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We present nonequilibrium molecular dynamics simulations of planar elongational flow~PEF! by an
algorithm proposed by Tuckermanet al. @J. Chem. Phys.106, 5615 ~1997!# and theoretically
elaborated by Edwards and Dressler@J. Non-Newtonian, Fluid Mech.96, 163 ~2001!#, which we
shall call the proper-SLLOD algorithm, orp-SLLOD for short. @For background on names of
algorithms see W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W. T. Ashurst, and B.
Moran, Phys. Rev. A22, 1690 ~1980! and D. J. Evans and G. P. Morriss, Phys. Rev. A30, 1528
~1984!.# We show that there are two sources for the exponential growth in PEF of the total linear
momentum of the system in the contracting direction, which has been previously observed using the
so-called SLLOD algorithm. The first comes from the SLLOD algorithm itself, and the second from
the implementation of the Kraynik and Reinelt@Int. J. Multiphase Flow18, 1045~1992!# boundary
conditions. Using thep-SLLOD algorithm ~to eliminate the first source! implemented with our
simulation strategy~to eliminate the second! in PEF simulations, we no longer observe the
exponential growth. By analyzing the equations of motion, we also demonstrate that both the
SLLOD and the DOLLS algorithms are intrinsically unsuitable for representing a nonequilibrium
system with elongational flow. However, thep-SLLOD algorithm has a rigorously canonical
structure in laboratory phase space, and thus can represent a nonequilibrium system not only for
elongational flow but also for a general flow. ©2005 American Institute of Physics.
@DOI: 10.1063/1.1819869#

I. INTRODUCTION

Understanding the flow behavior of complex fluids re-
mains a problem of great fundamental and practical signifi-
cance. The understanding of homogeneous shear flow has
been substantially advanced by the combined results of ex-
periments, theory, and nonequilibrium molecular dynamics
~NEMD! simulations. However, understanding of elonga-
tional flows and more general flows, which are also of fun-
damental and practical importance, has been frustrated by the
absence of a suitable NEMD algorithm for steady-state flows
other than shear flow. It is our purpose in this work to dem-
onstrate a theoretically sound algorithm for steady-state pla-
nar elongational flow~PEF! and to elucidate the deficiencies
in recent attempts toward this end. With a sound algorithm
for NEMD of PEF, rigorous testing of theories of PEF are
made possible, and predictions of complex fluids undergoing
extensional flow, such as in polymer processing, may be un-
dertaken.

There exist two well-known algorithms for simulating a
nonequilibrium physical system under a specified external
flow field, e.g., simple shear flow@see Eq.~17!#, the so-
called DOLLS tensor algorithm developed by Hooveret al.1

and the SLLOD algorithm of Evans and Morriss.2 It has been

proven that, although the DOLLS algorithm has a Hamil-
tonian and canonical equations of motion, it makes an incor-
rect prediction for shear flow at high values of shear rate.2,3

In contrast, even though the SLLOD algorithm does not have
a Hamiltonian and canonical equations of motion, it predicts
correctly the nonequilibrium behavior of physical systems
under shear. Accordingly, extensive use has been made of the
SLLOD algorithm in simulating sheared fluids.

Another practically important class of flow fields is elon-
gational flows@see Eq.~17!#, such as uniaxial, biaxial, and
~the focus of this work! planar elongational flows. The main
difficulty of simulating elongational flows lies in the limited
simulation time available due to the contraction of one or
two dimensions.4 This problem, however, has been partially
resolved by Kraynik and Reinelt’s5 ingenious discovery of
the temporal and spatial periodicity of lattice vectors in PEF.
Unfortunately, these authors proved that no such periodicity
exists for uniaxial or biaxial elongational flow. Employing
their idea, there have been several NEMD simulations of
PEF using the SLLOD algorithm.4–7

Very recently, however, Todd and Daivis8 have observed
another serious problem inN-V-T NEMD simulations of
PEF when using the SLLOD algorithm: the exponential
growth of the total linear momentum in the contracting di-
rection, which results in an aphysical phase transition after a
certain time interval. The phenomenon starts from a nonzero

a!Author to whom correspondence should be addressed. Electronic mail:
hdc@ornl.gov

THE JOURNAL OF CHEMICAL PHYSICS122, 114103 ~2005!
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initial total linear momentum of the system due to the limit
of numerical precision ~truncation error! in computer
simulations.8 Accepting this source as numerically unavoid-
able, the underlying cause is ascribed to the basic algorithm
used in the simulations. As shown by Todd and Daivis, the
exponential growth of the total linear momentum does not
depend on the thermostat~Nosé-Hoover or Gaussian!, the
size of the time step~small or large!, the dimensionality of
the fluids ~2- or 3-dimensional!, or the integration scheme
~Gear predictor-corrector or velocity Verlet!. They showed
analytically that the true cause arises intrinsically from the
SLLOD algorithm itself. Although they proposed twoad hoc
ways to avoid the problem by rescaling particle momenta at
each time step or by introducing another constraint into the
momentum equation, those methods disturb the natural evo-
lution of the physical system and thus still seem undesirable.
Therefore, one cannot simulate elongational flows appropri-
ately using the SLLOD algorithm.

This situation has led us to seek another NEMD algo-
rithm for simulating PEF, as shown below. It is not restricted
to PEF but is valid for a general flow field. With remarkable
insight, Tuckermanet al.9 proposed a new algorithm for
NEMD simulations, which they called the generalized-
SLLOD algorithm. They pointed out that, whereas the
SLLOD algorithm does not satisfy Newton’s equations of
motion, mid

2qi /dt25Fi , the new algorithm does so. There
is also a conserved quantity associated with this algorithm—
see below. This algorithm was later derived by Edwards and
Dressler10 through a fundamental investigation of the canoni-
cal structure of the evolution equations under the Poisson
bracket formalism. This derivation demonstrated the redun-
dancy of the additional variable introduced by Tuckerman
et al.9 and illustrated the connection between the laboratory
and convecting coordinates systems in NEMD algorithms.
Here, we propose to call the new algorithm the ‘‘proper-
SLLOD algorithm,’’ or p-SLLOD, in order to emphasize the
fundamental properties of this algorithm for arbitrary flow
fields.

We show in this paper that there are, in fact, two sources
for the unphysical exponential growth of the total linear mo-
mentum in PEF simulations with the SLLOD algorithm. The
first comes from the SLLOD algorithm itself, and the second,
from the implementation of the Kraynik and Reinelt bound-
ary conditions~KRBCs!. Employing thep-SLLOD algo-
rithm „which removes the first source@compare Eqs.~38!
and~39!# in NEMD simulations…, together with an appropri-
ate simulation implementation~which removes the second
source@described in Sec. IV#!, we have found that we no
longer face the aphysical phenomenon encountered by Todd
and Daivis in NEMD simulations of PEF.

