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We present a powerful framework for computing the viscoelastic properties of polymer melts based on an
efficient coupling of two different atomistic models: the first is represented by the nonequilibrium molecular
dynamics method and is considered as the microscale model. The second is represented by a Monte Carlo
�MC� method in an expanded statistical ensemble and is free from any long time scale constraints. Guided by
recent developments in nonequilibrium thermodynamics, the expanded ensemble incorporates appropriately
defined “field” variables driving the corresponding structural variables to beyond equilibrium steady states. The
expanded MC is considered as the macroscale solver for the family of all viscoelastic models built on the given
structural variable�s�. The explicit form of the macroscopic model is not needed; only its structure in the
context of the general equation for the nonequilibrium reversible irreversible coupling or generalized bracket
formalisms of nonequilibrium thermodynamics is required. We illustrate the method here for the case of
unentangled linear polymer melts, for which the appropriate structural variable to consider is the conformation
tensor c̃. The corresponding Lagrange multiplier is a tensorial field �. We have been able to compute model-
independent values of the tensor �, which for a wide range of strain rates �covering both the linear and the
nonlinear viscoelastic regimes� bring results for the overall polymer conformation from the two models �mi-
croscale and macroscale� on top of each other. In a second step, by comparing the computed values of � with
those suggested by the macroscopic model addressed by the chosen structural variable�s�, we can identify
shortcomings in the building blocks of the model. How to modify the macroscopic model in order to be
consistent with the results of the coupled micro-macro simulations is also discussed. From a theoretical point
of view, the present multiscale modeling approach provides a solid framework for the design of improved,
more accurate macroscopic models for polymer melts.
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I. INTRODUCTION

Polymers are highly complex macromolecular materials
involving a multiplicity of time and length scales. For ex-
ample, characteristic times involved in chain mobility span
scales from 10−14 s �associated with bond vibrations� to sec-
onds �characterizing chain end-to-end vector decorrelation in
entangled melts� to years �connected with dynamics in the
glassy state� while characteristic lengths span scales from
angstroms �corresponding to bond lengths� to nanometers
�corresponding to the average chain size� to micrometers
�corresponding to domain size in semicrystalline structures�.
Understanding the complex interplay between molecular
structure, conformation and architecture and macroscopic
rheological response is of extreme importance in our ability
to design materials with optimal properties. Equally impor-
tant, however, is our ability to encode this understanding in
the form of suitable constitutive equations capable of provid-
ing a reliable expression for the stress tensor in terms of the
imposed flow kinematics and certain molecular parameters
or material functions. For simple fluids, the Navier Stokes
equations with a simple expression for the stress tensor
�solely in terms of the velocity gradient tensor� provide an
accurate description of their flow dynamics in almost all situ-
ations. This is not the case for complex fluids characterized
by an internal microstructure: here, models derived empiri-
cally or without reference to molecular physics usually fail to
represent even qualitative features of the material behavior.
For polymer melts, in particular, theoretical treatments of

their viscoelastic behavior based on the concept of chemical
or physical cross-links �described as points or junctions at
which connecting portions of molecules are forced to move
together at all times� have motivated a description in terms
of internal structural variables, usually a tensorial variable
such as the Finger strain tensor F or, preferably, the confor-
mation tensor c̃.1–13 Classical molecular theories of rubber-
like elasticity, for example, often postulate that the Helm-
holtz free energy A of the underlying temporary network
structure �which has been deformed by the flow� is separable
into a liquidlike nonelastic �independent of deformation� and
an elastic �dependent on deformation� part which depends on
an appropriately defined tensorial variable X. Based on such
an idea, a number of macroscopic viscoelastic models have
been developed by taking A to be of the form A

Nch

= A
Nch

�� ,T ,X� where A stands for the extensive Helmholtz
free energy, Nch for the number of chains, � for the mass
density, and T for the absolute temperature.10,12

Conformation tensor based viscoelastic models are usu-
ally closed-form differential, nonseparable constitutive equa-
tions. They represent a family of models widely used by
rheologists in order to analyze complicated polymer flow
problems with considerable success, since they are easy to
solve numerically as they do not require tracking fluid ele-
ments. Typical examples include the upper-convected Max-
well �UCM�,8 the Giesekus,14 the Phan-Thien/Tanner
�PTT�,15,16 and the Leonov17,18 models, as well as modifica-
tions accounting for finite extensibility with nonlinear mo-
lecular stretching,8,19–23 nonaffine deformation,24,25 variation
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in the longest chain relaxation time with chain
conformation,26,27 and bounded free energy,28 either sepa-
rately or all together.29 Of course, in addition to a single
conformation tensor, one can envision higher-mode confor-
mation tensor viscoelastic equations corresponding to the
Rouse or bead-spring chain model. In general,8,30 from an
N-mer chain, N�N−1� /2 different conformation tensors c̃ij
with i , j=1,2 , . . . ,N−1, can be constructed, each one being
identified with a properly normalized average dyadic �QiQ j�,
with Qi denoting the connector vector between mers i+1 and
i along the chain.

Despite all the efforts to derive accurate macroscopic
models for complex fluids such as polymers, it is true that in
many cases these are phenomenological or approximate; it is
also true that, often, certain empirical closures should be in-
troduced which are not always well understood or justified.8

It is only by providing input from a more detailed micro-
scopic model that one can avoid empiricism and approxima-
tions in the construction of the macroscopic model. Over the
last years, such an approach has given rise to the develop-
ment and implementation of various multiscale modeling
methods. Typical examples include the use of Brownian con-
figurational fields,31,32 methods for the seamless, concurrent
coupling of length scales,33 heterogeneous multiscale meth-
ods �or HMM� where the word “heterogeneous” emphasizes
that models of different nature can be employed at different
scales �e.g., molecular dynamics �MD� at the micro scale and
continuum mechanics at the macro scale�,34–36 equation-free,
coarse-grained methods enabling microscopic simulators to
perform system-level analysis �this is done through interpo-
lation in space and extrapolation in time of ensemble-
averaged macroscale quantities obtained from the micro-
scopic simulations�,37 MD with absorbing boundary
conditions for multiscale modeling,38 as well as hybrid, time-
scale-bridging MD methods.39

