-
tex motion can be described by an effective Thiele’s equation
of motion for vortex collective coordinates,19 which can be
derived from the Landau-Lifshitz equation of motion, yield-

ing −G� Ẋ− D̂Ẋ+�W�X� /�X=0, where X= �X ,Y� is the VC
position, W�X� is the potential energy of the VC shifted from

its equilibrium position �X=0�, G is the gyrovector,4 and D̂
is the damping tensor.10 For an appropriate description of the
shift of the VC from X=0, we used the side-charge-free
model,4 which shows good agreement between micromag-
netic simulations4 and experimental results7 for the vortex
translational mode for the cases of thin dots. For a cylindrical
dot under nonzero external fields, the function W�X� can be
written as W�X�=W�0�+�X2 /2+O�X4�−	�ẑ�H� ·X,
where � is the stiffness coefficient and a function of R and L,
	=�RLMs
C, 
=2/3, and C is the vortex chirality.4,10 The
linearized equation of the VC motion, including the damping

and Zeeman terms, is finally given as −G� Ẋ− D̂Ẋ+�X
−	�ẑ�H�=0. By using the Runge-Kutta method to solve
the initial value problem for such an ordinary differential
equation, we obtained the numerical solutions as shown in
Fig. 2�b�. The simulation results and numerical solutions are
in quite good agreement, both in the steady state and initial
transient states.

Next, to understand the stadium shape of a VC orbital
trajectory shown in Fig. 1�b�, we plotted the VC trajectories
of the gyrotropic motion in the different time intervals in
response to the field with A=300 Oe and �=100 MHz in
Fig. 3�a�. These orbital trajectories in the transient state
�0–10 ns� and the steady state �80–100 ns� are more com-
plex than simple circular or elliptical orbits. As seen in Fig.
3�b�, there exist four peaks rather than two peaks in the fre-
quency spectrum. To identify each peak, we made inverse
FFTs of the FFT powers in the individual frequency regions
indicated by the different colors.22 As the results of the in-
verse FFTs, the VC trajectories corresponding to the indi-
vidual peaks and their superposition are plotted in the upper
and lower rows in Fig. 3�c�, respectively. The main, largest
peak at �=100 MHz and its next two harmonics of 3� and
5� correspond to the steady-state motions as the nonlinear
responses to the driving field of a frequency �. In contrast,
the relatively broad peak at 440 MHz between the 3 � and
5 � peaks corresponds to the initial transient motion caused
by the vortex eigenmotion, which is shifted from �0=330
�for the linear case� to 440 MHz due to the significant non-

FIG. 1. �Color online� �a� Geometry and coordinates of the model Py nan-
odot along with the corresponding M configurations at the indicated times.
The top- and bottom-perspective snapshot images display the initial equilib-
rium �t=0 ns� and the dynamic �t=15 ns� MV states with the downward
core orientation and counterclockwise in-plane rotation. The color and
height of the surface indicate the in-plane and out-of-plane M components,
respectively. The spiral like black line on the right denotes the orbital tra-
jectory of VC motion during the time period of t=0–15 ns with A=10 Oe
and �=�0=330 MHz. �b� Orbital trajectories of VC motions for the indi-
cated A and � values. �c� The aspect ratio �b /a� of the elliptical orbits vs
� /�0 for the case of A /As=0.2. The red line indicates the case of b /a
=� /�0,21 where a and b are the lengths of the ellipse along the x �perpen-
dicular to the H direction� and y �along the H direction� axes, respectively.

FIG. 2. �Color online� VC trajectories and their FFT powers under in-plane
oscillating fields with various �’s and A’s, as noted. For comparison, the
micromagnetic simulation results and the numerical solutions of the linear-

ized equation of motion �−G� Ẋ− D̂Ẋ+�X−	�ẑ�H�=0� are shown in �a�
and �b�, respectively. The VC trajectories shown in the whole area of the dot
were drawn during the time interval of t=0–100 ns, but in the upper left
during t=0–10 ns, and in the lower right during t=90–100, 94–100, and
96–100 ns in order from the first to third column, respectively. The magni-
tudes of the FFT powers were normalized by the maximum value of each
case.
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linearity. In Thiele’s equation of motion, this nonlinearity of
large-amplitude VC gyrotropic motion is due to some higher-
order energy terms in the function W�X�. To analytically
interpret such nonlinear motions using Thiele’s equation of
motion, we added a fourth-order term ��X4 /4� into the W�X�
yielding −G� Ẋ− D̂Ẋ+�X+�X3−	�ẑ�H�=0. The nu-
merical solutions of this equation for different �’s are shown
in Fig. 4. The number of peaks, and their position and mag-
nitude in the frequency spectrum dramatically change with
�. For a specific value of � /�=4.5�1013 m−2, not only the

trajectories but also the frequency spectra obtained from the
numerical solution �the third column of Fig. 4� are in best
agreement with those from the simulation �Fig. 3�a��. With
increasing � the number of harmonic peaks and their inten-
sities, and the shift of the eigenfrequency of the VC motion
increase �see Fig. 4�. The extent of the nonlinearity of the VC
motion can be represented by the magnitude of �. The shape
of the stadiumlike orbit with the small-amplitude circular
orbits at both ends is surely the result of the nonlinearity of
VC motions, as evidenced by the higher-order term included
in the W�X�. Such complex VC motion, including the initial
transient and the steady-state motions, can be well inter-
preted or reproduced using Thiele’s equation of motion by
taking into account the higher-order potential energy terms.

In conclusion, the results presented in this letter not only
offer a simple and easy way to investigate linear and nonlin-
ear vortex-core gyrotropic motions but also open up an op-
portunity to manipulate vortex-core gyrotropic motions in
given soft magnetic nanoelements by changing the field fre-
quency and amplitude of in-plane oscillating driving forces
such as a magnetic field.

The authors thank K. Y. Guslienko for fruitful discus-
sions. This work was supported by Creative Research Initia-
tives �ReC-SDSW� of MOST/KOSEF.
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FIG. 3. �Color online� �a� Simulation results of the VC trajectories of the
gyrotropic motion in different time periods as noted, and �b� the FFT power
spectrum for the case of � /�0=0.3 ��=100 MHz� and A /As=0.6 �A
=300 Oe�. �c� Identification of the individual peaks �marked by colored
regions� in the FFT power spectrum in �b�. Each VC trajectory shown in the
first row was obtained from the inverse FFTs of the frequency powers in
each range of �f1=50–150 MHz, �f2=250–350 MHz, �f3

=475–525 MHz, and �f0=400–475 MHz, as displayed by the color-coded
regions in the frequency spectrum. The second row denotes the superposi-
tion of the filtered VC trajectories corresponding to the individual frequency
regions.

FIG. 4. �Color online� VC trajectories in different time periods as indicated,

all of which were obtained from the numerical solutions of −G� Ẋ− D̂Ẋ
+�X+�X3−	�ẑ�H�=0 for the different values of � /�, as noted above
each case �column�, for the same oscillating field parameters as in Fig. 3, i.e,
� /�0=0.3 and A /As=0.6. The bottom row shows the FFT spectra corre-
sponding to the VC motion in the time interval of t=0–100 ns. The FFT
power spectra were normalized by the maximum value in each case.
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