Because this work is somewhat lengthy and difficult, we
take extra pains to help guide the reader through the logic of
our analysis. In Sec. II, we present a theoretical analysis of
all three NEMD algorithms ~DOLLS, SLLOD, and
p-SLLOD) in order to clarify why thep-SLLOD algorithm,
rather than the DOLLS or the SLLOD algorithms, is our
preferred algorithm and can be used in NEMD simulations
for any flow field. Our analysis of the NEMD algorithms
starts with a study of the transformation between peculiar

and laboratory phase spaces~p,q! and ~p8,q8!, respectively,
~see Sec. II for their definitions! and leads to conclusions
regarding whether or not each algorithm has a Hamiltonian
and obeys Newton’s equations of motion for both shear flows
and PEF. Section III compares the evolution equations of the
total linear momentum~the problematic issue identified by
Todd and Daivis8! of the three algorithms for both simple
shear flow and PEF. It is shown that the SLLOD and
p-SLLOD algorithm are identical for simple shear flow, but
that the SLLOD algorithm for PEF omits a necessary term.
Then, in Sec. IV, we detail the simulation strategy used in the
present work. The results of the NEMD simulations are pre-
sented in Sec. V, where we discuss the results using the
p-SLLOD and the SLLOD algorithms, including a direct
comparison. We note that, because the SLLOD algorithm for
PEF omits a necessary term, the results differ from those
given by thep-SLLOD algorithm, especially at high strain
rates. This can be vitally important in testing theories of PEF
with model fluids for which NEMD of PEF can now be
considered essentially exact. In addition, our results demon-
strate that there are two causes for the artificial exponential
growth of the momentum and the resulting phase change,
which have been observed with SLLOD simulations of PEF.
Both have been successfully addressed with the approach
presented here. Finally, we make brief concluding remarks in
Sec. VI.

The main body of this paper deals primarily with the
consistency of NEMD algorithms with principles of Hamil-
tonian and Newtonian mechanics. In two appendices, we ex-
amine the consistency of the algorithms from the perspective
of macroscopic thermodynamics. The two appendices offer
derivations of the time derivative of the internal energy and
discuss its implications on the pressure tensor.

II. ANALYSIS OF NEMD ALGORITHMS

In this section we analyze the three NEMD algorithms
by examining them in both ‘‘peculiar’’ and ‘‘laboratory’’
frames of reference, which may be used to describe a non-
equilibrium physical system under a specified external veloc-
ity field. This analysis allows us later to elucidate the basis
for differences among the three algorithms. Thus, there are
two kinds of momenta, the so-called ‘‘peculiar momenta’’p
and ‘‘laboratory momenta’’p8.3 The former are defined as
particle momenta with respect to a reference frame moving
with the streaming velocityu of a fluid element containing
the particles, and the latter with respect to a spatially fixed
reference frame. The fluid element in the definition of the
peculiar momenta is thermodynamic, in that it contains a
very large number of particles, but is still infinitesimal with
respect to the macroscopic world of the hydrodynamic equa-
tions. We may choose either of the two different sets of
phase-space variables~p,q! or ~p8,q8! for representing non-
equilibrium systems. Denoting an imposed external velocity
gradient field by“u, the two sets are related to each other
by10

pi85pi1miqi "“u,
~1!

qi85qi ,

114103-2 Baig et al. J. Chem. Phys. 122, 114103 (2005)
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where mi and qi are, respectively, the mass and position
vector of particlei.

In order to understand the fundamental structure of a
NEMD algorithm fully, it is essential first to investigate the
phase space on which it is built. In general, there exist two
independent methods of canonical transformation between
phase spaces: the generating function approach and the sym-
plectic approach.11 Here we use the symplectic approach.
From the well-known property that the Poisson bracket re-
mains unchanged under a canonical transformation,11 it fol-
lows that the necessary and sufficient condition for a canoni-
cal transformation is

MAM T5A, ~2!

whereMT is the transpose of matrixM . For a system withs
degrees of freedom, the matricesM andA are defined as

M53
]q18

]q1

¯

]q18

]qs

]q18

]p1

¯

]q18

]ps

] � ] ] � ]

]qs8

]q1

¯

]qs8

]qs

]qs8

]p1

¯

]qs8

]ps

]p18

]q1

¯

]p18

]q1

]p18

]p1

¯

]p18

]ps

] � ] ] � ]

]ps8

]q1

¯

]ps8

]qs

]ps8

]p1

¯

]ps8

]ps

4 ,

A5F 0s I s

2I s 0s
G , ~3!

where I s is the s3s identity matrix and0s is the s3s null
matrix. Considering, for convenience, a one-particle system
in Cartesian coordinates,MAM T between~p,q! and ~p8,q8!
is found to be

M5F I3 03

m“u I3
G , MAM T5F 03 I3

2I3 m@“u2~“u!T#
G ,

~4!

where

“u5F ]ux

]x

]ux

]y

]ux

]z

]uy

]x

]uy

]y

]uy

]z

]uz

]x

]uz

]y

]uz

]z

G . ~5!

A consequence of Eq.~4! is that this transformation
would, in general, not be canonical; only in the case of“u
5(“u)T, i.e., elongational flows, would it be canonical. Cal-
culating the JacobianJ between~p,q! and ~p8,q8! from the
matrix M , it is found from Eq.~1! that

J5
]~p8,q8!

]~p,q!
5det~M !51, ~6!

from which, for an N-particle system, we have
* dp18¯dpN8 dq18¯dqN8 5* dp1¯dpNdq1¯dqN . Thus,
phase-space volume is conserved through the transformation
between~p,q! and~p8,q8!, even though the transformation is
not canonical. Hereafter, we use a simplified notation for an
N-particle system:p[$p1 ,...,pN%, q[$q1 ,...,qN%, * dp
[* dp1¯dpN , and* dq[* dq1¯dqN .

Although there has been some prior attention to the labo-
ratory momenta, most of the previous work on NEMD algo-
rithms has given the peculiar momenta a special importance
in constructing the Hamiltonian, the governing equations of
motion, and the distribution function of the nonequilibrium
systems. This probably results from the fact that several im-
portant physical quantities, such as the temperature and the
pressure tensor, are based on the peculiar momenta. How-
ever, from the theoretical point of view, the two momenta are
equally valid as phase-space variables; that is, the two phase
spaces,~p,q! and ~p8,q8! should be considered equally valid
representations of nonequilibrium physical systems. We shall
see below that, whereas the appropriate phase space for the
DOLLS algorithm is ~p,q!, it is ~p8,q8! for the p-SLLOD
algorithm.

A. DOLLS

The Hamiltonian in the DOLLS algorithm is given by

H~p,q!5(
i 51

N pi
2

2mi
1V~q!1(

i 51

N

qipi :~“u!T

5(
i 51

N
1

2mi
~pi1miqi "“u!21V~q!

2(
i 51

N
1

2
mi~qi "“u!2, ~7!

wherea"“u5Saaa“auv anda:b5SaSbaabbba . The cor-
responding canonical equations of motion are derived as

q̇i5
]H

]pi
5

pi

mi
1qi "“u,

~8!

ṗi52
]H

]qi
5Fi2“u"pi ,

where Fi52]V/]qi . As long as the equations of motion
correctly represent real physical systems, we can apply the
Hamiltonian for many theoretical methodologies.1,3 In view
of the local equilibrium assumption, one can assume that the
canonical distribution functionf (p,q) of the nonequilibrium
system, as a solution of the Liouville theoremd f /dt50, has
the form

114103-3 Simulations of planar elongational flow J. Chem. Phys. 122, 114103 (2005)
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f ~p,q!5

expH 2
1

kBT F( i 51
N

pi
2

2mi
1V~q!1( i 51

N qipi :~“u!TG J
Z

, ~9!

where the partition functionZ is given by

Z5E
p
E

q
dp dq expH 2

1

kBT F(
i 51

N pi
2

2mi
1V~q!

1(
i 51

N

qipi :~“u!TG J . ~10!

