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We present nonequilibrium molecular dynamics simulations of planar elongationgFBky by an
algorithm proposed by Tuckermaet al. [J. Chem. Phys106, 5615 (1997 ] and theoretically
elaborated by Edwards and Dresdlér Non-Newtonian, Fluid Mect6, 163 (2001)], which we

shall call the proper-SLLOD algorithm, qu-SLLOD for short.[For background on names of
algorithms see W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W. T. Ashurst, and B.
Moran, Phys. Rev. 22, 1690(1980 and D. J. Evans and G. P. Morriss, Phys. Re\80A 1528
(1984.] We show that there are two sources for the exponential growth in PEF of the total linear
momentum of the system in the contracting direction, which has been previously observed using the
so-called SLLOD algorithm. The first comes from the SLLOD algorithm itself, and the second from
the implementation of the Kraynik and Reinght. J. Multiphase Flowi8, 1045(1992] boundary
conditions. Using theg-SLLOD algorithm (to eliminate the first sour¢amplemented with our
simulation strategy(to eliminate the secondin PEF simulations, we no longer observe the
exponential growth. By analyzing the equations of motion, we also demonstrate that both the
SLLOD and the DOLLS algorithms are intrinsically unsuitable for representing a nonequilibrium
system with elongational flow. However, the SLLOD algorithm has a rigorously canonical
structure in laboratory phase space, and thus can represent a nonequilibrium system not only for
elongational flow but also for a general flow. 8005 American Institute of Physics.

[DOI: 10.1063/1.1819869

I. INTRODUCTION proven that, although the DOLLS algorithm has a Hamil-

tonian and canonical equations of motion, it makes an incor-

'Understanding the flow behavior of complex fluids re- prediction for shear flow at high values of shear f&te.
mains a problem of great fundamental and practical signifi-

cance. The understanding of homogeneous shear flow hé\g contrast, even though the SLLOD algorithm does not have

been substantially advanced by the combined results of ol Hamiltonian and canonical equations of motion, it predicts

periments, theory, and nonequilibrium molecular dynamicscorrECtIy the noneqyilibrium behavior of physical systems
(NEMD) simulations. However, understanding of e|0m~:",ﬂ_under shear. Accordln_gly, ex_tenswe use ha§ been made of the
tional flows and more general flows, which are also of fun-SLLOD algorithm in simulating sheared fluids.
damental and practical importance, has been frustrated by the Another practically important class of flow fields is elon-
absence of a suitable NEMD algorithm for steady-state flowgational flows[see Eq.(17)], such as uniaxial, biaxial, and
other than shear flow. It is our purpose in this work to dem-(the focus of this workplanar elongational flows. The main
onstrate a theoretically sound algorithm for steady-state pledifficulty of simulating elongational flows lies in the limited
nar elongational flowlPEP and to elucidate the deficiencies simulation time available due to the contraction of one or
in recent attempts toward this end. With a sound algorithniwo dimensiong. This problem, however, has been partially
for NEMD of PEF, rigorous testing of theories of PEF areresolved by Kraynik and Reinelfsngenious discovery of
made possible, and predictions of complex fluids undergoinghe temporal and spatial periodicity of lattice vectors in PEF.
extensional flow, such as in polymer processing, may be undnfortunately, these authors proved that no such periodicity
dertaken. exists for uniaxial or biaxial elongational flow. Employing
There exist two well-known algorithms for simulating a their idea, there have been several NEMD simulations of
nonequilibrium physical system under a specified externaPEF using the SLLOD algorithfr.’
flow field, e.g., simple shear floysee Eq.(17)], the so- Very recently, however, Todd and Daitisave observed
called DOLLS tensor algorithm developed by Hooe¢rml!  another serious problem iN-V-T NEMD simulations of
and the SLLOD algorithm of Evans and Morrisk.has been PEF when using the SLLOD algorithm: the exponential
growth of the total linear momentum in the contracting di-
dAuthor to whom correspondence should be addressed. Electronic mair:eCtion’ which results in an aphysical phase transition after a
hdc@ornl.gov certain time interval. The phenomenon starts from a nonzero
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initial total linear momentum of the system due to the limit and laboratory phase spacgsq) and (p’,q’), respectively,

of numerical precision (truncation error in computer (see Sec. Il for their definitionsand leads to conclusions
simulations® Accepting this source as numerically unavoid- regarding whether or not each algorithm has a Hamiltonian
able, the underlying cause is ascribed to the basic algorithrand obeys Newton’s equations of motion for both shear flows
used in the simulations. As shown by Todd and Daivis, theand PEF. Section Ill compares the evolution equations of the
exponential growth of the total linear momentum does nototal linear momentunithe problematic issue identified by
depend on the thermostéioseHoover or Gaussignthe  Todd and Daivi®) of the three algorithms for both simple
size of the time steggsmall or large, the dimensionality of shear flow and PEF. It is shown that the SLLOD and
the fluids (2- or 3-dimensiona) or the integration scheme p-SLLOD algorithm are identical for simple shear flow, but
(Gear predictor-corrector or velocity VerlefThey showed that the SLLOD algorithm for PEF omits a necessary term.
analytically that the true cause arises intrinsically from theThen, in Sec. IV, we detail the simulation strategy used in the
SLLOD algorithm itself. Although they proposed tvadl hoc ~ present work. The results of the NEMD simulations are pre-
ways to avoid the problem by rescaling particle momenta agented in Sec. V, where we discuss the results using the
each time step or by introducing another constraint into thgp-SLLOD and the SLLOD algorithms, including a direct
momentum equation, those methods disturb the natural eveéomparison. We note that, because the SLLOD algorithm for
lution of the physical system and thus still seem undesirablé?EF omits a necessary term, the results differ from those

Therefore, one cannot simulate elongational flows approprigiven by thep-SLLOD algorithm, especially at high strain
ately using the SLLOD algorithm. rates. This can be vitally important in testing theories of PEF

This situation has led us to seek another NEMD algo-With model fluids for which NEMD of PEF can now be
rithm for simulating PEF, as shown below. It is not restrictedconsidered essentially exact. In addition, our results demon-
to PEF but is valid for a general flow field. With remarkable Strate that there are two causes for the artificial exponential
insight, Tuckermanet al® proposed a new algorithm for growth of the momentum and the resulting phase change,
NEMD simulations, which they called the generalized-Which have been observed with SLLOD simulations of PEF.
SLLOD algorithm. They pointed out that, whereas theBoth have been successfully addressed with the approach
SLLOD algorithm does not satisfy Newton's equations ofpresented here. Finally, we make brief concluding remarks in
motion, m,d%q; /dt?=F;, the new algorithm does so. There Sec. VI.
is also a conserved quantity associated with this algorithm—  The main body of this paper deals primarily with the
see below. This algorithm was later derived by Edwards angonsistency of NEMD algorithms with principles of Hamil-
Dresslet’ through a fundamental investigation of the canoni-tonian and Newtonian mechanics. In two appendices, we ex-
cal structure of the evolution equations under the PoissoAMine the consistency of the algorithms from the perspective
bracket formalism. This derivation demonstrated the redun®f macroscopic thermodynamics. The two appendices offer
dancy of the additional variable introduced by Tuckermanderivations of the time derivative of the internal energy and
et al? and illustrated the connection between the laboratoniScuss its implications on the pressure tensor.
and convecting coordinates systems in NEMD algorithms.