The present work provides the framework for designing a
different class of multiscale, multiphysics methods for the
study of complex materials under an applied steady flow by
coupling an accurate microscopic model with a very efficient
Monte Carlo �MC� method �called general equation for the
nonequilibrium reversible irreversible coupling �GENERIC�
MC to emphasize that it is built on the GENERIC formalism
of nonequilibrium thermodynamics�12,30 in an expanded en-
semble playing the role of a simulator �a solver� for the the-
oretical macroscopic model. The expanded ensemble in-
cludes field variables �accounting for flow effects� which
drive the corresponding structural variables away from equi-
librium. The idea was introduced by Mavrantzas and
Theodorou13 who employed it to simulate a polymeric sys-
tem subjected to a homogeneous, steady-state extensional
flow at constant elongation rate in one direction �this has
perhaps the simplest kinematical structure in nonequilibrium
MC simulations of flowing systems�; they did so by consid-
ering the conjugate thermodynamic variable to c̃, the tenso-
rial orienting field �, intimately related to the strain rate in
the flow situation. Although no systematic connection was
made between the synthetic field � used in the MC simula-
tions and the rate-of-strain tensor �̇ employed in the actual
flow, that attempt demonstrated how one can drive a system
away from equilibrium by using synthetic fields in the con-

text of a nondynamic method. In a later work,30 the method-
ology was rigorously formulated in the context of the GE-
NERIC formalism of nonequilibrium thermodynamics; it
was consequently termed GENERIC MC. The formal gener-
alization served as the starting point for designing a rigorous
�Hamiltonian-based� statistical mechanics framework for un-
known nonequilibrium systems through field variables de-
fined as the conjugate variables �the Lagrange multipliers� of
appropriately introduced structural variables describing the
system in an overall sense. In a flow situation, these struc-
tural parameters �slow dynamical variables� depart from their
values in the quiescent fluid, while all other �faster� degrees
of freedom track the evolution of the structural parameters;
i.e., they are assumed to be at equilibrium subject to the
constraints imposed by the values of the structural param-
eters at all times.13 The key �perhaps the most important�
step in the method is the choice of the proper set of the state
variables, x, effectively representing nonequilibrium
states.12,40

Quite recently, it was demonstrated41 that GENERIC MC
can generate realistic nonequilibrium structures under an ex-
ternal flow field similar to those obtained through the direct
application of a true dynamic method. From a mathematical
point of view, this is equivalent to establishing a relationship
between the synthetic thermodynamic force fields introduced
in the extended statistical ensemble and the true velocity
field assumed in the actual flow. The connection was
achieved by determining the synthetic field iteratively so
that, for a given value of the shear rate, the resulting value of
the corresponding structural variable is equal to that calcu-
lated through independent nonequilibrium molecular dynam-
ics �NEMD� simulations. Preliminary �test� simulations with
a C50H102 polyethylene liquid showed the two methods �ex-
panded MC and NEMD� to provide identical results for c̃.41

The purpose of this work is to present the GENERIC MC
method in detail, to analyze its statistical mechanics founda-
tions, and to demonstrate how it can serve as a useful frame-
work for multiscale modeling, linking conventional and
widely used macroscopic models with microscopic complex
systems behavior. We will see that it is possible to sample
statistically appropriate nonequilibrium phase-space points
corresponding to an imposed external field guided by a
coarser, macroscopic-level model, without adhering to its
specific mathematical expression. All that is needed is the
choice of variables and the corresponding GENERIC struc-
ture of the fundamental evolution equation. As noted by
Öttinger:40 “Beyond equilibrium, and contrary to our equilib-
rium experience, this choice is far from obvious. Actually,
this is the point at which the most physical intuition is re-
quired. A poor choice of x cannot be repaired by even the
most ingenious formulation of thermodynamic building
blocks. For example, for the famous reptation �reptile-like or
snake-like� model of a melt of entangled linear polymer mol-
ecules, considered later, the idea of smooth primitive paths,
and the corresponding configurational distribution function,
are the keys to success.”

The most important features of the proposed framework
are the following: �a� it allows modeling the macroscale
quantities of interest by coupling with a microscale model
without using the explicit form of the macroscopic model.
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�b� The microscopic model is a remarkably accurate �atom-
istic� model. A number of studies in the last few years42,43

have shown it to provide excellent predictions of the struc-
tural, conformation, and volumetric properties of several
polymers �polyethylene, polybutadiene, polyisobutelene,
H-shaped polyethylene, etc.� over a wide range of tempera-
ture and pressure conditions. �c� The macroscopic solver is
based on a powerful set of chain connectivity altering moves
allowing the robust sampling of configurational space.44 �d�
The choice of the structural variables in the expanded MC
solver and of their corresponding Lagrange multipliers is
guided from nonequilibrium thermodynamics; as such they
bear a direct connection with available macroscopic vis-
coelastic models widely employed in numerical and theoret-
ical studies of polymer melt viscoelasticity. �e� Combined
with the results of some additional, direct dynamic simula-
tions and the use of the Green-Kubo formulae,12,40,45,46 one
can fully compute the underling friction or relaxation matrix
of the macroscopic model. �f� Structural variables of totally
different nature can be addressed �tensors or distribution
functions�.47–50 �g� The macroscale model is a high fidelity
solver providing feedback to the analytical viscoelastic
model for the chosen structural variable. This can be used to
parametrize the macroscopic model but also to correct the
functional form of its building blocks �we provide an ex-
ample here�. This is in line with the comment of Brandt51

that one might be able to construct an effective macroscopic
model from data accumulated during the computation with a
multiscale model.

The main disadvantages of the approach are the follow-
ing: �a� the underlying atomistic MC algorithm is available
today only for a limited number of polymers �such as poly-
ethylene, polypropylene, and polybutadiene�. Efforts are,
however, in progress to generalize it for more complicated
structures and architectures through coarse-grained strategies
that preserve chain stereochemistry.52 �b� Being nondynamic
in nature, the macroscopic solver �GENERIC MC� can ad-
dress only the steady-state properties of the fluid at condi-
tions beyond equilibrium. It provides no information about
the transient behavior. �c� The microscopic solver �NEMD�
is available today only for shear and planar elongational
flows. This implies that it cannot handle arbitrary flows; for
example, how to modify the boundary conditions to treat
one-dimensional or uniaxial extensional flows is not yet
known.

The paper is organized as follows. In Sec. II, we present
the basic ingredients of the GENERIC formalism and all
details of the proposed framework �these refer to both the
direct microscopic model, i.e., the NEMD method and the
GENERIC MC simulator of the macroscopic model�, with a
focus on systems described at the coarse-grained or macro-
scopic level by a tensorial structural variable �here c̃�. In Sec.
III, we discuss the types of polymeric systems simulated here
and the results obtained. We provide the relationship between
the synthetic field used in the GENERIC MC simulations
and the actual shear rate employed in the microscopic simu-
lations for a number of PE melts, we present the results
obtained for the conformation tensor from the two solvers
and how they compare with each other, and we comment on
their differences and how these are related to the choice of

the synthetic field or to the functional form of the friction
matrix of the macroscopic model. To illustrate the capabili-
ties of the macrosolver, some additional results are presented
in Sec. III referring to structure descriptors at shorter length
scales. We will see that GENERIC MC provides an excellent
description of the simulated systems even at scales shorter
than the chain end-to-end vector �that was designed for�.
This is a unique, very encouraging result because it justifies
the choice of the conformation tensor as the appropriate pri-
mary variable at the coarse-grained level: at a given value of
the conformation tensor c̃ �or its conjugate field ��, all pos-
sible configurations that the microscopic system can adopt at
the given temperature and density conditions are indeed cat-
egorized according to that value of c̃ �or ��.13 Concluding
remarks are made in Sec. IV.