Now let us examine the DOLLS algorithm in the phase
space~p8,q8!. Since the transformation between~p,q! and
~p8,q8! does not involve time explicitly, it is natural to take
H8(pi8 ,qi8)5H(pi ,qi) with V8(q8)5V(q) and ]V8/]q8
5]V/]q. Thus, it follows, using the transformation equation
~1!, that

H8~p8,q8!5(
i 51

N
1

2mi
pi8

21V8~q8!2(
i 51

N
1

2
mi~qi8"“u!2.

~11!

Assuming the canonical structure of phase space~p8,q8!, the
equations of motion would be

q̇i85
]H8

]pi8
5

pi8

mi
,

~12!

ṗi852
]H8

]qi8
5Fi1mi“u•~qi8"“u!.

Note that]mi(qi "“u)2/]qi is not equal to 2miqi "“u"“u but
to 2mi“u•(qi "“u). Transforming Eq.~12! from ~p8,q8! to
~p,q!, it becomes

q̇i5
]H

]pi
5

pi

mi
1qi "“u,

~13!

ṗi52
]H

]qi
5Fi2pi "“u2miqi "“u"“u1mi“u

•~qi "“u!.

Clearly Eq.~13! is not equivalent to Eq.~8!. ThereforeH8 is
a conserved quantity but not a Hamiltonian. This is exactly
what is expected from the noncanonical relationship between
~p,q! and ~p8,q8!. To the best of our knowledge, one could
not derive the equations of motion of the DOLLS algorithm
from any form ofH8(p8,q8). Thus, it is concluded that for
the DOLLS algorithm there exists a Hamiltonian in phase
space~p,q!, but only a conserved quantity, not a Hamil-
tonian, in phase space~p8,q8!.

Another subject worthy of consideration is the canonical
distribution function. AlthoughH8(p8,q8) is not a Hamil-
tonian, it is conserved (dH8/dt50), which can be explicitly
verified using Eqs.~11! and~12! or simply from the fact that
H8(p8,q8)5H(p,q). The conservative property still guaran-
teesf 8;exp(H8/kBT) as a solution of the Liouville theorem
d f8/dt50. Therefore, the canonical distribution function and
the partition function in phase space~p8,q8! are written as

f 8~p8,q8!5

expH 2
1

kBT F( i 51
N 1

2mi
pi8

21V~q8!2( i 51
N 1

2
mi~qi8"“u!2G J

Z8
, ~14!

where

Z85E
p8
E

q8
dp8 dq8 expH 2

1

kBT F(
i 51

N
1

2mi
pi8

21V~q8!

2(
i 51

N
1

2
mi~qi8"“u!2G J . ~15!

However, these forms off 8(p8,q8) and Z8 can also be de-
rived by effecting the transformation off (p,q) andZ using
Eq. ~1! with the help of the relation* dp8 dq85* dp dq.
Thus, we have found one connection between~p,q! and
~p8,q8! consistent with a physical point of view.

Next, let us look into the Newtonian dynamics resulting
from the DOLLS algorithm, an important characteristic in
judging whether a NEMD algorithm is capable of represent-
ing physical systems correctly. It is known2,3 that appropriate
time-dependent boundary conditions, such as the Lees-
Edwards boundary conditions,12 together with Newton’s
equation of motionmi q̈i5Fi , are sufficient to generate non-
equilibrium states correctly. Hereafter, it is assumed that a
nonequilibrium system of interest is equipped with proper
boundary conditions, whether time dependent or not, and a
NEMD algorithm therefore must be consistent with New-
ton’s equation. From the equations of motion~8! of the
DOLLS algorithm, it is found that

114103-4 Baig et al. J. Chem. Phys. 122, 114103 (2005)
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mi q̈i5Fi2“u"pi1pi "“u1miqi "“u"“u, ~16!

which is not consistent with Newton’s equation. Therefore, it
is concluded that the DOLLS algorithm, in general, would
not correctly represent nonequilibrium systems.

Let us specifically consider two practically important
cases. The external velocity fields for simple shear flow and
elongational flows are given by

“u5F 0 ġ 0

0 0 0

0 0 0
G for simple shear flow, ~17a!

“u5F ėxx 0 0

0 ėyy 0

0 0 ėzz

G for elongational flow, ~17b!

where ġ denotes shear rate,ėxx elongational rate of thexx
component, and so on. PEF is described byėxx52 ėyy5 ė
and ėzz50 in Eq. ~17!. Since the last term on the right-hand
side ~RHS! in Eq. ~16! vanishes for simple shear flow, the
resulting evolution equation is written as

mi q̈i5Fi2“u"pi1pi "“u. ~18!

For elongational flows, the second and third terms on the
RHS in Eq.~16! vanish together, and it follows that

mi q̈i5Fi1miqi "“u"“u. ~19!

Since neither Eq.~18! nor Eq. ~19! is consistent with New-
ton’s equation of motion, we conclude that the DOLLS dy-
namics would not be capable of representing either shear
flow or elongational flows. This explains why the DOLLS
algorithm gives incorrect results for shear flow as mentioned
previously and which led to the SLLOD algorithm.

B. SLLOD

The equations of motion of the SLLOD algorithm are
given by

q̇i5
pi

mi
1qi "“u,

~20!ṗi5Fi2pi "“u.

Note that in the case of“u5(“u)T, Eq. ~20! would be
equal to Eq.~8! and the SLLOD algorithm would be the
same as the DOLLS algorithm. Unfortunately, there has not
been found a Hamiltonian to generate the equations of mo-
tion ~20! of the SLLOD algorithm in any phase space, either
~p,q! or ~p8,q8!, which is regarded as a weak point in the
algorithm. @Tuckermanet al.9 showed the existence of a re-
stricted Hamiltonian under a special condition“u"“u
5(“u"“u)T.] So, we shall only discuss the evolution equa-
tions generated by the SLLOD algorithm. From Eq.~20!, it is
readily shown that

mi q̈i5Fi1miqi "“u"“u, ~21!

which again is not consistent with Newton’s equations.
Therefore, like the DOLLS algorithm, the SLLOD algorithm
would not, in general, represent nonequilibrium states cor-
rectly.

It would seem to be a disadvantage of the SLLOD algo-
rithm that it fails to satisfy Newton’s equation in arbitrary
velocity gradient fields. Consequently, the frame of reference
of the SLLOD algorithm isnot an inertial reference frame
~except in special cases such as planar Couette flow!, and, in
our opinion, this is a disadvantage of this algorithm. After
all, the real laboratory experiment is conducted in an inertial
frame of reference. It is not clear how the SLLOD stress
tensor calculation translates from the noninertial reference
frame of the simulation to the inertial reference frame of the
experiment.

For simple shear flow, Eq.~21! becomes

mi q̈i5Fi , ~22!

which, of course, is identical to Newton’s equation. There-
fore, the SLLOD algorithm is capable of representing
sheared fluids. This is one reason why the SLLOD algorithm,
rather than DOLLS, has given physically reasonable results
for nonequilibrium systems under shear at higher values of
the shear rate. However, for elongational flows where the
second term on the RHS of Eq.~21! does not vanish, the
SLLOD algorithm is not expected to give correct results be-
cause of this inconsistency with Newton’s equation of mo-
tion.

C. p -SLLOD

Now let us examine thep-SLLOD algorithm. There ex-
ists a Hamiltonian in thep-SLLOD algorithm, not in phase
space~p,q! but in ~p8,q8!;

H8~p8,q8!5(
i 51

N
1

2mi
pi8

21V8~q8!, ~23!

from which the canonical equations of motion are derived as

q̇i85
]H8

]pi8
5

pi8

mi
,

~24!