Here, we propose to call the new algorithm the “proper-||. ANALYSIS OF NEMD ALGORITHMS

SLLOD algorithm,” or p-SLLOD, in order to emphasize the ] ) )
fundamental properties of this algorithm for arbitrary flow I this section we analyze the three NEMD algorithms
fields. by examining them in both “peculiar” and “laboratory”

We show in this paper that there are, in fact, two sourceframes of reference, which may be used to describe a non-
for the unphysical exponential growth of the total linear mo-&auilibrium physical system under a specified external veloc-
mentum in PEF simulations with the SLLOD algorithm. The ity flgld. This analysis allows us later Fo elucidate the basis
first comes from the SLLOD algorithm itself, and the second,fOr differences among the three algorithms. Thus, there are
from the implementation of the Kraynik and Reinelt bound- W kinds of momenta, the §g-called “peculiar momenga”
ary conditions(KRBCs). Employing thep-SLLOD algo- and_“laboratory mor_nenta’p .> The former are defined as
rithm (which removes the first sourdeompare Eqs(38) pz_irtlcle momenFa with re_spect to a_reference frame_m_ovmg
and(39)] in NEMD simulation, together with an appropri- with the_ streaming velocity of_ a fluid element con_talmn_g
ate simulation implementatiotwhich removes the second e particles, and the latter with respect to a spatially fixed
source[described in Sec. 1Y), we have found that we no reference frame. The fluid element in the definition of the

longer face the aphysical phenomenon encountered by Todifculiar momenta is thermodynamic, in that it contains a

and Daivis in NEMD simulations of PEF. very large number of partllcles, but is still infinitesimal with
Because this work is somewhat lengthy and difficult, we"©SPECt to the macroscopic world of the hydrodynamic equa-

take extra pains to help guide the reader through the logic otfﬁns' We may qho:)se either of the two different sets of

our analysis. In Sec. Il, we present a theoretical analysis gphase-space variablés,q) or (p'.q ) for representing hon-

all three NEMD algorithms (DOLLS, SLLOD, and equilibrium systems. Denoting an imposed external velocity

p-SLLOD) in order to clarify why thep—SLLOD algc;rithm gradient field byVu, the two sets are related to each other

’ 0

rather than the DOLLS or the SLLOD algorithms, is ourbyl

preferred algorithm and can be used in NEMD simulations  p/=p,+m;q;-Vu,

for any flow field. Our analysis of the NEMD algorithms , (1)

starts with a study of the transformation between peculiar g =i,
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wherem; and q; are, respectively, the mass and positionfrom which, for an N-particle system, we have
vector of particlei. [ dp;---dpydg;---dgy= [ dp;- - -dpnddys - -day - Thus,

In order to understand the fundamental structure of ghase-space volume is conserved through the transformation
NEMD algorithm fully, it is essential first to investigate the between(p,q) and(p’,q’'), even though the transformation is
phase space on which it is built. In general, there exist twaot canonical. Hereafter, we use a simplified notation for an
independent methods of canonical transformation betweeN-particle system:p={p4,...,.on}, 9={d1,...,0n}, [ dPp
phase spaces: the generating function approach and the syr-f dp;---dpy, andf dg=/ dq;---dqy.
plectic approach! Here we use the symplectic approach. Although there has been some prior attention to the labo-
From the well-known property that the Poisson bracket reratory momenta, most of the previous work on NEMD algo-

mains unchanged under a canonical transformafidginfol- rithms has given the peculiar momenta a special importance
lows that the necessary and sufficient condition for a canoniin constructing the Hamiltonian, the governing equations of
cal transformation is motion, and the distribution function of the nonequilibrium

systems. This probably results from the fact that several im-
portant physical quantities, such as the temperature and the
whereM T is the transpose of matrid. For a system witls  pressure tensor, are based on the peculiar momenta. How-
degrees of freedom, the matricksandA are defined as ever, from the theoretical point of view, the two momenta are
equally valid as phase-space variables; that is, the two phase

MAM T=A, )

" aq) aq,  aa; aq; T spaces(p,q) and(p’,q’) should be considered equally valid
20 g 0. oo representations of nonequilibrium physical systems. We shall
91 93 Pl _ps see below that, whereas the appropriate phase space for the
P : s : DOLLS algorithm is(p,q), it is (p’,q") for the p-SLLOD
a9, N aq.  dq. . aq. algorithm.
M= J0; Qs dpy JPs
d0 dqy  Jpg JPs
: . : : . : A. DOLLS
ap! ap. ap! ap! The Hamiltonian in the DOLLS algorithm is given by
s ... Fs 9P 0 TFs
L 901 Qs dpy IPs J
OS ls N p|2 N
=l-1. o @ Hp.g)=2 5 —+V(@)+2 qpi(Vu)'
s Ys i=1 2Mm; i=1
wherel is the sX s identity matrix and0g is the sx's null Ny
matrix. Considering, for convenience, a one-particle system =D —(pi+miq;-Vu)2+V(q)
in Cartesian coordinate$)AM T between(p,q) and (p’,q’) =1 2m

is found to be

l3 03
M= ., MAM T=
mVu I;

N1
03 |3 _21 Emi(qi.vu)27 (7)
—l; m[Vu—(VwT]’

(4 whereaVu=%,a,V,u, anda:b=3 3 a,5bg,. The cor-
responding canonical equations of motion are derived as

where

Uy ] Hop
ax gy 9z gi=—=—+q;-Vu,
Ju, du, Au i M

= ¥ ¥ ¥ (8
vu ax dy dz |’ ®)
oH

Iz Uz I, pi:_a_:Fi_VU'piy

| ox gy 9z ] di

A consequence of Eq) is that this transformation ) )
would, in general, not be canonical; only in the casevaf ~ WhereF;=—dV/Jq;. As long as the equations of motion
—(Vu)T, i.e., elongational flows, would it be canonical. Cal- COrrectly represent real physical systems, we can apply the

culating the Jacobiad between(p,q) and (p’,q’) from the Hamiltonian for many theoretical methodologfe$in view
matrix M, it is found from Eq.(1) that of the local equilibrium assumption, one can assume that the

canonical distribution functiofi(p,q) of the nonequilibrium
system, as a solution of the Liouville theorehf¥dt=0, has
the form

_a(p’.q’)

—WZdG(M)Zl, (6)
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1 2
. B exp{ kBT E| 12 +V(q)+§:, 1q|p| (VU) o
(pvq)_ Z H ( )
|
where the partition functio is given by dH p
N Q=75 = H“‘Qi Vu,
z:depdqex N 2 il +V(aq) v
N
. T . oH
+§,l qipi:(Vu) H (10 pi== g =Fi—Pr -Vu—mq-Vu-Vu+mVu
Now let us examine the DOLLS algorithm in the phase (V)
i .