II. SIMULATION METHODOLOGY

Our multiscale modeling approach aims at offering a sat-
isfactory description of the viscoelastic behavior of a poly-
meric fluid through a hierarchical approach wherein different
models are employed to describe the system at different
length and time scales. For the approach to be successful, the
flow of information from one level to the other should be
based on a well-founded �if possible, molecular� theory pro-
viding the link in terms of a mathematical framework. This
can help overcome computational challenges associated with
high-resolution calculations at the interface of two levels.
For the case considered here, consistency during level bridg-
ing is achieved by considering simultaneously two solvers of
totally different nature for the system: the first is the NEMD
method for an atomistic system. The second is MC in an
expanded statistical ensemble. The bridging of the two meth-
ods is achieved by computing the extra synthetic fields en-
tering the latter guided by a macroscopic theory, the GE-
NERIC approach to nonequilibrium thermodynamics.
GENERIC provides the vector of pertinent state variables at
the macroscopic level and an expression for the general form
of the underlying friction or relaxation matrix that satisfies
the two fundamental laws: the second law of thermodynam-
ics and the Onsager-Casimir reciprocity relationships of lin-
ear irreversible thermodynamics.

The structural variables should not be chosen arbitrarily:
they should bear connection with available macroscopic vis-
coelastic models employed quite widely in numerical and
theoretical studies of polymer melt viscoelasticity. Once the
state variables have been identified, one can define their cor-
responding thermodynamic fields: these form a set of
Lagrange multipliers intimately related to the velocity gradi-
ent in a homogeneous steady flow. It is these fields that are
introduced in the expanded MC method to enable the simu-
lation of the system under beyond-equilibrium conditions.
We will say that the two models have been consistently
coupled if their results for a given flow field are identical,
implying that the values of the synthetic fields entering the
expanded-ensemble MC simulations have been chosen cor-
rectly. The computation of the synthetic fields will be the
most important result of such a methodology, since these are
in essence the elements of the friction or relaxation matrix of
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the macroscopic GENERIC model onto which the expanded-
ensemble MC methodology was founded.30 Given a thermo-
dynamically admissible thermodynamic model, therefore, the
success of the proposed approach lies in the construction of a
combined, “added-value” micro-macro solver which �a� bor-
rows from the macroscopic model just its main building
blocks �but not their exact mathematical expression� and �b�
returns information allowing the complete parametrization of
the model based on atomistic-level data.

A. Fundamental aspects of the GENERIC formalism of
nonequilibrium thermodynamics

If x is the vector of state variables describing a dynamical
system beyond equilibrium �this typically contains position-
dependent fields such as the local mass, momentum and en-
ergy densities of hydrodynamics, and one or more structural
variables�, then its fundamental evolution equation in the
GENERIC formalism reads12

�x

�t
= L�x� ·

�E�x�
�x

+ M�x� ·
�S�x�

�x
, �1�

where E and S represent the total energy and entropy of the
system, L is a Poisson matrix that turns energy gradients into
reversible dynamics, and M a friction matrix that turns en-
tropy gradients into irreversible dynamics. L is always anti-
symmetric while M is usually symmetric expressing the fa-
mous Onsager-Casimir symmetry of linear irreversible
thermodynamics.12,40,53 The two generators E and S of re-
versible and irreversible thermodynamics and the matrices L
and M are further restricted to satisfy the following two mu-
tual degeneracy conditions:

L�x� ·
�S�x�

�x
= 0, M�x� ·

�E�x�
�x

= 0, �2�

representing physically the decoupling nature of reversibility
and irreversibility. The vector x of the set of �thermody-
namic� state variables is typically expressed as x
= ���r� ,M�r� ,��r� ,X�r��, where the mass density �, the mo-
mentum density M, the internal energy �, and the structural
variable X characterizing nonequilibrium states are generally
functions of the position vector r. Assuming that most of the
external-field effects on the overall structure of the system
are absorbed into the entropy functional �i.e., the energetic
effect is relatively negligible�, E and S are commonly ex-
pressed as

E�x� =	 
M�r�2

2��r�
+ ��r��dr , �3a�

and

S�x� =	 s���r�,��r�,X�r��dr . �3b�

The proper choice of X is clearly crucial in determining non-
equilibrium thermodynamic functions. The general thermo-
dynamic equation for the entropy density s in GENERIC is
written as12,30

s�x� = kB�
k

�kxk, �4a�

or, equivalently, as

ds = kB�
k

�kdxk, �4b�

from which the Lagrange multipliers �k are naturally defined
as

�S�x�
�xk

= kB�k, �5�

where kB is Boltzmann’s constant. Furthermore, by taking
the total derivative of Eq. �4a� and by comparing with Eq.
�4b�, one derives the generalized Gibbs-Duhem relation

�
k

xkd�k = 0. �6�

Using Eqs. �4a�, �4b�, �5�, and �6�, the fundamental thermo-
dynamic equations for the rest of the free-energy functions of
the nonequilibrium system can be derived in a straightfor-
ward manner, using appropriate Legendre transforms.

Based on the fundamental statistical principle of the equal
a priori probability for every phase-space point at a constant
energy surface,54 the probability density function ���� in the
generalized canonical GENERIC statistical ensemble corre-
sponding to the above macroscopic thermodynamic relations
is12

�����z� =
1

Q���
exp− �

k

�k�k�z�� , �7�

Q��� =	 exp− �
k

�k�k�z��dz ,

where z represents the full phase space comprising both the
position �r� and momentum �p� coordinates of all particles in
the system. The extensive thermodynamic variable �k
�whose ensemble average corresponds to the thermodynamic
state variable, xk= ��k�z�����=������z��k�z�dz� is paired with
its conjugate thermodynamic field, the Lagrange multiplier
�k. The Boltzmann factors of all pairs are combined �i.e.,
multiplied� to generate appropriate phase space that sample
system configurations under the conditions imposed exter-
nally by the �k’s. Thus, the most fundamental statistical ex-
pression for the entropy functional is written as55

S�x� = − kB	 �����z�ln������z��dz = kB
ln Q��� + �
k

�kxk� .

�8�

Using Eqs. �1� and �5�, one can show that the Lagrange mul-
tipliers obey the following kinematic equation under steady-
state conditions:

� = −
1

kB
M−1 · L�x� ·

�E�x�
�x

. �9�
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B. GENERIC formalism for polymer melts coarse grained to
the level of conformation tensor

Descriptions of polymeric systems in terms of internal
structural parameters quantify chain conformation in an
overall sense. In the literature, the conformation tensor c̃ is
defined mathematically as8,13

c̃�� =
3�R�R��

�R2�eq
, �10�

where R denotes the chain end-to-end vector and the sub-
script eq equilibrium conditions. According to Eq. �10�, at
equilibrium �no flow� and away from any boundaries, c̃ is
equal to the unit tensor �.