ṗi852
]H8

]qi8
5Fi .

Expressing Eq.~24! in the phase space~p,q!, it is found that

q̇i5
pi

mi
1qi "“u,

~25!ṗi5Fi2pi "“u2miqi "“u"“u.

With the conserved HamiltonianH8, the canonical dis-
tribution function and the partition function are written as
follows:

f 8~p8,q8!5

expH 2
1

kBT F( i 51
N 1

2mi
pi8

21V~q8!G J
Z8

, ~26!

where

Z85E
p8
E

q8
dp8 dq8 expH 2

1

kBT F(
i 51

N
1

2mi
pi8

21V~q8!G J .

~27!
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Note that thep-SLLOD algorithm would reduce to the
SLLOD algorithm in the case of“u"“u50, i.e., simple
shear flow.

Now let us analyze thep-SLLOD algorithm in phase
space~p,q! with H(pi ,qi)5H8(pi8 ,qi8) as we did in the
DOLLS algorithm:

H~p,q!5(
i 51

N
1

2mi
~pi1miqi "“u!21V~q!. ~28!

Constructing the canonical equations of motion in phase
space~p,q!, we see

q̇i5
]H

]pi
5

pi

mi
1qi "“u,

~29!

ṗi52
]H

]qi
5Fi2“u"pi2mi“u"~qi "“u!.

Equation~29! is not equivalent to Eq.~25!. The reason for
this apparent discrepancy was discussed by Edwards and
Dressler:10 in phase space~p,q!, the equations of motion are
not of canonical form. Thus Eqs.~29! are not correct equa-
tions of motion for thep-SLLOD system. This is exactly the
opposite of the case in the DOLLS algorithm: in DOLLS, the
phase space~p,q! has canonical equations of motion,
whereas inp-SLLOD, phase space~p8,q8! has canonical
equations of motion.

Using the same procedure as in the DOLLS algorithm,
the canonical distribution function and the corresponding
partition function are found to be

f ~p,q!

5

expH 2
1

kBT F( i 51
N 1

2mi
~pi1miqi "“u!21V~q!G J
Z

,

~30!

where

Z5E
p
E

q
dp dq expH 2

1

kBT F(
i 51

N
1

2mi
~pi1miqi "“u!2

1V~q!G J . ~31!

Therefore,f (p,q) andZ are equal tof 8(p8,q8) andZ8, re-
spectively, as in the DOLLS algorithm.

Next let us derive the Newtonian dynamics dictated by
the p-SLLOD algorithm. From Eq.~25! it is found to be

mi q̈i5Fi . ~32!

This is exactly Newton’s equation, which is the required
form for a NEMD algorithm; thus, thep-SLLOD algorithm
will make a physically correct prediction forany flow. This
fact could be deduced from the rigorously canonical struc-
ture of Eq.~24! in phase space~p8,q8! without involving any
velocity-dependent nonequilibrium term, unlike the DOLLS
algorithm in its phase space~p,q!.

To summarize this section, the DOLLS algorithm has a
Hamiltonian in phase space~p,q! and a conserved quantity

but not a Hamiltonian in~p8,q8!. It is not capable of repre-
senting nonequilibrium systems either for shear or elonga-
tional flows because its equations of motion are inconsistent
with Newton’s equation. On the other hand, the SLLOD al-
gorithm does not have a Hamiltonian in either~p,q! or
~p8,q8!, but it is capable of representing nonequilibrium sys-
tems with shear flow but not elongational flows because in
shear flow its equations of motion are consistent with New-
ton’s equation. Finally, thep-SLLOD algorithm has canoni-
cal form in phase space~p8,q8! and a noncanonical form in
~p,q!, and it is capable of representing nonequilibrium sys-
tems for any flow field because its equations of motion are,
in general, consistent with Newton’s equation. In short, the
p-SLLOD algorithm is considered the most satisfactory
among the existing NEMD algorithms, and it is for this rea-
son that we employ the term proper-SLLOD.

III. EVOLUTION OF THE TOTAL LINEAR MOMENTUM

From our analysis of the three NEMD algorithms in the
peculiar and laboratory frames above, we understand the ori-
gin of the differences among them and we have a firm, physi-
cal basis for greater confidence in thep-SLLOD algorithm.
Let us now examine the evolution of the total linear momen-
tum of a system resulting from the equations of motion of
each NEMD algorithm. Recall that it is the exponential
growth of the total linear momentum of PEF with the
SLLOD algorithm that was observed by Todd and Daivis.8

As already mentioned, for simple shear flow the SLLOD and
the p-SLLOD algorithms are equivalent, and for elonga-
tional flows the DOLLS and the SLLOD algorithms are
equivalent. Summing over all the particles of a system and
observing Newton’s third law@S iFi50#, the equations of
motion for the total momentum of each algorithm are written
as

Q̇a5Pa1(
b

Qb¹bua ,

~33!

Ṗa52(
b

¹aubPb for DOLLS,

Q̇a5Pa1(
b

Qb¹bua ,

~34!

Ṗa52(
b

Pb¹bua for SLLOD,

Q̇a5Pa1(
b

Qb¹bua ,

~35!

Ṗa52(
b

Pb¹bua

2(
b

(
n

Qb¹bun¹nua for p-SLLOD.

In these expressions, the total linear momentum is defined as
Pa5S i pa i and the first moment asQa5S imiqa i . Here,
Greek subscripts representx, y, andz components.
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First, we consider simple shear and then elongational
flow fields, as described by Eq.~17!. For simple shear flow,
the evolution equations of the total linear momentum of each
system are found to be

Pa~ t !5Pa~ t0!2dayġPx~ t0!~ t2t0! for DOLLS,
~36!

Pa~ t !5Pa~ t0!2daxġPy~ t0!~ t2t0!

for SLLOD and p-SLLOD, ~37!

where the Kronecker deltadab is equal to 1 fora5b and 0
otherwise. Therefore, the total linear momentum of the sys-
tem is at most linearly dependent on time for all of the
NEMD algorithms.

For elongational flows, it follows that

Pa~ t !5Pa~ t0!exp@2 ėaa~ t2t0!#

for DOLLS and SLLOD, ~38!

Pa~ t !5Pa~ t0!2 ėaa@Pa~ t0!1 ėaaQa~ t0!#~ t2t0!

for p-SLLOD. ~39!

From Eq. ~38!, we see that the total linear momentum is
exponentially dependent on time in the cases of the DOLLS
and the SLLOD algorithms. Therefore, forėaa,0, an expo-
nential growth of the total linear momentum will occur in the
a direction unless the initial total momentum is exactly equal
to zero, which would never be achieved in computer simu-
lations because of truncation error. This is what Todd and
Daivis8 observed in PEF simulations with the SLLOD algo-
rithm. From Eq.~39!, when using thep-SLLOD algorithm,
however, the total momentum depends only linearly on time,
as in simple shear flow, and, therefore, we no longer have the
instability problem that occurs in the SLLOD algorithm.
These results seem naturally related to the intrinsic short-
comings of the DOLLS and SLLOD algorithms and the uni-
versality of thep-SLLOD algorithm, as described in Sec. II.
With this observation, we have conducted NEMD simula-
tions for planar elongational flow using thep-SLLOD algo-
rithm and compared the results with those of the SLLOD
algorithm. The results are presented in Sec. V.

IV. SIMULATION STRATEGY

In this section we detail our strategy for simulation of
PEF. Readers primarily interested in the theoretical aspects
of our work may skip this section without loss; however, as
we note below, reliable, practical simulations of PEF require
care to avoid artifacts.