space(p’,q’). Since the transformation betweép,q) and

(p’,q") does not involve time explicitly, it is natural to take

H'(p{.a{)=H(pi,a;) with V'(q')=V(q) and oV'/dq’

=9VI/4dq. Thus, it follows, using the transformation equation Clearly Eq.(13) is not equivalent to Eq8). ThereforeH’ is

(1), that
N

N
1 1
(! A’ — 12 rial — T mial. 2
H'(p',0")= 2 3P4V (@) = 2, 5 mi(a V).
(11

Assuming the canonical structure of phase sgatg’), the
equations of motion would be

oH' py
op; M’

-

ai =
(12

. dH’

p/=——=F+mVu-(q/-Vu).
e

Note thatgm;(q;-Vu)?/dq; is not equal to ,q;-Vu-Vu but

to 2m;Vu- (g;-Vu). Transforming Eq(12) from (p’,q’) to

(p,q), it becomes

1 1
eXP{ k T[EI 12m p|I2+V(q ) | 12 m(ql VU)

a conserved quantity but not a Hamiltonian. This is exactly
what is expected from the noncanonical relationship between
(p,q) and(p’,q’). To the best of our knowledge, one could
not derive the equations of motion of the DOLLS algorithm
from any form ofH'(p’,q’). Thus, it is concluded that for
the DOLLS algorithm there exists a Hamiltonian in phase
space(p,q), but only a conserved quantity, not a Hamil-
tonian, in phase spade’,q’).

Another subject worthy of consideration is the canonical
distribution function. AlthoughH’(p’,q’) is not a Hamil-
tonian, it is conserveddH'/dt=0), which can be explicitly
verified using Eqs(11) and(12) or simply from the fact that
H'(p’,q")=H(p,q). The conservative property still guaran-
teesf’~expH’/ksT) as a solution of the Liouville theorem
df’/dt=0. Therefore, the canonical distribution function and
the partition function in phase spage,q’) are written as

1

f'(p',q")= 77

where

1 . 1 12 ’
T[iEl Z_mipi +V(q')

2=, [ o oo o] -

2 m(q. -Vu)?

} (15

However, these forms of’ (p’,q’) andZ’ can also be de-
rived by effecting the transformation d{p,q) and Z using
Eqg. (1) with the help of the relationf dp’ dg’ =/ dpdq.
Thus, we have found one connection betwdery) and
(p’,q") consistent with a physical point of view.

, (14

Next, let us look into the Newtonian dynamics resulting
from the DOLLS algorithm, an important characteristic in
judging whether a NEMD algorithm is capable of represent-
ing physical systems correctly. It is knofviithat appropriate
time-dependent boundary conditions, such as the Lees-
Edwards boundary conditiort$, together with Newton’s
equation of motiorm;q;=F;, are sufficient to generate non-
equilibrium states correctly. Hereafter, it is assumed that a
nonequilibrium system of interest is equipped with proper
boundary conditions, whether time dependent or not, and a
NEMD algorithm therefore must be consistent with New-
ton’s equation. From the equations of moti¢8) of the
DOLLS algorithm, it is found that
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miG;=F;— Vu-p, +p;-Vu+m.g-Vu-Vu, (16) It would seem to be a disadvantage of the SLLOD algo-
rithm that it fails to satisfy Newton’s equation in arbitrary
velocity gradient fields. Consequently, the frame of reference
of the SLLOD algorithm isnot an inertial reference frame
(except in special cases such as planar Couette,flawd, in

ur opinion, this is a disadvantage of this algorithm. After

Il, the real laboratory experiment is conducted in an inertial
frame of reference. It is not clear how the SLLOD stress

which is not consistent with Newton’s equation. Therefore, it
is concluded that the DOLLS algorithm, in general, would
not correctly represent nonequilibrium systems.

Let us specifically consider two practically important
cases. The external velocity fields for simple shear flow an
elongational flows are given by

[0 v O tensor calculation translates from the noninertial reference
Vu=|0 0 0| for simple shear flow, (173 frame. of the simulation to the inertial reference frame of the
experiment.
L0 0 O For simple shear flow, Eq21) becomes
I .EXX 0 0 midi= Fi y (22)
Vu=| 0 €y, 0| for elongational flow, (17t  which, of course, is identical to Newton'’s equation. There-
L0 0 €, fore, the SLLOD algorithm is capable of representing

sheared fluids. This is one reason why the SLLOD algorithm,
rather than DOLLS, has given physically reasonable results
for nonequilibrium systems under shear at higher values of
the shear rate. However, for elongational flows where the
second term on the RHS of ER1) does not vanish, the

SLLOD algorithm is not expected to give correct results be-
m;q;=F,—Vu-p;+p;-Vu. (18) cause of this inconsistency with Newton’s equation of mo-

where y denotes shear rate,, elongational rate of thex
component, and so on. PEF is describedely= — e, =€
ande,,=0 in Eq.(17). Since the last term on the right-hand
side (RHS) in Eq. (16) vanishes for simple shear flow, the
resulting evolution equation is written as

For elongational flows, the second and third terms on thé'on'
RHS in Eq.(16) vanish together, and it follows that
miqi:Fi+miqi'VU°VU. (19) C. p-SLLOD

Since neither Eq(18) nor Eq.(19) is consistent with New- Now let us examine thp-SLLOD algorithm. There ex-
ton’s equation of mation, we conclude that the DOLLS dy-ists a Hamiltonian in thep-SLLOD algorithm, not in phase
namics would not be capable of representing either sheapace(p,q) but in (p’,q’);

flow or elongational flows. This explains why the DOLLS N
algorithm gives incorrect results for shear flow as mentioned H'(p',q) = ip-’2+V’(q’) (23)
previously and which led to the SLLOD algorithm. ' =1 2m; ™ '

from which the canonical equations of motion are derived as

B. SLLOD
The equations of motion of the SLLOD algorithm are q/:ﬂ: p_,
given by Yoopl M
, , (24)
qi:%"_Qi'Vuv bi':_ﬂzpi_
I 5qu
Pi=Fi—h Expressing Eq(24) in the phase spadp,q), it is found that
Note that in the case oVu=(Vu)T", Eq. (200 would be _
equal to Eq.(8) and the SLLOD algorithm would be the Qi=&+Qi'VU,
same as the DOLLS algorithm. Unfortunately, there has not m
been found a Hamiltonian to generate the equations of mo- pi=F,—p;-Vu—mg;-Vu-Vu. (25

tion (20) of the SLLOD algorithm in any phase space, either ] N ] )
(p,q) or (p',q’), which is regarded as a weak point in the With the conserved HamiltoniaH’, the canonical dis-

algorithm. [Tuckermanet al® showed the existence of a re- tribution function and the partition function are written as
stricted Hamiltonian under a special conditidhu-vu  follows:

=(Vu-Vu)'.] So, we shall only discuss the evolution equa- 1 N

tions generated by the SLLOD algorithm. From EZ), it is eXp{ T Eizlm pi +V(q’)”

readily shown that f'(p',q")= 5 = ' , (26)
miqi:Fi+miqi'VU'VU, (21)

where
which again is not consistent with Newton’s equations. LIN g
Therefore, like the DOLLS algorithm, the SLLOD algorithm ,, _ f f L '2 )