With the choice X= c̃, according to the GENERIC �Ref.
12� or generalized bracket formalisms10 of nonequilibrium
thermodynamics, the constitutive equation for the viscoelas-
tic material takes the following general form:

� c̃��

�t
+ v	�	c̃�� − ��	v��c̃	� − c̃�	�	v� = − 
��	�

�A�c̃�
�c̃	�

,

�11�

while the �elastic� stress tensor is defined according to

��� = 2c�	

�A�c̃�
�c̃	�

. �12�

On the left-hand side of Eq. �11� we recognize the upper-
convected Maxwell derivative of c̃��:

ĉ̃�� �
� c̃��

�t
+ v	�	c̃�� − ��	v��c̃	� − c̃�	�	v�, �13�

and on the right-hand side the appearance of the fourth-rank
relaxation matrix � and the free-energy functional A. Note
also the use of the Einstein summation convention over re-
peated indices, e.g., a	b	=�	a	b	. The relaxation matrix �
has to satisfy Onsager’s symmetry property and the thermo-
dynamic admissibility criteria �i.e., the second law of ther-
modynamics�. The free energy A, on the other hand, is usu-
ally taken to be a function of the invariants of the
conformation tensor c̃. With suitable choices of � and A, a
number of well-established and widely used viscoelastic
models are reproduced. These include the UCM, the
Giesekus, the PTT, the finitely extensible nonlinear elastic
�FENE�, the hybrid FENE/PTT/Giesekus, the modified Bird-
DeAguiar, and the extended White-Metzner models. From
the point of view of the GENERIC formalism of nonequilib-
rium thermodynamics, all these expressions for � are par-
ticular cases of the following more general construction:10

���	��c̃� = f1�I1��c̃�	��� + c̃����	 + c̃�	��� + c̃����	�

+ 2f2�I1��c̃�	c̃�� + c̃��c̃�	�

+ f3�I1��c̃���	� + c̃	����� + f4�I1��c̃��c̃	�� ,

�14�

where I1 is the first invariant of c̃ �the trace of c̃�, � is the
second-rank unit tensor, and f1, f2, f3, and f4 are arbitrary
functions of I1. A, on the other hand, is usually assumed to be
a function of all three invariants of c̃. Table I summarizes the
choices of � that reproduce the above-mentioned viscoelas-
tic models. We further note that in order for the model to

TABLE I. The functional form of the f1�I1�, f2�I1�, f3�I1�, and f4�I1� functions, in the general expression of the relaxation matrix � �Eq.
�14��, for several viscoelastic models.

Model f1�I1� f2�I1� f3�I1� f4�I1�

UCM, FENE

1

2�0nkBT 0 0 0

Giesekus

1

2�0nkBT
�1 − ��

1

2�0nkBT
�

0 0

PTT

1

2�0nkBT
exp��1 − ����I1 − 3��

0 0 0

Extended White/Metzner

1

2�0nkBT
I1

3
�−k

0 0 0

Modified Bird-DeAguiar

1

2�0nkBT


0 0

2

�0nkBT

1 − 

I1

Leonov 0

1

2�0nkBT 0
−

2

3�0nkBT

Hybrid FENE/PTT/Giesekusa

1

2�0nkBT
�1 − ��1 − ���

�exp��1 − ����I1h0�I1� − 3��

1

2�0nkBT
��1 − ��h0�I1�

�exp��1 − ����I1h0�I1� − 3�� 0 0

aIn this model, the exact form of the spring constant h0�I1� depends on the specific model; for example, h0�I1�= b−3
b−I1

for the FENE-Peterlin

approximation and h0�I1�=
3�b−2�b−I1

3�b−I1� for the FENE-Cohen approximation. More details can be found in Ref. 29.
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satisfy the second law of thermodynamics �the rate of en-
tropy production should be non-negative�, namely,

�A
�c̃��


��	�
�A

�c̃	�
�0, f1�I1�, f2�I1�, f3�I1�, and f4�I1� must be

constrained to certain limits.10,29 Certain special cases are
considered in Appendix A leading to

f i�I1� � 0, ∀ i . �15�

C. Coupled NEMD-GENERIC MC multiscale modeling
methodology

Separating temperature effects �based on the well-known
notion of purely entropic spring force from the theory of
network models� from the Lagrange multiplier,8 the general
expression for the internal energy function of polymeric sys-
tems under flow is written as

U = TS − PV + �Nch + NchkBT�:c̃ , �16a�

implying that

dU = TdS − PdV + �dNch + kBT�:d�Nchc̃� . �16b�

From these equations, all other thermodynamic functions can
be derived through appropriate Legendre transforms.56 For
example, the extended Helmholtz free energy A and Gibbs
free energy G of the nonequilibrium system will be given
through

dA�T,V,Nch,Nchc̃� = − SdT − PdV + �dNch + kBT�:d�Nchc̃� ,

�17a�

and

dG�T,P,Nch,�� = − SdT + VdP + �dNch − NchkBTc̃:d� ,

�17b�

respectively. Equation �17b� is the one employed in the origi-
nal Mavrantzas-Theodorou work.13 The Helmholtz free-
energy density can alternatively be written as

dA

V
� = −

S

V
dT + �dNch

V
� + kBT�:dNch

V
c̃� . �18�

According to Eqs. �5� and �18�, it is thus recognized that

�c̃ =
1

kB

�S

�c̃
= −

1

kBT

�A�c̃�
�c̃

= −
Nch

V
� . �19�

Based on the above generalized thermodynamic equations,
we are now ready to design a consistent micro-macro simu-
lation method capable of addressing flow effects on the con-
formation of unentangled polymer melts. For simplicity, we
restrict ourselves to the case of steady shear described by the
following velocity gradient tensor:

�u = �0 0 0

	̇ 0 0

0 0 0
� . �20�

1. Micromodel

The micromodel is a high-resolution model addressing
phenomena at the atomistic level. In the present work, it is

represented by the NEMD method.57–61 The method extends
the classical MD technique for equilibrium systems to ac-
count for flow effects. Following Baig et al.,61 in particular,
the method is described by the following set of evolution
equations:

q̇i =
pi

mi
+ qi · �u ,

ṗi = Fi − pi · �u − miqi · �u · �u , �21a�

where �u denotes the imposed velocity gradient, mi the mass
of atom i, and �qi ,pi� are the generalized coordinates �posi-
tion and momentum� of atom i in the system. These equa-
tions satisfy Newton’s law, i.e., miq̈i=Fi where Fi�=− �U

�qi
� de-

notes the force on atom i due to intra- and intermolecular
interactions with all other atoms in the system and U
=U�qi� the corresponding potential energy function. The set
�21a� is known as the p-SLLOD equations of motion, and
with a Nosé-Hoover thermostat,62,63 it takes the form

q̇i =
pi

mi
+ qi · �u ,

ṗi = Fi − pi · �u − miqi · �u · �u −
p�

Q
pi,

�̇ =
p�

Q
,

ṗ� = �
i

pi
2

mi
− dkBT , �21b�

where � is the additional degree of freedom �the thermostat�
playing the role of a heat bath whose aim is to damp out
temperature deviations from the desired level, Q its effective
mass, p� its momentum, and d the total degrees of freedom
of the system. Together with the Lees-Edwards boundary
conditions for the case of shear64 or the Kraynik-Reinelt ones
for the case of planar extension,65 the set of equations in Eq.
�21b� allows simulating a polymer melt at constant tempera-
ture under the application of an external flow field and de-
fines the micromodel here.