For our nvt NEMD simulations of PEF@ ėxx52 ėyy

5 ė and ėzz50 in Eq. ~17!#, the Nose´-Hoover thermo-
stat13–15was chosen to maintain the system temperature con-
stant. We note that all thermostats, except the configurational
thermostat of Delhommelle and Evans,16,17 result in artifacts
at very high shear rates~e.g., ġ.1). To the best of our
knowledge, the thermostat artifacts in PEF have not been
explored, but are not expected to be significant because of
the absence of vorticity; this may be confirmed in the ongo-
ing work. Thep-SLLOD algorithm, incorporating the Nose´-
Hoover thermostat, is written as3,18

q̇i5
pi

mi
1qi "“u,

ṗi5Fi2pi "“u2miqi "“u"“u2
ph

Q
pi ,

~40!

ḣ5
ph

Q
,

ṗh5(
i 51

N pi
2

mi
2DNkBT,

whereD denotes dimensionality,N the number of particles,T
the temperature, andkB the Boltzmann constant. Hereh and
ph are coordinatelike and momentumlike variables of the
Nosé-Hoover thermostat, respectively, andQ5DNkBTt2 is
the mass parameter of the thermostat. In the present work, all
of the system and simulation conditions have been set as in
the previous works6–8 for comparison purposes. We studied
the Weeks–Chandler–Andersen~WCA! fluid whose poten-
tial model in reduced units is given by19

f~r !5H 4~r 2122r 26!11 for r ,21/6

0 for r .21/6 . ~41!

Note that all the parameters, variables, and physical quanti-
ties presented in this paper are expressed in reduced units
~see Appendix B in Ref. 20!.

NEMD simulations were performed at temperatureT
50.722 and number densityr50.8442. A system of 500
WCA particles was used in simulations, for which the time
step was chosen as 0.001 925 and the velocity Verlet integra-
tion scheme was employed. The relaxation time parametert
of the Nose´-Hoover thermostat was set equal to 0.096. As for
the KRBCs, we chose the Hencky strainep'0.9624 and the
initial orientation angle of the simulation boxu0'31.718°,
which are obtained by settingk53, N1152, and N12

521 in Ref. 5. The time periodtp for KRBCs is determined
from ep5 ėtp . In applying KRBCs, we followed the efficient
procedure suggested by Todd and Daivis.7 Here we will not
describe the details of either KRBCs or the Todd-Daivis pro-
cedure to avoid unnecessary repetition, and refer readers to
the original papers.4,5,7

Now let us mention two crucial simulation details in
implementing thep-SLLOD algorithm for PEF. The first is
that, since the momentum equation~25! involves the position
of a particle ~not only the relative distance between par-
ticles!, we should not apply the periodic boundary conditions
~PBCs! ~Ref. 20! to the position of the particle used in Eq.
~25!. Instead, we should retain the particle position without
applying PBCs during each time periodtp and use it in the
momentum equation. This is a natural procedure in the
p-SLLOD algorithm since to apply PBCs is to violate the
very rule of evolution of the trajectory underlying the
p-SLLOD algorithm. Of course, we still use the minimum
image convention20 when calculating force. The only place
we apply PBCs is at the end of each time period, at which
time the lattice vectors or boundaries of the simulation cell
transform back into the initial ones according to KRBCs.
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The second simulation detail to be considered comes
from the fact that the time-evolution equation of the total
linear momentum of the system~39! depends on two com-
ponents for its slope; one is the initial total momentum
Pa(t0) and the other the initial first momentQa(t0). Since
the KRBCs applied at the end of the time period make a
transformation in the center of mass of the system, the value
of Qa(t0) changes from one period to the next. As a result, a
large value of the initial slope for the next time period may
result, and this would make the system unstable. In order to
prevent the problem, we need to adjust the initial slope at
each time period without making any artificial perturbation
to the dynamics of the system. The smaller the slope, the
more stable is the evolution of the system. This has been
easily achieved by a uniform translation of particles in space
as follows:

qa i~0,j !5qa i~ tp , j 21!1Ca~ j !, ~42!

where

Ca~ j !52
Pa~ tp , j 21!1 ėaaQa~ tp , j 21!

ėaa( i 51
N mi

. ~43!

Here the integerj is the number of time periods. This proce-
dure effectively re-zeros the linear coefficient in Eq.~39! at
the beginning of each time period. Since this procedure
merely translates the coordinate system of the position vec-
tors and does not affect the equations of motion, the New-
tonian evolution equations and the resultant trajectory are not
affected. To validate that this procedure does not disturb the
evolution of the system, we have checked the evolution of
the internal energy and pressure tensor~see Fig. 3 below!.

V. RESULTS AND DISCUSSION

In this section we present results of ourN-V-T NEMD
simulations of PEF. First, we show the evolution of they
component of the linear momentum under both the SLLOD
and p-SLLOD algorithms to reproduce the exponential
growth presented by Todd and Daivis8 and to demonstrate its
absence with thep-SLLOD algorithm. We also examine the
evolution of the internal energy per particle for both long and
short times to demonstrate the absence of artifacts with the
p-SLLOD algorithm. Finally, we show that omission of a
necessary term from the SLLOD algorithm for PEF results in
incorrect predictions of the internal energy, the stress tensor,
and the elongational viscosity. Although the errors are large
only at very high strain rates, nevertheless, for purposes of
testing theories of PEF it is vital that NEMD simulations be
reliable.

In N-V-T NEMD simulations, due to the interaction of a
thermostat with the system, the evolution of the total linear
momentum would not exactly follow Eq.~38! in the SLLOD
and Eq.~39! in the p-SLLOD algorithms. As pointed out by
Todd and Daivis,8 at high elongational rate, where a large
effect of the thermostat is expected, the exponential growth
of the totaly momentum does not occur in the SLLOD al-
gorithm. However, at low elongational rate where the effect
of the thermostat is negligible, the exponential growth of the
total y momentum is observed. That is, the exponential

growth in the SLLOD algorithm becomes more substantial
as elongational rate decreases. It is therefore sufficient for
comparison purpose to show the results only for a low elon-
gational rate.

Figures 1~a! and 1~b! show the evolution of the totaly
momentum of the SLLOD and that of thep-SLLOD algo-
rithm at ė50.05. Figure 1~a! is essentially the same result as
that of Todd and Daivis8 when using the SLLOD algorithm.
However, by using thep-SLLOD algorithm, as shown in
Fig. 1~b!, we observe a stable evolution of the totaly mo-
mentum instead of the exponential growth. Figure 2 presents
the corresponding evolution of the internal energy per par-
ticle. The internal energyEint and the pressure tensorP of
our results are calculated over all particles in the system by
the conventional equations:

Eint5K (
i 51

N pi
2

2mi
1V~q!L , ~44!

P5K 1

Vs
(
i 51

N S pipi

mi
1qiFi D L , ~45!

whereVs is the system volume. The angular brackets denote
the average over the trajectory of the system~see Appendix
B for more precise physical meaning ofEint and P!. As
shown in Fig. 2~a!, the exponential growth of the totaly
momentum in the case of the SLLOD algorithm causes an
undesirable phase transition, which does not happen in case
of the p-SLLOD algorithm, as shown in Fig. 2~b!.