= i —p+ .
would not, in general, represent nonequilibrium states cor-Z p’ q,dp dq’ ex kgT .=21 2m; pIe+V(a’)
rectly. (27
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Note that thep-SLLOD algorithm would reduce to the but not a Hamiltonian inp’,q’). It is not capable of repre-
SLLOD algorithm in the case oVu-Vu=0, i.e., simple senting nonequilibrium systems either for shear or elonga-
shear flow. tional flows because its equations of motion are inconsistent
Now let us analyze th@-SLLOD algorithm in phase with Newton’s equation. On the other hand, the SLLOD al-
space(p,q) with H(p;,q)=H’(p{ ,q/) as we did in the gorithm does not have a Hamiltonian in eithg,q) or

DOLLS algorithm: (p',q"), but it is capable of representing nonequilibrium sys-
N tems with shear flow but not elongational flows because in
H(p,q)zz ——(p+mq-Vu)2+V(q). (28) shear flow its equations of motion are consistent with New-

=1 2m, ton’s equation. Finally, th@-SLLOD algorithm has canoni-
cal form in phase spad@’,q’) and a noncanonical form in
?p,q), and it is capable of representing nonequilibrium sys-
tems for any flow field because its equations of motion are,
H p in general, consistent with Newton’s equation. In short, the
9= 9p = ﬁiJrqi'VU’ p-SLLOD algorithm is considered the most satisfactory
(29 among the existing NEMD algorithms, and it is for this rea-

son that we employ the term proper-SLLOD.

Constructing the canonical equations of motion in phas
space(p,q), we see

. dH
pi=— &—q=Fi—Vu-pi—miVu~(qi-Vu).
1

Equation(29) is not equivalent to Eq(25). The reason for
this apparent discrepancy was discussed by Edwards anth EVOLUTION OF THE TOTAL LINEAR MOMENTUM
Dresslert? in phase spac#,q), the equations of motion are
not of canonical form. Thus Eq$29) are not correct equa-
tions of motion for thep-SLLOD system. This is exactly the
opposite of the case in the DOLLS algorithm: in DOLLS, the
phase space(p,q) has canonical equations of motion

From our analysis of the three NEMD algorithms in the
peculiar and laboratory frames above, we understand the ori-
gin of the differences among them and we have a firm, physi-
cal basis for greater confidence in theSLLOD algorithm.
whereas inp-SLLOD, phase spacép’.q)) has canonical " Let us now examine thg evolution of the to_tal linear momen-

’ ' tum of a system resulting from the equations of motion of

equations of motion. . o .
X . .. each NEMD algorithm. Recall that it is the exponential
Using the same procedure as in the DOLLS algorithm, rowth of the total linear momentum of PEF with the

the canonical distribution function and the correspondin LLOD algorithm that was observed by Todd and Dafvis
partition function are found to be As already mentioned, for simple shear flow the SLLOD and

f(p,q) the p-SLLOD algorithms are equivalent, and for elonga-
1 1 tional flows the DOLLS and the SLLOD algorithms are
exp{ _ —[EN1—(pi+miQi'VU)2+V(Q)H equivalent. Summing over all the particles of a system and
_ keT|[ '~ 2m, observing Newton’s third law;F;=0], the equations of
z ' motion for the total momentum of each algorithm are written
(30 as
where Qa:Pa+% Qﬁvﬁua!
N
1 1
Z:f J dpdq exp| T > r(pﬁrmiqi-Vu)z : 33
pJa gl [i=12m, P.=—2> VuzP; for DOLLS,
B
+V . 31 :
(q) ( ) Qa:Pa+2 QBVﬁua!
B
Therefore,f(p,q) andZ are equal tof’(p’,q’) andZ’, re- (34)
spectively, as in the_z DOLLS algorif[hm. _ _ I';,a: _2 PsVsu, for SLLOD,
Next let us derive the Newtonian dynamics dictated by B
the p-SLLOD algorithm. From Eq(25) it is found to be
midi:Fi . (32) Qa:Pa_F% Qﬁvﬁua’
This is exactly Newton’s equation, which is the required (39
form for a NEMD algorithm; thus, th@-SLLOD algorithm P,= —E PsVsu,
will make a physically correct prediction fany flow. This B
fact could be deduced from the rigorously canonical struc-
ture of Eq.(24) in phase spacé’,q’) without involving any —2 2 QzVsu,V,u, for p-SLLOD.
velocity-dependent nonequilibrium term, unlike the DOLLS B
algorithm in its phase spadp,q). In these expressions, the total linear momentum is defined as

To summarize this section, the DOLLS algorithm has aP,=3,;p,; and the first moment a®,=;m;q,;. Here,
Hamiltonian in phase spadp,q) and a conserved quantity Greek subscripts representy, andz components.
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First, we consider simple shear and then elongational = p,
flow fields, as described by EL7). For simple shear flow, Qi=H+CIi'VU,
the evolution equations of the total linear momentum of each '
system are found to be _ p
pi=F—p;-Vu—mq-Vu-Vu—="p;,

P (1) =P (to) = 8,y ¥Px(to)(t—tg) for DOLLS, Q
(36) (40)
. . P
P (1) =P, (to) = Sux¥Py(to) (t—to) n= 677,
for SLLOD and p-SLLOD, (37) "
where the Kronecker delta, is equal to 1 fore=g and 0 p,=2 &—DNkBT
otherwise. Therefore, the total linear momentum of the sys- =1 m
tem is at most linearly dependent on time for all of the ) ) ) ,
NEMD algorithms. whereD denotes dimensionalitiy the number of particle§,
For elongational flows, it follows that the temperature, arkk the Boltzmann constant. Hergand
o p, are coordinatelike and momentumlike variables of the
Pa(t)=P(to)exd — €,q(t—to)] NoseHoover thermostat, respectively, aqd=DNKkgT 7 is
for DOLLS and SLLOD (39) the mass parameter of the thermostat. In the present work, all
’ of the system and simulation conditions have been set as in
P (1)=P,(to) — €4al Palto) + €,0Q.(to) 1(t—to) the previous works® for comparison purposes. We studied
the Weeks—Chandler—AnderséWCA) fluid whose poten-
for p-SLLOD. (39 tial model in reduced units is given by
From Eq.(38), we see that the total linear momentum is 1 e
exponentially dependent on time in the cases of the DOLLS A+l for r<2

¢(r)= (42)

and the SLLOD algorithms. Therefore, fey,<0, an expo- 0 for r>216
nential growth of the total linear momentum will occur in the

a direction unless the initial total momentum is exactly equalNote that all the parameters, variables, and physical quanti-
to zero, which would never be achieved in computer simulies presented in this paper are expressed in reduced units
lations because of truncation error. This is what Todd andsee Appendix B in Ref. 20