2. Macromodel

The macromodel is represented in this work by the GE-
NERIC MC method.30 Following Mavantzas-Theodorou13

and Mavrantzas-Öttinger,30 this is realized in an expanded
semigrand statistical ensemble �NchNPT����, in which the
following variables are specified �held fixed�: the number of
chains Nch, the average number of atoms per chain N, the
pressure P, the temperature T, the spectrum of chain relative
chemical potentials �� controlling the distribution of chain
lengths in the system �and thus also the system
polydispersity�66 and the tensorial field � accounting for
flow effects. As explained in the previous section, the field �
couples with the conformation tensor c̃ and drives polymer
configurations away from their spherical shape representative
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of a quiescent �no flow applied� equilibrium system. The
corresponding probability density function is

�NchNPT����r1,r2, . . . ,rn,V�

� exp�− �
U�r1,r2, . . . ,rn,V� + PV

− �
k=1

Nch

�k
�Nk − kBT�:�

k=1

Nch

c̃k�� , �22a�

implying that system configurations are sampled according
to the following modified Metropolis criterion:

pacc
NchNPT��� � exp�− �
�U + P�V − �

k=1

Nch

���k
�Nk�

− kBT�:�
k=1

Nch

�c̃k�� , �22b�

or, for the case of a system simulated under conditions of
constant volume V �i.e., constant density ��, according to

pacc
NchNVT��� � exp�− �
�U − �

k=1

Nch

���k
�Nk�

− kBT�:�
k=1

Nch

�c̃k�� , �22c�

where �� 1
kBT . In the above equations, n�=Nch�N� is the

total number of atoms in the system, �r�= �r1 ,r2 , . . . ,rn� de-
notes the space of their position vectors, V the volume, U the
potential energy of the system, ��k

��k=1
Nch the relative chemical

potential of the kth chain in the system and �c̃k�k=1
Nch its con-

formation tensor. With appropriate input data for the set
�NchNPT����, such a method allows sampling phase points
of the simulated polymer beyond equilibrium, by assigning
nonzero values to �.

Precisely defining � so that the kinematics of a true shear
flow is generated, described by Eq. �20� above, is not a
trivial task and this is where the two solvers are bridged. In
general, and guided by the availability of a large number of
viscoelastic models �some of which are reported in Table I�,
one has a number of choices. For the case of simple shear
considered here, according �for example� to the simple UCM
model, � comes out to be

� = �
1

2

��0	̇�2

1 + ��0	̇�2

1

2

�0	̇

1 + ��0	̇�2 0

1

2

�0	̇

1 + ��0	̇�2 −
1

2

��0	̇�2

1 + ��0	̇�2 0

0 0 0
� , �23�

where �0 is the longest relaxation time of the polymer. On
the other hand, according to the more refined and widely
used Giesekus model, the elements of � �again for the case
of steady shear� are obtained from the solution to the follow-
ing set of algebraic equations:

�1 − 2a�c̃yy + a�c̃xy
2 + c̃yy

2 � − 1 + a = 0,

�1 − 2a�c̃xy + a�c̃xxc̃xy + c̃xyc̃yy� − ��0	̇�c̃yy = 0,

�1 − 2a�c̃xx + a�c̃xx
2 + c̃xy

2 � − 2��0	̇�c̃xy − 1 + a = 0,

c̃zz = 1, �24a�

together with

� =
1

2
�0�� + a�c̃ − ���−1 · ��u + c̃−1 · �uT · c̃� , �24b�

where a denotes the Giesekus parameter �it usually takes
values between 0 and 1/2� while c̃xx, c̃xy = c̃yx, c̃yy, and c̃zz are
the values of the conformation tensor for the given polymer
melt. c̃−1 is the inverse of c̃ and �uT the transpose of �u.
Similar expressions are found for the other models reported
in Table I or in the literature. In any of these cases, however,
the results of the macromodel will be model dependent, and
thus approximate. To avoid this, we propose here a truly
consistent implementation of the macromodel by determin-
ing � solely from the most general expression for the under-
lying transport matrix � reported in Eq. �14�. Accordingly,
for the case of shear discussed here, c̃ and � should have
only four independent and nonzero components, the sets
�c̃xx , c̃xy = c̃yx , c̃yy , c̃zz� and ��xx ,�xy =�yx ,�yy ,�zz�, respec-
tively, implying that the most general form of the tensor �
which should be used in the GENERIC MC solver in order
to generate a true shear flow is

� = ��xx �xy 0

�xy �yy 0

0 0 �zz
� , �25�

leaving the exact dependence of the four nonzero elements
�xx, �xy, �yy, and �zz on the imposed shear rate 	̇ undeter-
mined. This implies that a state point in the microscopic
model, which will correspond to a given value of 	̇, is rep-
resented in the macroscopic model by the set ��xx ,�xy
=�yx ,�yy ,�zz�. In fact, for the majority of the members of
the family of viscoelastic models reported in Table I, the
coefficients f3 and f4 are usually taken to be zero. Then, it
can be shown �see Appendix A� that �zz=0. This important
simplification is also adopted in this study in order to judge
its effects and test its validity; as a result, the number of the
unknown components of the tensor � that should be deter-
mined for a given value of shear rate 	̇ reduces to three,
implying that all GENERIC MC simulations performed in
this work correspond to

� = ��xx �xy 0

�xy �yy 0

0 0 0
� . �26�

Our proposed simulation strategy for a consistently coupled
micro-macro modeling scheme includes then the following
steps:

Step �1�: For a given shear rate 	̇ or Deborah number
defined as De=�0	̇, i.e., as the product of the longest relax-
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ation time �0 of the polymer under study times the imposed
shear rate 	̇, carry out first the direct NEMD simulation �run
the micromodel� and compute the elements of the conforma-
tion tensor c̃. This will be the exact result for the given
polymer melt subjected to the given shear rate.

Step �2�: For the same given shear rate 	̇, choose a set of
initial values for the nonzero elements of the Lagrange mul-
tiplier � �these can correspond, e.g., to the Giesekus model�
and execute the GENERIC MC simulation in the expanded
statistical ensemble of Eq. �22c� �macromodel� and compute
the conformation tensor c̃. Given that the macroscopic model
used to estimate � is not accurate, the values of c̃ obtained
from the macrosolver will be different from the exact ones
computed by the microsolver.

Step �3�: Use the results of steps �1� and �2� to define an
improved set of values for the nonzero components of � and
iterate until convergence, i.e., until the value of the objective
function defined as

Fobj =��
i=1

ntype

wi��Ri,GENERIC MC − Ri,NEMD�/Ri,NEMD�2

�
i=1

ntype

wi

,

�27�

i.e., as the root mean square of the differences between GE-
NERIC MC and NEMD data for c̃, becomes zero within
some tolerance. In Eq. �27�, ntype denotes the number of data
types, wi is a weighting factor, and R denotes the value for c̃
obtained either from the GENERIC MC or the NEMD simu-
lation. Since �zz has been assumed to be zero, c̃zz �which is
mostly controlled by �zz� can be relegated from the objective
function; thus, ntype is set equal to three �c̃xx, c̃xy, and c̃yy�.
Furthermore, we chose to put the same weight on each of c̃xx,
c̃xy, and c̃yy, implying that w�c̃xy�=w�c̃xx�=w�c̃yy�. However,
one is free to choose a different way of weighting, depending
on his/her own physical viewpoint and intuition; for ex-
ample, if one considers the shear viscosity to be a more
important property than the two normal stress coefficients, a
reasonable choice will be w�c̃xy��w�c̃xx��w�c̃yy�.