FIG. 1. Evolution of the total linear momentum of system in they direction
with time at ė50.05: ~a! using the SLLOD algorithm,~b! using the
p-SLLOD algorithm.
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These results directly demonstrate the stability and cor-
rectness of thep-SLLOD algorithm for PEF. To verify that
there is no unacceptable discontinuity during the evolution
due to the KRBCs together with our simulation strategy, we
have looked more closely into the internal energy and the
pressure tensor at small time periods. The results are shown
in Fig. 3. For the pressure tensor, we have included onlyPyy

for clarity. As shown in the figure, there is no perceptible
discontinuity at each time period. We now conclude that us-
ing the p-SLLOD algorithm eliminates the aphysical phe-
nomena that occur in the SLLOD algorithm.

Finally, in Fig. 4, we have compared the results of the
SLLOD algorithm and those of thep-SLLOD algorithm~the
numerical values including statistical uncertainties of our re-
sults are shown in Table I for the SLLOD and Table II for the
p-SLLOD algorithm!. The elongational rates were chosen to
be the same as those in Ref. 6, where the system was com-
posed of 108 WCA particles with the Gaussian thermostat.3

The numerical values of the results in Ref. 6 overall appear
to be smaller than ours for the SLLOD algorithm. The dif-
ference between the two SLLOD results is perhaps due to the
fact that the results from Ref. 6 used only 108 particles,
shorter simulations, and/or a different choice of thermostat.
~Again, we recognize that both the Gaussian and Nose´ ther-
mostats can show artifacts at strain rates greater than one.
However, the thermostat cannot explain the difference be-
tween our SLLOD andp-SLLOD results since we used the
same thermostat for both algorithms.!

At low elongational rates, the results of thep-SLLOD

algorithm are similar to those of the SLLOD algorithm
within statistical uncertainties. However, as elongational rate
increases, the difference becomes larger. This is actually to
be expected to a certain degree, considering the difference in
the equations of motion between the SLLOD@Eq. ~20!# and
the p-SLLOD @Eq. ~25!# algorithms; the SLLOD algorithm
neglects the term that depends quadratically on the external
velocity field.

VI. CONCLUSIONS

In this work, we have demonstrated the capabilities of
the p-SLLOD algorithm for planar elongational flow and
elucidated the fundamental causes of errors and artifacts pre-
viously produced with the SLLOD algorithm for PEF. By
using thep-SLLOD algorithm, we no longer encounter the
aphysical phenomena that were observed in simulations us-
ing the SLLOD algorithm. Thep-SLLOD algorithm can also
be applied to any flow field since it has a perfect canonical
structure without any velocity-dependent nonequilibrium
term in phase space~p8,q8! and thus satisfies Newton’s equa-
tion of motion.
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~a! using the SLLOD algorithm,~b! using thep-SLLOD algorithm.

FIG. 3. Close up of evolutions of~a! internal energy per particle and~b!
pressure tensor during each time periods (tp) at ė50.05 using the
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APPENDIX A: THE INTERNAL ENERGY IN THE
p-SLLOD ALGORITHM IN MOVING COORDINATES

In the main body of this paper, the respective NEMD
algorithms were examined from the perspective of mechani-

cal consistency; i.e., the algorithms were discussed in terms
of Hamiltonian and Newtonian mechanics. In the appendi-
ces, we examine them from the perspective of thermody-
namic consistency.

In order to understand thoroughly the nature of the
p-SLLOD algorithm, it is necessary to investigate the rela-
tionships between the laboratory and convecting reference
frames used in its derivation. The easiest way to develop this
understanding is to consider the laboratory reference frame
to be totally flow-free, i.e.,“u50. Consequently, the equa-
tions of motion in this frame can be confidently expressed as
Hamilton’s equations, and molecular dynamics simulations
yield the system properties.

Denoting phase space in the laboratory frame as~q8,p8!,
the equations of motion are

q̇i85
pi8

mi
, ~A1!

ṗi85Fi8 , ~A2!

and the Hamiltonian is

H8~q8,p8!5(
i 51

N pi8"pi8

2mi
1V~q8!. ~A3!

It is obvious that the Hamiltonian quantifies the internal en-
ergy of the system and also that

dH8

dt
50. ~A4!

Furthermore, the pressure tensor is calculated through the
standard expression

P85K 1

V (
i 51

N S pi8pi8

mi
1qi8Fi8D L . ~A5!

So far, there can be no doubt as to the accuracy of the
description of this system. The questions arise when the ve-
locity gradient is nonzero. Let us now examine this problem
using a reasoning not commonly employed in NEMD stud-
ies. Instead of imposing a nonzero velocity gradient on the
system, let us merely transform the laboratory momenta co-
ordinates into coordinates that moveas if a nonzero velocity
gradient were present. These new coordinates can then be
viewed as moving with a position-dependent velocity rela-
tive to the laboratory frame.

To see the consequences of this point of view, consider a
Taylor series expansion of an unspecified velocity fieldv in
the neighborhood of the origin of a given set of spatial co-
ordinates:

v5v01q"“v1 1
2qq:““v1¯ . ~A6!

If we linearize the velocity field by neglecting the higher
order terms~which vanish anyway for homogeneous flow
fields!, then this expression allows us to connect the labora-
tory momenta coordinates with ‘‘peculiar’’ momenta coordi-
nates, which move at a constant, position-dependent velocity
of qi "“u. Consequently, the momenta and positions in the
moving coordinates~q,p! are related to the laboratory mo-
menta and positions through the transformations

FIG. 4. Comparison of NEMD results between the SLLOD and the
p-SLLOD algorithms:~a! internal energy per particle,~b! elongational vis-
cosity, ~c! pressure tensor.
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qi8→qi , pi8→pi1miqi "“u. ~A7!

In this new framework, the Hamiltonian can be transformed
directly from Eq.~A3!:

H~q,p!5(
i 51

N
~pi1miqi "“u!•~pi1miqi "“u!

2mi
1V~q!.

~A8!

Furthermore, the equations of motion, Eqs.~A1! and ~A2!,
can be transformed as well:

q̇i5
pi

mi
1qi "“u, ~A9!

ṗi5Fi2pi "“u2miqi "“u"“u. ~A10!

These are thep-SLLOD equations of motion, and the Hamil-
tonian of Eq. ~A8! is the conserved quantity in this
algorithm,10 i.e., dH/dt50.

Although H(q,p) as given by Eq.~A8! is still a con-
served quantity in the frame of moving coordinates, it is no
longer associated with the internal energy as calculated by an
observer in this reference frame. According to the principle
of frame indifference~also called the principle of material
objectivity21,22!, the internal energy and the pressure tensor
in this reference frame have the same forms as in the labo-
ratory reference frame:

H0~q,p!5(
i 51

N pi "pi

2mi
1V~q!, ~A11!

P5K 1

V (
i 51

N S pipi

mi
1qiFi D L . ~A12!

Hence the rate of internal energy change in the moving co-
ordinates no longer vanishes. However, since the moving
reference frame is translating at constant velocity relative to
the inertial laboratory frame, the moving framework must be
inertial too; ergo, Newton’s equation is also satisfied in the
moving frame.

Keep in mind thatdH/dt50 is valid for a system seen
from the point of view of the laboratory reference frame,
which is the same point of view in which thep-SLLOD
algorithm was developed.10 In order to understand how the
p-SLLOD algorithm behaves in the point of view of the
standard NEMD reference frame~i.e., from the point of view
in which the SLLOD algorithm was developed!, it is neces-
sary to examine this algorithm in that frame directly. This is
the subject of Appendix B.