Daivis® observed in PEF simulations with the SLLOD algo- ~ NEMD simulations were performed at temperattire
rithm. From Eq.(39), when using thep-SLLOD algorithm, ~ =0.722 and number density=0.8442. A system of 500
however, the total momentum depends only linearly on timeWCA particles was used in simulations, for which the time
as in simple shear flow, and, therefore, we no longer have thetep was chosen as 0.001 925 and the velocity Verlet integra-
instability problem that occurs in the SLLOD algorithm. tion scheme was employed. The relaxation time parameter
These results seem naturally related to the intrinsic shortof the NoseHoover thermostat was set equal to 0.096. As for
comings of the DOLLS and SLLOD algorithms and the uni- the KRBCs, we chose the Hencky straigr~0.9624 and the
versality of thep-SLLOD algorithm, as described in Sec. I1. initial orientation angle of the simulation bofy~31.718°,

With this observation, we have conducted NEMD simula-Which are obtained by settingk=3, N;;=2, and Ny,

tions for planar elongational flow using tipeSLLOD algo- = —1 in Ref. 5. The time period, for KRBCs is determined
rithm and compared the results with those of the SLLODTOM €,= et . In applying KRBCs, we followed the efficient
algorithm. The results are presented in Sec. V. procedure suggested by Todd and Daivisere we will not

describe the details of either KRBCs or the Todd-Daivis pro-
cedure to avoid unnecessary repetition, and refer readers to
the original paper$>’

In this section we detail our strategy for simulation of Now let us mention two crucial simulation details in
PEF. Readers primarily interested in the theoretical aspecismplementing thep-SLLOD algorithm for PEF. The first is
of our work may skip this section without loss; however, asthat, since the momentum equati@¥) involves the position
we note below, reliable, practical simulations of PEF requireof a particle (not only the relative distance between par-
care to avoid artifacts. ticles), we should not apply the periodic boundary conditions

For our nut NEMD simulations of PEF €,,=—€,, (PBC9 (Ref. 20 to the position of the particle used in Eq.
=e and €,,=0 in Eq. (17)], the NoseHoover thermo- (25). Instead, we should retain the particle position without
stat®>1>was chosen to maintain the system temperature corapplying PBCs during each time peridgland use it in the
stant. We note that all thermostats, except the configurationahomentum equation. This is a natural procedure in the
thermostat of Delhommelle and Evaffs, result in artifacts ~ p-SLLOD algorithm since to apply PBCs is to violate the
at very high shear rate€.g., y>1). To the best of our very rule of evolution of the trajectory underlying the
knowledge, the thermostat artifacts in PEF have not beep-SLLOD algorithm. Of course, we still use the minimum
explored, but are not expected to be significant because d@fage conventiotf when calculating force. The only place
the absence of vorticity; this may be confirmed in the ongowe apply PBCs is at the end of each time period, at which
ing work. Thep-SLLOD algorithm, incorporating the Nose time the lattice vectors or boundaries of the simulation cell
Hoover thermostat, is written &% transform back into the initial ones according to KRBCs.

IV. SIMULATION STRATEGY
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The second simulation detail to be considered comes 700
from the fact that the time-evolution equation of the total 600 ety
linear momentum of the systef89) depends on two com- 500 b

ponents for its slope; one is the initial total momentum

P,(to) and the other the initial first mome,(ty). Since 4004

the KRBCs applied at the end of the time period make a a2 3°F
transformation in the center of mass of the system, the value 200 |
of Q,(ty) changes from one period to the next. As a result, a 100 |
large value of the initial slope for the next time period may 0
result, and this would make the system unstable. In order to
prevent the problem, we need to adjust the initial slope at '1000 xi0° 2x10° 3x10°
each time period without making any artificial perturbation time
to the dynamics of the system. The smaller the slope, the
more stable is the evolution of the system. This has been 8e-12
easily achieved by a uniform translation of particles in space e12b (P)
as follows: T
qai(o’j):qai(tpij_1)+Ca(j)v (42) . 2e-12 b
where TS 0 P NN N i e
: : . " 2012} ]
. Pa(tpaj_l)+eaaQa(tp1J_l)
Cﬂ/(J ) - .éaa,E iN: 1mi . (43) 4e-12 |
Be-12 |
Here the integey is the number of time periods. This proce- 8012 . . .
dure effectively re-zeros the linear coefficient in Eg9) at 0 1x10° 2x10° 3x10° 4x108
the beginning of each time period. Since this procedure time

merely translates the coordinate system of the position VeG: ) ) o
d does not affect the equations of motion. the New. I_G. 1 Evolut_|on of the total I_mear momentum of sy_stem in ymh_rectlon

tor§ an " - q o with time at e=0.05: (a) using the SLLOD algorithm,(b) using the

tonian evolution equations and the resultant trajectory are ng-sLLOD algorithm.

affected. To validate that this procedure does not disturb the

evolution of the system, we have checked the evolution of

the internal energy and pressure tensae Fig. 3 belo
» P g W growth in the SLLOD algorithm becomes more substantial

as elongational rate decreases. It is therefore sufficient for
V. RESULTS AND DISCUSSION comparison purpose to show the results only for a low elon-
. . gational rate.
In this section we present results of dufV-T NEMD Figures 1a) and 1b) show the evolution of the total

simulations Off EEII: First, we show th(; evtc:lu::orrl] ofstheo momentum of the SLLOD and that of the SLLOD algo-
component of the inear momentum under both the LL_ I:)rithm ate=0.05. Figure 1a) is essentially the same result as
and p-SLLOD algorithms to reproduce the exponential

that of Todd and Daivfswhen using the SLLOD algorithm.
growth presented by Todd and Daf/and to demonstrate its g 9

However, by using the-SLLOD algorithm, as shown in
absence with th@-SLLOD algorithm. We also examine the y g e J

luti fthe i | icle for both | dFig. 1(b), we observe a stable evolution of the toyaimo-
evo ut|_on ofthe internal energy per particle for _Ot ong anfymentum instead of the exponential growth. Figure 2 presents
short times to demonstrate the absence of artifacts with th

fhe corresponding evolution of the internal ener er par-
p-SLLOD algorithm. Finally, we show that omission of a b g gy Perp

ticle. The internal energ¥;,; and the pressure tenser of

necessary te”.“ from the SL.LOD algorithm for PEF results "Mour results are calculated over all particles in the system by
incorrect predictions of the internal energy,

. . ) the stress teNSOfe conventional equations:
and the elongational viscosity. Although the errors are large

only at very high strain rates, nevertheless, for purposes of N pi2
testing theories of PEF it is vital that NEMD simulations be int ;1 2_mi+V(Q) , (44)
reliable.
In N-V-T NEMD simulations, due to the interaction of a 1 N piD;
thermostat with the system, the evolution of the total linear P_<V_si21 (—I |F|) > (45)

momentum would not exactly follow E¢38) in the SLLOD
and Eq.(39) in the p-SLLOD algorithms. As pointed out by whereVq is the system volume. The angular brackets denote
Todd and Daivié at high elongational rate, where a large the average over the trajectory of the systeme Appendix
effect of the thermostat is expected, the exponential growtl8 for more precise physical meaning &, and P). As

of the totaly momentum does not occur in the SLLOD al- shown in Fig. 2a), the exponential growth of the total
gorithm. However, at low elongational rate where the effectnomentum in the case of the SLLOD algorithm causes an
of the thermostat is negligible, the exponential growth of theundesirable phase transition, which does not happen in case
total y momentum is observed. That is, the exponentialof the p-SLLOD algorithm, as shown in Fig.(B).
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FIG. 2. Evolution of the internal energy per particle with timeeat0.05: time periods (f,)