Step �4�: At convergence, the micro- and macrosolvers
will have been consistently bridged with each other through
a macroscopic model with a number of important conse-
quences: �1� Knowing the relationship �=��	̇� is practically
equivalent to having computed the free energy A of the sys-
tem with respect to the equilibrium �zero-flow� state. �2� One
can validate or evaluate �and thus exclude� specific macro-
scopic models if their predictions for the tensor � deviate
significantly from the obtained �=��	̇� relationship of the
coupled micro-macro model computations. �3� The com-
puted �=��	̇� relationship can serve as a starting point in
order to propose more accurate viscoelastic models. For ex-
ample, as we will see below, the choice �zz=0 is not entirely
correct, since the results for the zz component of the confor-
mation tensor from the GENERIC MC simulations could not
be matched with those from the micromodel. �4� By studying
the dependence of � on the chemical or architectural details
of the simulated polymer melt, one can understand how

chemical composition affects viscoelastic response. �5� By
studying the dependence of � on chain length N, one can
obtain the relationship �=��	̇ ;N�; by extrapolating then to
longer N’s, one could study higher molecular weight poly-
mers, for which the direct application of the NEMD model is
impossible due to the problem of long relaxation times. In
contrast, the macromodel does not suffer from any such
shortcomings. Indeed, a theoretical analysis of the structural-
conformational changes induced by chain connectivity MC
moves has shown that44 their efficiency increases with in-
creasing chain length. This is in contrast to conventional
brute-force dynamic methods which all suffer from the prob-
lem of long relaxation times, namely, the rapid increase in
the longest relaxation time of the polymer with chain length.
Fast equilibration also implies that one can use this solver to
interpolate over an expanded domain of phase points and
then project. For example, in the present work, we have been
able to analyze the dependence of the tensor � on the chain
length of the simulated polymer melt. This, in the future, can
be used as a guide to compute its values for longer chain
length systems of the same polymer. It opens therefore the
way to executing reliable GENERIC MC simulations in re-
gimes completely inaccessible today by dynamic micro-
scopic models. This can help obtain the viscoelastic proper-
ties of polymers of relevance to industrial practice. Work
along this direction is already in progress.

A few other remarks about the proposed methodology are
in place here:

�i� Given that the Lagrange multipliers are related to the
velocity gradients in a homogeneous steady flow, their cal-
culation is equivalent to computing the elements �or certain
blocks� of the friction matrix M of the macroscopic GE-
NERIC model, which usually has a blocklike structure.30

Combined with the results of some additional direct dynamic
simulations and the use of the Green-Kubo formulae,12,40,45,46

one then can hope to compute all subblocks of M.
�ii� Although we outlined the method for the case of a

tensorial structural variable �the conformation tensor c̃�, the
entire methodology is equally applicable if the structural
variable is, e.g., a distribution function, which is the case for
entangled polymers. Guided from the reptation theory, one
can attempt a description of these systems in homogeneous
time-independent flows, in terms of the probability density
function f�u ,s� expressing the distribution of the tangent unit
vector u along the contour of the primitive path of the reptat-
ing chain at position s along its contour.47 The orientation
vector u will be a property of a smoothed chain obtained by
reducing atomistic chains to primitive paths.48–50

�iii� The macroscale model can serve not only to param-
etrize the macroscopic model but also to correct the func-
tional form of its building blocks �referring to, e.g., the free
energy A and the friction matrix M�. We provide an example
below.

III. APPLICATION

A. Systems studied and simulation details

We have studied three different unentangled linear poly-
ethylene �PE� melts �C50H102, C78H158, and C128H258� at T
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=450 K corresponding to the following density values: �
=0.7426 g /cm3 for the C50H102 system, �=0.7638 g /cm3

for the C78H158 system, and �=0.7754 g /cm3 for the
C128H258 system. Five or six different nonequilibrium states
covering a broad range of De numbers were selected for each
system, spanning both the linear and the nonlinear viscoelas-
tic regimes: 0.5�De�130 for the C50H102 system ��0
=0.56�0.03 ns, as estimated by the time integral of the
stretched-exponential curve describing the autocorrelation
function for the chain end-to-end vector�, 0.9�De�800 for
the C78H158 system ��0=2.3�0.2 ns�, and 0.6�De�700
for the C128H258 system ��0=8.0�0.6 ns�. To avoid any un-
desirable system-size effects �especially at the higher De
numbers studied�, large rectangular boxes �enlarged in the
flow direction� were employed in all cases based on the fol-
lowing data for the size Rmax of a fully stretched chain length
�i.e., with the equilibrium bond length and bending angle in
the all trans-conformation�13 and the mean chain end-to-end
distance at equilibrium �R2�eq

1/2 in each one of them: Rmax
=63.3 Å and �R2�eq

1/2=29.7�0.3 Å for the C50H102 system,
Rmax=99.4 Å and �R2�eq

1/2=38.6�0.4 Å for the C78H158 sys-
tem, and Rmax=164 Å and �R2�eq

1/2=50.7�0.4 Å for the
C128H258 system. More specifically, if x, y, and z denote the
flow, velocity gradient, and neutral directions, respectively,
the box dimensions �x�y�z in units of angstroms� were set
equal to 93.02�45�45 Å3 for the C50H102 melt �it con-
tained 120 chains�, equal to 130.5�54�54 Å3 for the
C78H158 melt �it contained 160 chains�, and equal to 212.7
�68�68 Å3 for the C128H258 melt �it contained 256
chains�. Thus, the x dimension of the simulation box in each
system was at least 30% larger than its Rmax value, and simi-
larly for the y and z dimensions based on the corresponding
�R2�eq

1/2 data.
For both sets of simulations �GENERIC MC and NEMD�,

the Siepmann-Karaboni-Smit united-atom potential model67

was employed, with the exception of a harmonic flexible
bond-stretching potential adopted in the NEMD
simulations.68 The equations of motion in the NEMD method
were integrated with the r-RESPA �reversible reference sys-
tem propagator algorithm�,69 by utilizing two different time
steps: 2.35 fs for the integration of the slow-varying forces
�corresponding to the nonbonded Lennard-Jones interactions,
the Nosé-Hoover thermostat,62,63 and the flow field�, and
0.47 fs for the integration of the fast-varying ones �corre-
sponding to bond-stretching, bond-bending, and bond-
torsional interactions�.