TABLE I. NEMD simulation results using the SLLOD algorithm. Here, elongational viscosityh is calculated
as (Pyy2Pxx)/4ė. The values in parentheses represent statistical uncertainties. All the results, except those at
ė50.05, 0.1, and 0.2 due to the phase transition, are obtained from the total simulation time,t53850, corre-
sponding to 23106 time steps with a time step of 0.001 925.

ė Eint /N Pxx Pyy Pzz h

0.0 1.809~0.040! 6.397~0.205! 6.396~0.204! 6.397~0.203! N/A
0.05 1.812~0.041! 6.185~0.198! 6.641~0.214! 6.420~0.205! 2.280~1.290!
0.1 1.818~0.042! 6.030~0.192! 6.889~0.227! 6.448~0.217! 2.147~0.638!
0.2 1.838~0.042! 5.790~0.181! 7.431~0.250! 6.536~0.208! 2.051~0.337!
0.4 1.895~0.046! 5.505~0.179! 8.522~0.303! 6.776~0.228! 1.886~0.191!
0.5 1.930~0.049! 5.426~0.180! 9.086~0.337! 6.916~0.236! 1.830~0.166!
0.8 2.065~0.059! 5.378~0.191! 10.92~0.434! 7.468~0.273! 1.731~0.127!
1.0 2.181~0.069! 5.487~0.205! 12.27~0.514! 7.946~0.308! 1.695~0.117!
1.6 2.681~0.104! 6.429~0.266! 17.13~0.781! 10.06~0.441! 1.671~0.104!
2.0 3.171~0.134! 7.543~0.321! 21.23~0.989! 12.10~0.553! 1.710~0.103!
2.5 4.019~0.179! 9.507~0.397! 27.68~1.281! 15.50~0.732! 1.818~0.106!
3.2 5.804~0.263! 13.58~0.545! 40.16~1.857! 22.26~1.055! 2.077~0.121!

TABLE II. The same as in Table I, but using thep-SLLOD algorithm. Note that no phase transition occurs at
low elongational rates, such asė50.05, 0.1, and 0.2.

ė Eint /N Pxx Pyy Pzz h

0.05 1.812~0.041! 6.187~0.198! 6.644~0.215! 6.413~0.206! 2.288~1.292!
0.1 1.819~0.042! 6.023~0.193! 6.907~0.226! 6.446~0.207! 2.211~0.651!
0.2 1.839~0.042! 5.790~0.183! 7.438~0.248! 6.536~0.214! 2.060~0.338!
0.4 1.890~0.046! 5.504~0.180! 8.486~0.306! 6.744~0.231! 1.864~0.193!
0.5 1.921~0.049! 5.427~0.183! 9.022~0.337! 6.857~0.241! 1.797~0.165!
0.8 2.047~0.068! 5.428~0.212! 10.79~0.460! 7.339~0.309! 1.676~0.129!
1.0 2.168~0.086! 5.624~0.245! 12.19~0.536! 7.855~0.354! 1.641~0.119!
1.6 2.781~0.123! 7.080~0.322! 17.85~0.807! 10.53~0.473! 1.683~0.111!
2.0 3.429~0.152! 8.663~0.374! 22.96~1.050! 13.25~0.600! 1.787~0.113!
2.5 4.537~0.203! 11.27~0.471! 31.01~1.419! 17.61~0.809! 1.974~0.122!
3.2 6.777~0.292! 16.29~0.615! 46.21~2.102! 25.94~1.186! 2.338~0.140!
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APPENDIX B: THERMODYNAMIC CONSISTENCY
IN THE p-SLLOD ALGORITHM

In this appendix, we discuss one criterion of thermody-
namic consistency of thep-SLLOD algorithm. Typically, it
is expected that a NEMD algorithm should give rise to a time
derivative of the internal energy in a macroscopic, adiabatic
system possessing the functional form

dEint

dt
52PVs :~“u!T. ~B1!

In Eq. ~B1!, Vs is the system volume and the other symbols
are defined as in the main body of the paper. In this appen-
dix, the p-SLLOD algorithm is viewed in the same concep-
tual sense as a typical NEMD simulation, i.e., it is viewed as
representing an actual imposed flow field instead of the
mathematical, virtual field of Appendix A. For arbitrary flow
fields, an extra term can appear in the rate equation for the
internal energy forp-SLLOD, which ~as will be shown! is
entirely consistent with the NEMD simulation concept.

In order to make this explanation as clear as possible, we
first present two examples that illustrate that the definitions
of thermodynamic and mechanical properties depend upon
the point of view of the system under study. We then explore
a precise connection between continuum and discrete me-
chanics. Finally, we apply our conclusions to the SLLOD
andp-SLLOD algorithms.

First, we consider the phenomenon of particle disintegra-
tion in a laboratory frame of reference. Suppose that a
mother particle, with massM and velocityu, becomes sud-
denly disintegrated into two daughter particles, with one par-
ticle having massm1 and velocityu1 , and the other, massm2

and velocityu2 . As is well known, there then exist seven
integrals of motion: energy, three components of linear mo-
mentum, and three components of angular momentum:

Eint1K5~eint 11k1!1~eint 21k2!, ~B2!

p5p11p2 , ~B3!

L5 l11 l2 . ~B4!

Here, Eint , K, p, and L denote, respectively, the internal
energy~i.e., the rest energy in a relativistic sense!, kinetic
energy of the center of mass of the system~COM kinetic
energy!, linear momentum, and angular momentum of the
mother system. Correspondingly, the lowercase letterseint ,
k, p, and l denote the properties of a daughter system~sub-
scripts 1 and 2 refer to each of the two daughter systems!.

Let us consider more specifically the physical meaning
of the internal energy. By accepted convention, the internal
energy of a system does not contain the COM kinetic energy
of the system. If we consider one of the daughter particles
~say 1! as the physical system of interest,k1 is regarded as
the COM kinetic energy of system 1, and is therefore ex-
cluded from the internal energy. Now if we set up another
big system enclosing the two subsystems by a hypothetical
perfectly elastic wall with no mass, then the big system
would be the original mother system with the same values of
Eint , K, p, and L . In general, the COM velocity of the
mother system is different than the COM velocity of either

daughter system considered independently, and therefore the
COM kinetic energy of the mother system is not equal to the
sum of the kinetic energies of the two daughter systems. As
a result, the internal energy of the mother system is not equal
to the sum of the internal energies of the two daughter sys-
tems. This logical argument indicates that whenever we cal-
culate the internal energy of a system, we should first calcu-
late the velocity of the center of mass of the system, and then
calculate the internal energy using each particle velocity rela-
tive to the velocity of the center of mass~COM velocity!;
this is the so-called ‘‘peculiar velocity’’ of the particle. This
consideration applies equally to any physical system,
whether the system is closed with a physical wall or open~as
in continuum fluid mechanics,~i.e., hydrodynamics!.

Next let us consider a more practical example. Suppose
that there are two identical thermodynamic systems in equi-
librium with no COM velocity. Suppose that we suddenly
impose a COM velocity1u to one system and2u to the
other without disrupting the internal state of either system
~this can be done by using two moving frames of reference
with velocities6u!. Then each system will have the same
COM kinetic energyk in addition to its initial internal en-
ergy. We can then create a big system by enclosing the two
systems within a perfectly elastic wall that has a volume
equal to twice the original volume of each subsystem. Since
the sum of the two subsystems’ momenta is zero, the COM
velocity of the big system is zero. After a certain time, the
big system will reach a thermodynamic equilibrium. Now we
ask the following questions: ‘‘What is the temperature and
pressure of the big system? Is it the same as that of the
subsystems?’’ Obviously, the answer is ‘‘no,’’ because the
COM kinetic energies of the subsystems have been trans-
formed into the kinetic part of the internal energy of the big
system. In other words, the internal energy of the big system
is composed not only of the sum of the internal energies of
the two subsystems, but also of the sum of their COM kinetic
energies as well.