(@) using the SLLOD algorithm(b) using thep-SLLOD algorithm. . i )
FIG. 3. Close up of evolutions df) internal energy per particle art)

pressure tensor during each time periods) (at €=0.05 using the

These results directly demonstrate the stability and corP-SLLOD algorithm.

rectness of thgp-SLLOD algorithm for PEF. To verify that

there is no unacceptable discontinuity during the evolutioraigorithm are similar to those of the SLLOD algorithm
due to the KRBCs together with our simulation strategy, wewithin statistical uncertainties. However, as elongational rate
have looked more closely into the internal energy and thencreases, the difference becomes larger. This is actually to
pressure tensor at small time periods. The results are shovie expected to a certain degree, considering the difference in
in Fig. 3. For the pressure tensor, we have included 8)ly  the equations of motion between the SLLQEY. (20)] and

for clarity. As shown in the figure, there is no perceptiblethe p-SLLOD [Eq. (25)] algorithms; the SLLOD algorithm

discontinuity at each time period. We now conclude that usneglects the term that depends quadratically on the external
ing the p-SLLOD algorithm eliminates the aphysical phe- velocity field.

nomena that occur in the SLLOD algorithm.

Finally, in Fig. 4, we have compared the results of they|. CONCLUSIONS
SLLOD algorithm and those of the-SLLOD algorithm(the . i
numericalgvalues including statiskfii;al uncerta?nties of( our re- In this work, we have demonstrated thg capabilities of
sults are shown in Table | for the SLLOD and Table Il for thethe P'SLLOD algorithm for planar elongational ﬂO_W and
p-SLLOD algorithn). The elongational rates were chosen toe_lumdated the funda_mental causes of errors and artifacts pre-
be the same as those in Ref. 6, where the system was c0|¥|'—OUSIy produced with the SLLOD algorithm for PEF. By

posed of 108 WCA particles with the Gaussian thermc?'stat.us'r?g _thelprLOD alg(t)r?t?m, we EO 'O”Qdef en_coulntte_zr the
The numerical values of the results in Ref. 6 overall appeairle ysical phenomena that were observed In simulations us-

to be smaller than ours for the SLLOD algorithm. The dif- "9 the SLLOD algorithm. The-SLLOD algorithm can also

ference between the two SLLOD results is perhaps due to thl%e applied tp any flow field si_nce it has a perfect ca}r_10r_1ical
fact that the results from Ref. 6 used only 108 particlesStrUCture without any velocity-dependent nonequilibrium

shorter simulations, and/or a different choice of thermostat'germ in phase spade’,q’) and thus satisfies Newton's equa-

(Again, we recognize that both the Gaussian and Nbee tion of motion.

mostats can show artifacts at strain rates greater than one,

However, the thermostat cannot explain the difference begcK'\IOV\”‘EDGMENTS

tween our SLLOD ang-SLLOD results since we used the This work was supported by the Division of Materials

same thermostat for both algorithms. Sciences and Engineering of the U.S. Department of Energy
At low elongational rates, the results of tpeSLLOD (DOE) at Oak Ridge National LaboratorfORNL) and
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cal consistency; i.e., the algorithms were discussed in terms
of Hamiltonian and Newtonian mechanics. In the appendi-
ces, we examine them from the perspective of thermody-
namic consistency.

In order to understand thoroughly the nature of the
p-SLLOD algorithm, it is necessary to investigate the rela-
tionships between the laboratory and convecting reference
frames used in its derivation. The easiest way to develop this
understanding is to consider the laboratory reference frame
to be totally flow-free, i.e.Vu=0. Consequently, the equa-
tions of motion in this frame can be confidently expressed as
Hamilton’s equations, and molecular dynamics simulations
yield the system properties.

Denoting phase space in the laboratory framéga’),
the equations of motion are

P

=0 Al
&= (A1)
p/=F, (A2)

and the Hamiltonian is

N ! !

Pi *Pi
H'(q',p)= +V(q'). A3
(@'p")=2 Zr=+Via) (A3)

It is obvious that the Hamiltonian quantifies the internal en-
ergy of the system and also that

dH,—O A4
TR (A4)

Furthermore, the pressure tensor is calculated through the
standard expression

, 1 N PR,
P—<v2 (—m. +q'F ] ).

_ (AB)
i=1 i

So far, there can be no doubt as to the accuracy of the
description of this system. The questions arise when the ve-
locity gradient is nonzero. Let us now examine this problem
using a reasoning not commonly employed in NEMD stud-
ies. Instead of imposing a nonzero velocity gradient on the
system, let us merely transform the laboratory momenta co-
ordinates into coordinates that moas if a nonzero velocity
gradient were present. These new coordinates can then be
viewed as moving with a position-dependent velocity rela-
tive to the laboratory frame.

To see the consequences of this point of view, consider a

FIG. 4. Comparison of NEMD results between the SLLOD and the Taylor series expansion of an unspecified velocity fielich

p-SLLOD algorithms:(a) internal energy per particléb) elongational vis-

cosity, (c) pressure tensor.

through a subcontract at the University of Tennessee. ORN
is operated for the DOE by UT-Battelle, LLC, under Contract

No. DE-AC05000R22725.

APPENDIX A: THE INTERNAL ENERGY IN THE
p-SLLOD ALGORITHM IN MOVING COORDINATES

the neighborhood of the origin of a given set of spatial co-
ordinates:

V=Vo+q-VV+390:VVV+---. (AB)

IIT we linearize the velocity field by neglecting the higher
order terms(which vanish anyway for homogeneous flow
fields), then this expression allows us to connect the labora-
tory momenta coordinates with “peculiar” momenta coordi-
nates, which move at a constant, position-dependent velocity
of g;-Vu. Consequently, the momenta and positions in the

In the main body of this paper, the respective NEMD moving coordinategq,p) are related to the laboratory mo-
algorithms were examined from the perspective of mechanimenta and positions through the transformations
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TABLE I. NEMD simulation results using the SLLOD algorithm. Here, elongational viscagity calculated

as Pyy— P,,)/4e. The values in parentheses represent statistical uncertainties. All the results, except those at
€=0.05, 0.1, and 0.2 due to the phase transition, are obtained from the total simulation=ti&850, corre-
sponding to X 1CP time steps with a time step of 0.001 925.