The efficient chain-connectivity altering end-bridging
move44 was employed for the GENERIC MC simulations
allowing for a small polydispersity I�1.083 with a uniform
chain-length distribution in all systems. If polydispersity is to
be suppressed, the end-bridging moves should be replaced by
double bridging ones.70

B. Results and discussion

1. Synthetic nonequilibrium thermodynamic field

In Fig. 1, we present our results for the nonzero values of
the thermodynamic field �, as a function of the De number
for the three systems. As seen, for all systems, �xx and �xy

increase monotonically with increasing De. In fact, at low De
numbers, �xx appears to be smaller than �xy in magnitude
�see inset�; this is considered to be consistent with our physi-
cal intuition that, at small flow fields, chains tend to be ori-
ented in the direction of the flow without distorting their
overall shape. At higher De numbers �e.g., De�100�, both
quantities are observed to attain plateau values; this repre-
sents the saturation of the overall chain conformation which,
in conjunction with dynamical mechanisms such as rotation
or tumbling, precludes chains from obtaining their fully
stretched configuration in shear. Here, it should be noted
that, by nature, GENERIC MC cannot address tumbling;
however, as we will see shortly �see Fig. 2 below�, the
method is capable of effectively generating a structure for
the physical system at nonequilibrium states which overall is
similar to that obtained by NEMD, which is the most impor-
tant in determining the structural and rheological properties
of dense liquid systems.

In contrast to �xx and �xy, �yy is found to attain negative
values whose absolute magnitude is considerably larger than
those of �xx and �xy for practically all De numbers studied,
as clearly seen in Fig. 1. This reflects the fact that the y
dimension of the overall shape of a chain becomes smaller
than its equilibrium value due to alignment and stretching
along the flow �x� direction. An interesting point to observe
is that all components of � are rather insensitive to the chain
length in the whole range of De. This is considered as a very
promising aspect of the GENERIC MC method in practical
applications, since one can utilize results from �the compu-
tationally cheaper� simulations with shorter-chain systems to
obtain reasonable a priori guesses for � for �the computa-
tionally more expensive� simulations with longer-chain sys-
tems. �Using the relationship � vs. De obtained from the
present simulations with shorter PE systems, we are cur-
rently exploiting such an approach to simulate a longer PE
melt, C400H802.� More importantly, the �-vs.-De plots ob-
tained from the proposed methodology can be used to calcu-
late “realistic” free energies at various nonequilibrium states
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FIG. 1. �Color online� Variation in the thermodynamic force
field �Lagrange multiplier� � with De for the three PE melts: black
symbols refer to C50H102, orange �light gray� symbols to C78H158,
and red �dark gray� symbols to C128H258.
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through, e.g., a step-by-step thermodynamic integration of
Eq. �17a�. This, in turn, can be exploited in order to compute
important thermodynamic quantities �e.g., the configura-
tional entropy and nonequilibrium heat capacities� or to
verify fundamental thermodynamic relationships for non-
equilibrium systems �e.g., the Maxwell relations56 referring
to nonequilibrium structural variables�.

2. Conformation tensor

In Fig. 2, we compare the values of c̃ obtained for each
system from the two methods �GENERIC MC, using the �
values shown in Fig. 1, and direct NEMD�. For all state
points considered, excellent agreement between the two
methods is observed for c̃xx, c̃xy, and c̃yy. These results can be
used next to get estimates of the material functions of the
simulated polymers in shear �i.e., the shear viscosity and the
first normal stress coefficient�, through the well-known linear
relationship between c̃ and the extra stress tensor � based on
the network theory,8,10 see also Eq. �12�. It is only for the c̃zz
component of the conformation tensor that the agreement
between the two methods is rather poor, for all three systems.
This result is attributed to the zero value assumed for the zz
component for � proposed by a number of currently avail-
able viscoelastic models. It suggests therefore a need for
modification. Since c̃zz and c̃yy are directly related with the

second normal stress coefficient, this deviation also explains
why many of the constitutive differential equations of the
category of conformation tensor models fail to provide a
satisfactory description of rheological data for this important
material function. As demonstrated in Appendix A, the re-
duction �zz=0 cannot be avoided even if one incorporates
higher-order terms in the expansion of the free-energy func-
tional with respect to the conformation tensor, as long as f3
= f4=0 in Eq. �14�.71 It is only through the f3 and f4 terms
�i.e., through different combinations of c̃� that nonzero �zz
values can be obtained without violating the Onsager-
Casimir reciprocity principles or the second law of thermo-
dynamics. We discuss this issue in Appendixes A and B.

3. Orientation angle

We turn now to a more stringent test of the GENERIC
MC method, namely, its capability to capture structural de-
tails at the level of internal segments along the chain and
how these compare with the results obtained from the micro-
model �the NEMD simulations�. To this, in Fig. 3, we com-
pare the values of the orientation angle � obtained from the
two methods. � is a quantity that can be determined by flow
birefringence and refers to the anisotropy in the bond orien-
tation along the polymer chains due to the applied flow field
�form birefringence is neglected in homogeneous melt
systems�.72 Overall, the agreement is very good at all state
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FIG. 2. Comparison of the xx, xy, yy, and zz components of the conformation tensor c̃ between NEMD and GENERIC MC, as a function
of the De number for the three simulated PE melts: C50H102 �circles�, C78H158 �diamonds�, and C128H258 �squares�. Filled symbols represent
the GENERIC MC data and open ones the NEMD data. The error bars are commensurate with the size of the symbols.
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points, especially for De numbers less than about 10. This
should be interpreted as an excellent performance of the GE-
NERIC MC method �the macrosolver�, considering espe-
cially that it aimed at capturing flow effects through the use
of just only one �the longest� mode �the chain end-to-end
tensor c̃�.

4. Distribution of the chain end-to-end vector

Another interesting comparison between NEMD and GE-
NERIC MC simulations is shown in Figs. 4 and 5. Figure 4
compares the probability distribution function for the chain
end-to-end distance �R� in the two models for the three sys-
tems, at various De numbers. At low De values, the resulting
distributions are Gaussian in the two cases and compare very
favorably with each other. As the value of De increases
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FIG. 3. Comparison of the birefringence orientation �or extinc-
tion� angle � between NEMD and GENERIC MC, at various shear
rates for �a� the C50H102, �b� the C78H158, and �c� the C128H258 PE
melts. � represents the angle between the flow direction and the
direction of the eigenvector corresponding to the largest eigenvalue
of the birefringence tensor.
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FIG. 4. Comparison between NEMD �black lines� and GE-
NERIC MC �gray lines� results for the end-to-end distance �R�
probability distribution function, at various De numbers, for �a� the
C50H102, �b� the C78H158, and �c� the C128H258 systems. Deviations
from the Gaussian behavior are observed at De numbers approxi-
mately larger than about 2 in all systems. For clarity, the results at
these higher De numbers are shown separately in the inset.
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above approximately 2, the two distributions exhibit devia-
tions from the Gaussian behavior; interestingly enough, the
GENERIC MC simulations can capture this behavior both
qualitatively and quantitatively even outside the linear re-

gime �up to De numbers approximately equal to 10 in all
systems�. It is only for De�10 �see insets� that systematic
deviations between the two methods become obvious. A par-
ticularly noticeable phenomenon there is the appearance of
two peaks �one at low �R� and another at high �R� values� in
the NEMD plots at these high De numbers �instead of one
observed at lower De ones�. The GENERIC MC simulations
cannot capture this: they continue to predict only a single
peak at the high �R� values. Given that the peak at low �R�
values is a consequence of chain rotation or tumbling due to
the rotational character of shear, this deviation reflects the
inherent inability of the �nondynamic� GENERIC MC
method to directly accommodate any dynamic �i.e., momen-
tum� information. Despite this, however, it is encouraging
that the GENERIC MC simulations are capable of qualita-
tively following the overall behavior observed in the NEMD
simulations even at high De numbers: for example, they can
capture the extended region of the distribution at intermedi-
ate �R� values �this is more pronounced in the results of Fig.
4�c� for the C128H258 system�, which shows up in the NEMD
plots.