These two examples show clearly that physical quanti-
ties depend on the definition of the system under consider-
ation, as in Appendix A. In nonequilibrium physical pro-
cesses with an external velocity field in space, regardless of
whether or not the field is time dependent, we usually deal
with an infinitesimal portion of fluid with a certain streaming
velocity u. The traditional conservation laws of mass, mo-
mentum, and energy are derived for the infinitesimal volume
element~of course, the infinitesimal element is assumed to
be of thermodynamic scale, i.e., composed of numerous par-
ticles!. According to standard practice, the internal states of
the system would not change at all for any inertial frame of
reference moving with a constant velocity~we are here not
concerned with any relativistic effect!. Thus, we may set up
a moving hypothetical boundary with the same velocity as
that of the infinitesimal element of interest and employ the
local equilibrium assumption to impart physical quantities
defined by equilibrium thermodynamics such as temperature
and pressure.

As before, let us consider a combined system of two
identical infinitesimal systems of fluid, but with different
streaming velocities~say, u1 and u2) in a nonequilibrium
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process. As seen in the previous examples, physical quanti-
ties such as the internal energy per mass and the pressure
tensor of the combined system, in general, would not be
arithmetic averages of the two subsystems because the
streaming velocity of the combined system,u, is not the
same as eitheru1 or u2 . Therefore, the peculiar velocity~or
momentum! of particles needs to be recalculated relative to
u. In other words, in the derivation of the traditional conser-
vation equations, the same COM velocity is used as the ref-
erence velocity in the definition of the peculiar velocity, for
all particles that exist within the differential element. How-
ever, in a NEMD simulation, the same COM velocityis not
used to define the individual peculiar velocities; the indi-
vidual peculiar velocities are defined with reference to the
imposed velocity gradient This discrepancy introduces a fun-
damental difference between continuum theory and
molecular-level simulation.

Such an inconsistency has frequently been adopted in
NEMD simulations in connection with hydrodynamics. Spe-
cifically, the streaming velocity in field-driven NEMD simu-
lations ~DOLLS, SLLOD, andp-SLLOD) is different for
different positions in the simulation box according to the
imposed velocity gradient field“u. Furthermore, the COM
velocity used in the definition of the peculiar velocities of the
particles is thus different for the various particles. Neverthe-
less, the internal energy and pressure tensor have been cal-
culated over all particles in the box. Although such expres-
sions have their own physical meanings, they are not
precisely consistent with hydrodynamics. In some special
cases, such as that of a constant pressure tensor throughout
space~e.g., planar Couette flow and PEF!, the pressure ten-
sor expression over all the particles in a simulation may be
regarded as an average over space. However, in the case of
position-dependent pressure tensor~e.g., Hagen-Poiseuille
flow!, such an expression would not be the appropriate one.

Now let us consider three conservation laws of mass,
linear momentum, and energy for an infinitesimal fluid re-
gion moving with a streaming velocityu:

Dr

Dt
52r“"u, ~B5!

r
Du

Dt
52“"P, ~B6!

r
DÊint

Dt
52“"Jq2P:~“u!T. ~B7!

Note that the time derivatives on the left-hand side of these
expressions are the material or substantial derivatives. Here,
r is the mass density,Êint is the internal energy per unit
mass,Jq is the heat flux, andP is the pressure tensor.Eint and
P in terms of particle coordinates~position and velocity! are
written as

Eint5(
i 51

nR 1

2
mi~vi82u!21V~q!, ~B8!

Pv5(
i 51

nR

@mivi8~vi82u!1qiFi #, ~B9!

wherev is the volume of the infinitesimal portion andnR is
the number of particles in this volume.vi8 and qi are the
laboratory velocity and position vector of particlei, respec-
tively, V(q) is the potential energy, andFi is the force acting
on particlei. Note that only the particles in the infinitesimal
portion under consideration are to be included in the summa-
tion. The first term on the RHS of Eq.~B9!, representing the
kinetic part of the pressure tensor, has the physical meaning
that particles with nonzero velocities relative to the stream-
ing velocityu of the infinitesimal region under consideration
would make a contribution of their momentum to the pres-
sure tensor; therefore, they would also contribute to the total
momentum of the infinitesimal region. Denoting the peculiar
velocity of particlei asvi(5vi82u), Eq. ~B9! can be rewrit-
ten as

Pv5(
i 51

nR

mi~vi1u!vi1qiFi

5(
i 51

nR

~mivivi1qiFi !1(
i 51

nR

umivi . ~B10!

The last term on the RHS of Eq.~B10! is necessarily zero
from the definition of the peculiar and streaming velocities,
u(5( imivi8/( imi). Thus, the resulting expression has the
conventional form of the pressure tensor in hydrodyamics. In
NEMD simulations using field-driven NEMD algorithms,u
is not calculated from the particle velocity within each small
region in the simulation box. Instead, it is included as a
known parameter in the equations of motion in the form of
“u.

Now let us consider the expression for the internal en-
ergy in the SLLOD andp-SLLOD algorithms. Consistently
with hydrodynamics, we should consider only a small region
of the total simulation volume. It is essential to realize that
the total simulation volume must be treated as larger than
this small element of volume because the streaming velocity
u varies within the simulation volume, but cannot vary
within the small element. The internal energy and its time
derivative are given by

Eint5(
i 51

nR pi
2

2mi
1V~q!, ~B11!

dEint

dt
5(

i 51

nR ṗi "pi

mi
2q̇i "Fi . ~B12!

Using the equations of motion of the DOLLS, SLLOD, and
p-SLLOD algorithms, the expressions fordEint /dt are found
to be
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DOLLS and SLLOD
~B13!

dEint

dt
52(

i 51

nR S pipi

mi
1qiFi D :~“u!T52Pv:~“u!T,

p-SLLOD
~B14!

dEint

dt
52(

i 51

nR S pipi

mi
1qiFi1~qi "“u!pi D :~“u!T

52P̃v:~“u!T,

where P̃ denotes the quantity with the parentheses in Eq.
~B14!. Note that Eq.~B14! may be rewritten as

dEint

dt
52(

i 51

nR S pi~pi1miqi "“u!

mi
1qiFi D :~“u!T. ~B15!

Hence we recognize the analogy between~i! the quantity in
the large parentheses and~ii ! the first line of equality in Eq.
~B10!. In all field-driven NEMD algorithms, we setui

5qi "“u for each particle. As mentioned above,P andP̃ are
exactly the same in hydrodynamics sinceui5qi "“u5u
5q"“u, whereq ~in the range ofq to q1dq) represents the
position vector of the infinitesimal region in space. The sum
of the pi is identically zero by definition. Although the extra
term in the internal energy derivative of Eq.~B15! can be
finite in simulations, at the continuum level this term van-
ishes.

Therefore, we see that thep-SLLOD algorithm satisfies
not only Newtonian mechanics as shown in the main body of
the paper, but also the thermodynamic criterion,~i.e., it pro-

duces the correct macroscopic equation of change for the
internal energy!, whereas the SLLOD algorithm satisfies
thermodynamics, but not Newtonian mechanics.
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