€ Eint/N Pyx F:’yy Pz 7
0.0 1.8090.040 6.3970.205 6.3960.204 6.3970.203 N/A
0.05 1.8120.041) 6.1850.198 6.6410.219 6.4200.205 2.280(1.290
0.1 1.8180.042 6.0300.192 6.8890.227 6.4480.217 2.1470.638
0.2 1.8380.042 5.7940.181) 7.4310.250 6.5360.208 2.0510.337
0.4 1.89%0.046 5.5050.179 8.5220.303 6.7760.228 1.8860.191)
0.5 1.9300.049 5.4260.180 9.0860.337 6.9160.236 1.8300.166
0.8 2.06%0.059 5.3780.191) 10.920.434 7.4680.273 1.7310.127
1.0 2.1810.069 5.4870.205 12.270.514 7.9460.308 1.6950.117
1.6 2.6810.109 6.4290.266 17.130.781) 10.060.441) 1.6710.109
2.0 3.1710.139 7.5430.32]) 21.230.989 12.100.553 1.7100.103
25 4.0190.179 9.5070.397 27.681.281) 15.500.732 1.8180.108
3.2 5.8040.263 13.580.545 40.161.857 22.261.055 2.0770.12)
4 —Gi, P{—pi+mg-Vu. (A7) N piep
Ho(a,p)= > —— +V(q), All
In this new framework, the Hamiltonian can be transformed o) izl m; (@ (ALY)
directly from Eq.(A3):
N
(pi+m;i-Vu)- (pi + miq;-Vu)
H(a,p) =2 ————— = +V(a). 1Y pp,
= i —( — _ =
A8) P= V.El( m +q|F|) : (A12)
Furthermore, the equations of motion, E¢a1) and (A2),
can be transformed as well:
P Hence the rate of internal energy change in the moving co-
QiZHJFCh'VU, (A9) ordinates no longer vanishes. However, since the moving
_ ' reference frame is translating at constant velocity relative to
pi=F—pi-Vu—m;q;-Vu-Vu. (A10)  the inertial laboratory frame, the moving framework must be

These are thp-SLLOD equations of motion, and the Hamil- inertial too; ergo, Newton’s equation is also satisfied in the

tonian of Eq. (A8) is the conserved quantity in this Moving frame. S
algorithm2®i.e., dH/dt=0. Keep in mind thadH/dt=0 is valid for a system seen

Although H(q,p) as given by Eq(A8) is still a con- from the point of view of the laboratory reference frame,
served quantity in the frame of moving coordinates, it is nowhich is the same point of view in which the-SLLOD
longer associated with the internal energy as calculated by a@lgorithm was developelf.In order to understand how the
observer in this reference frame. According to the principlep-SLLOD algorithm behaves in the point of view of the
of frame indifference(also called the principle of material standard NEMD reference franiee., from the point of view
objectivity?>?3, the internal energy and the pressure tensoin which the SLLOD algorithm was developedt is neces-
in this reference frame have the same forms as in the labssary to examine this algorithm in that frame directly. This is
ratory reference frame: the subject of Appendix B.

TABLE Il. The same as in Table I, but using tipeSLLOD algorithm. Note that no phase transition occurs at
low elongational rates, such as=0.05, 0.1, and 0.2.

-5 Einl/N Pxx I:)yy Pzz n
0.05 1.8120.041) 6.1870.199 6.6440.215 6.4130.206 2.2881.292
0.1 1.8190.042 6.0230.193 6.9070.226 6.4460.207) 2.21%0.65))
0.2 1.8390.042 5.7900.183 7.4380.248 6.5360.214 2.0600.339
0.4 1.8900.046 5.5040.180 8.4860.306 6.7440.23)) 1.8640.193
0.5 1.9210.049 5.4270.183 9.0220.337 6.8570.247) 1.7970.165
0.8 2.0470.069 5.4280.212 10.790.460 7.3390.309 1.6760.129
1.0 2.1680.086 5.6240.245 12.190.536 7.8550.354 1.6410.119
1.6 2.7810.123 7.0800.322 17.850.807) 10.530.473 1.6830.111)
2.0 3.4290.152 8.6630.379 22.961.050 13.250.600 1.7870.113
25 4.5370.203 11.270.479) 31.011.419 17.610.809 1.9740.122

3.2 6.7770.292 16.290.615 46.212.102 25.941.186 2.3380.140
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APPENDIX B: THERMODYNAMIC CONSISTENCY daughter system considered independently, and therefore the
IN THE p-SLLOD ALGORITHM COM kinetic energy of the mother system is not equal to the
sum of the kinetic energies of the two daughter systems. As

I_n this a_p{_:)endlx,fv;/re] dgEE(SDSDonle cr_[[tre]zrlor]rof_thtlalrm_?dy-a result, the internal energy of the mother system is not equal
namic consistency of thp- aigoritnm. ‘typically, t =, the sum of the internal energies of the two daughter sys-

is expected that a NEMD algorithm should give rise to a UM ems. This logical argument indicates that whenever we cal-

derivative of the.internal energy In a macroscopic, adiabati((::ulate the internal energy of a system, we should first calcu-
system possessing the functional form late the velocity of the center of mass of the system, and then
Eint . calculate the internal energy using each particle velocity rela-
gi ~ PVsi(Vu)'. (B1)  tive to the velocity of the center of mas€OM velocity);
this is the so-called “peculiar velocity” of the particle. This

In Eq. (B1), Vs is the system volume and the other symbolsconsideration applies equally to any physical system,
are defined as in the main body of the paper. In this appenyhether the system is closed with a physical wall or ofzn
dix, the p-SLLOD algorithm is viewed in the same concep- in continuum fluid mechanicgi.e., hydrodynamids
tual sense as a typ|Ca| NEMD simulation, i.e., |t is VieWed as Next let us consider a more practica' examp|e_ Suppose
representing an actual imposed flow field instead of thghat there are two identical thermodynamic systems in equi-
mathematical, virtual field of Appendix A. For arbitrary flow |iprium with no COM velocity. Suppose that we suddenly
fields, an extra term can appear in the rate equation for thﬁnpose a COM velocity+u to one system and-u to the
internal energy fop-SLLOD, which (as will be showiis  other without disrupting the internal state of either system
entirely consistent with the NEMD simulation concept. (this can be done by using two moving frames of reference

In order to make this explanation as clear as possible, Wgjith velocities +u). Then each system will have the same
first present two examples that illustrate that the definitionssom kinetic energyk in addition to its initial internal en-
of thermodynamic and mechanical properties depend UpOBrgy. \We can then create a big system by enclosing the two
the point of view of the system under study. We then exploreystems within a perfectly elastic wall that has a volume
a precise connection between continuum and discrete Mgl to twice the original volume of each subsystem. Since
chanics. Finally, we apply our conclusions to the SLLOD he sym of the two subsystems’ momenta is zero, the COM
andp-SLLOD algorithms. _ o velocity of the big system is zero. After a certain time, the

First, we consider the phenomenon of particle d|smtegrabig system will reach a thermodynamic equilibrium. Now we

tion in a laboratory frame of reference. Suppose that &gy the following questions: “What is the temperature and
mother particle, with mash! and velocityu, becomes sud- pressure of the big system? Is it the same as that of the

d_enly dis_integrated into two d_aughter particles, with one Pargypsystems?” Obviously, the answer is “no,” because the
ticle having massn; and velocityu,, and the other, mass;  cowm kinetic energies of the subsystems have been trans-
and velocityu,. As is well known, there then exist Seven ¢, meq into the kinetic part of the internal energy of the big
integrals of motion: energy, three components of linear MOgystem. In other words, the internal energy of the big system
mentum, and three components of angular momentum: ;g composed not only of the sum of the internal energies of

Einet K= (€t 1+ ki) + (€5 2+Ky), (B2)  the two subsystems, but also of the sum of their COM kinetic
energies as well.
p=pitpz, (B3) These two examples show clearly that physical quanti-

L=l + (B4) tie_s depend on the Qefinition of the _syst_em under consider-
1t ation, as in Appendix A. In nonequilibrium physical pro-
Here, Ei, K, p, and L denote, respectively, the internal cesses with an external velocity field in space, regardless of
energy(i.e., the rest energy in a relativistic sepskinetic ~ whether or not the field is time dependent, we usually deal
energy of the center of mass of the systé@OM kinetic ~ with an infinitesimal portion of fluid with a certain streaming
energy, linear momentum, and angular momentum of thevelocity u. The traditional conservation laws of mass, mo-
mother system. Correspondingly, the lowercase lettgrs ~ mentum, and energy are derived for the infinitesimal volume
k, p, and!l denote the properties of a daughter systesob-  element(of course, the infinitesimal element is assumed to
scripts 1 and 2 refer to each of the two daughter systems be of thermodynamic scale, i.e., composed of numerous par-
Let us consider more specifically the physical meaningicles). According to standard practice, the internal states of
of the internal energy. By accepted convention, the internalhe system would not change at all for any inertial frame of
energy of a system does not contain the COM kinetic energyeference moving with a constant velocitye are here not
of the system. If we consider one of the daughter particlesoncerned with any relativistic effoctThus, we may set up
(say 1 as the physical system of intereky, is regarded as a moving hypothetical boundary with the same velocity as
the COM kinetic energy of system 1, and is therefore exthat of the infinitesimal element of interest and employ the
cluded from the internal energy. Now if we set up anotherocal equilibrium assumption to impart physical quantities
big system enclosing the two subsystems by a hypotheticalefined by equilibrium thermodynamics such as temperature
perfectly elastic wall with no mass, then the big systemand pressure.
would be the original mother system with the same values of As before, let us consider a combined system of two
Eini, K, p, and L. In general, the COM velocity of the identical infinitesimal systems of fluid, but with different
mother system is different than the COM velocity of eitherstreaming velocitiegsay, u; and u,) in a nonequilibrium
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process. As seen in the previous examples, physical quantivherev is the volume of the infinitesimal portion amg, is
ties such as the internal energy per mass and the pressutee number of particles in this volume; and g; are the
tensor of the combined system, in general, would not béaboratory velocity and position vector of partidlerespec-
arithmetic averages of the two subsystems because thwely, V(q) is the potential energy, arf is the force acting
streaming velocity of the combined system, is not the on particlei. Note that only the particles in the infinitesimal
same as eitheu; or u,. Therefore, the peculiar velocipr  portion under consideration are to be included in the summa-
momentum of particles needs to be recalculated relative totion. The first term on the RHS of E¢B9), representing the
u. In other words, in the derivation of the traditional conser-kinetic part of the pressure tensor, has the physical meaning
vation equations, the same COM velocity is used as the refhat particles with nonzero velocities relative to the stream-
erence velocity in the definition of the peculiar velocity, for ing velocity u of the infinitesimal region under consideration
all particles that exist within the differential element. How- would make a contribution of their momentum to the pres-
ever, in a NEMD simulation, the same COM veloci(ynot  syre tensor; therefore, they would also contribute to the total
usedto define the individual peculiar velocities; the indi- momentum of the infinitesimal region. Denoting the peculiar
yldual pecullar_ velocr[_les are defmed with reference to theyelocity of particlei asvi(=Vv/ —u), Eq.(B9) can be rewrit-
imposed velocity gradient This discrepancy introduces a fungep a5
damental difference between continuum theory and
molecular-level simulation.

Such an inconsistency has frequently been adopted in .
NEMD simulations in connection with hydrodynamics. Spe- R
cifically, the streaming velocity in field-driven NEMD simu- Pu :El my(Vi+ WV +aiF;
lations (DOLLS, SLLOD, andp-SLLOD) is different for
different positions in the simulation box according to the
imposed velocity gradient fiel#u. Furthermore, the COM
velocity used in the definition of the peculiar velocities of the
particles is thus different for the various particles. Neverthe-
less, the internal energy and pressure tensor have been cal- ] ]
culated over all particles in the box. Although such expres-The last term on the RHS of E¢B10) is necessarily zero
sions have their own physical meanings, they are nofrom the definition of the peculiar and streaming velocities,
precisely consistent with hydrodynamics. In some speciat!(=Zim;Vv{/Z;m;). Thus, the resulting expression has the
cases, such as that of a constant pressure tensor through&@nventional form of the pressure tensor in hydrodyamics. In
Space(e_g.’ p|anar Couette flow and PERhe pressure ten- NEMD simulations using field-driven NEMD algorithma,
sor expression over all the particles in a simulation may bds not calculated from the particle velocity within each small
regarded as an average over space. However, in the Casef@‘gion in the simulation box. Instead, it is included as a
position-dependent pressure tenderg., Hagen-Poiseuille known parameter in the equations of motion in the form of
flow), such an expression would not be the appropriate onevu.

Now let us consider three conservation laws of mass, Now let us consider the expression for the internal en-
linear momentum, and energy for an infinitesimal fluid re-ergy in the SLLOD ancp-SLLOD algorithms. Consistently

R

:'21 (mivivi+tii)+'—21 um;v; . (B].O)

gion moving with a streaming velocity: with hydrodynamics, we should consider only a small region
of the total simulation volume. It is essential to realize that
%:_pv,u (B5) the total simulation volume must be treated as larger than
Dt ’ this small element of volume because the streaming velocity
Du u varies within the simulation volume, but cannot vary
p—=—V-P, (B6)  Within the small element. The internal energy and its time
Dt derivative are given by
DE;
5=V P(VU)". (B7)
nR pg
Note that the time derivatives on the left-hand side of these  E;,= >, =— +V(q), (B11)
expressions are the material or substantial derivatives. Here, =12m,

p is the mass densit)f:_im is the internal energy per unit
mass,J, is the heat flux, an® is the pressure tensd;,; and

P i.n terms of particle coordinatdgosition and velocityare dE,, NR bp
written as dt :i:l Ti_ %Fi- (612
R
Ein= 2, 5 MY — w2+ V(a), (88)
R Using the equations of motion of the DOLLS, SLLOD, and

Py = 2 [myv/ (v —u)+qF], (B9) giléLOD algorithms, the expressions foE;,,/dt are found
=1
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DOLLS and SLLOD

dE R pip (B13)
nt_ Ll T— b T
dt 21( m; +q.F,).(Vu) Pv:(Vu),
p-SLLOD
(B14)

dE R pp
(PP E v | (VW)T
Tt El( At Vu>p.).<\7u>

=—Pu:(Vu)T,

dEin _§ (pi(pi+miqi'vu)

T— = m +tii):(VU)T. (815)
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duces the correct macroscopic equation of change for the
internal energy, whereas the SLLOD algorithm satisfies
thermodynamics, but not Newtonian mechanics.
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