5. Distribution of the chain orientation angle

Figure 5 extends the comparison between the two meth-
ods at the level of the distribution function for the orientation
angle � of the chain end-to-end vector with respect to the
flow direction. At equilibrium, chains are directed isotropi-
cally in space and therefore the distribution function is uni-
form �up to a mathematical sin � term related to the Jacobian
of the distribution�. Upon increasing the flow field, however,
the chains become more and more aligned along the flow
direction, which results in higher populations at the smaller �
values; this is clearly observed in the figure. Again, very
good agreement is observed between GENERIC MC and
NEMD, especially for De�10, in all systems. Beyond De
�10 �see inset�, quantitative deviations are noticed between
the two simulation sets, although, qualitatively, the trends are
similar.

6. Symmetry of the stress tensor

An important relationship between � and c̃ can be derived
based on the GENERIC �Ref. 12� or generalized bracket
formalism10 for the elastic stress. Indeed, according to Eqs.
�12� and �19�, and taking into account the symmetry property
of the stress tensor and the kinematics of the shear flow, one
obtains41

�xx − �yy

�xy
=

c̃xx − c̃yy

c̃xy

. �28�

The curves of Fig. 6, where all the results of the present
GENERIC MC simulations have been collected, reveal ex-
cellent agreement of the simulation findings with Eq. �28� at
all state points, further justifying the correctness of the pro-
posed GENERIC MC methodology and the robustness of the
coupled micro-macro computations pursued in this work.

IV. CONCLUSIONS, FUTURE PLANS, OUTLOOK

We have described a framework for the multiscale mod-
eling of polymer viscoelasticiy, in which the physics is
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FIG. 5. Comparison between NEMD �black lines� and GE-
NERIC MC �gray lines� results for the distribution function of the
orientation angle � �apart from a sin � term corresponding to the
Jacobian of the transformation to polar coordinates� of the chain
end-to-end vector with respect to the flow direction, for �a� the
C50H102, �b� the C78H158, and �c� the C128H258 systems. For clarity,
the results at the higher De numbers are shown also separately in
the inset.
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known at a microscopic level but the needed data refer to a
higher, coarse-grained macroscopic level. The basic idea is to
represent the macroscopic model by using a nondynamic
method that generates nonequilibrium states of the physical
systems in an expanded statistical ensemble designed to in-
corporate synthetic field variables. For a given value of the
imposed shear rate, the synthetic fields are determined itera-
tively so that the solutions of the micro- and macrosolvers
for the coarse-grained structural variables coincide. The big-
gest advantage of the present methodology is that the mac-
rosolver proceeds without knowing a priori the exact form of
the macroscopic model. Guided by the GENERIC frame-
work of nonequilibrium thermodynamics, it relies solely on
the nature of the structural variables chosen to represent the
system at a coarser level.

We have demonstrated the applicability of the method in
the case of short-chain length �i.e., unentangled� polymer
melts, for which the appropriate structural variable to con-
sider is the chain end-to-end conformation tensor. But, con-
ceptually, the method can be straightforwardly extended to
models and/or physical systems described by other variables,
such as a configuration tensor and a scalar �this is the case of
long chain branched polymers� or a distribution function
�this is the case of entangled polymer melts�.12

From a technical point of view, the main tool is a very
efficient MC algorithm which can be executed in an ex-
panded statistical ensemble. Based on a set of extremely ef-
ficient moves �such as end-bridging and double-bridging�,
this algorithm can easily bypass huge free energy barriers
separating different phase-space points in polymeric fluids
and drive them to certain nonequilibrium steady states �for a
given flow field� considerably faster than with any conven-
tional MD or constrained MD simulation. This feature is
particularly attractive for systems �such as high molecular
weight polymers� characterized by relaxation times orders of
magnitude higher than what can be simulated today with a
brute-force dynamic method. On the other hand, the time to
reach nonequilibrium steady states by GENERIC MC ap-
pears to be relatively insensitive to the magnitude of the
applied strain rate, in contrast to NEMD simulations where
the corresponding time depends strongly on the imposed

strain rate �usually the smaller the applied strain rate, the
longer the simulation time58,68�. Based on this, a possible
practical use of the present simulation framework to long
polymer systems is to apply first GENERIC MC to drive the
system in the neighborhood of a target nonequilibrium state
�for a given shear rate�, and then turn to NEMD to sample
phase-space points and compute all the needed dynamic in-
formation. If necessary, some intermediate GENERIC MC
runs can be performed to move the system more rapidly in
phase space.

GENERIC MC can also be used to calculate the funda-
mental thermodynamic functions of nonequilibrium poly-
meric systems under flow through thermodynamic integra-
tion; see Eqs. �17a�, �17b�, �18�, and �19�. This would enable
the macrosolver to compute significant thermodynamic prop-
erties of flowing polymers �e.g., nonequilibrium heat
capacities�.73

Although the current GENERIC MC methodology has
been developed for atomistic-level simulations, the basic
idea �i.e., expanding the statistical ensemble to include ap-
propriate structural variables whose conjugate fields can ac-
count for flow effects� is readily extendable to coarser-level
simulators and methodologies such as those relying on atom-
lumping methods52,74 and self-consistent field schemes.75,76

By far, however, the most important feature of the pro-
posed methodology is the opportunity it offers for improved
constitutive modeling. For example, for the family of confor-
mation tensor models discussed here, that the zz component
of the tensor � should not be zero invalidates or puts ques-
tion marks next to a number of well-known and widely used
phenomenological constitutive equations. Simultaneously, it
holds the promise of correcting these models �for more ac-
curate engineering applications�; for the problem at hand,
most of this hope comes from the “simulations-assisted” im-
provements that can be expected for the relaxation matrix �
�see, for example, Appendix B� describing dissipative effects
in the macroscopic equation.

Currently, efforts are in progress to extend the methodol-
ogy to the case of entangled polymers by using multiple
conformation tensors based on topological measures that can
identify entanglements along the chain contour and by taking
the entanglement strands as the active stress segments at the
coarse level. Alternatively, inspired by the Doi-Edwards rep-
tation model,47 one can resort to a description in terms of the
orientational distribution function f�u ,s� representing the
probability that the unit end-to-end vector of the entangle-
ment segment s along the chain is equal to u �within du�.
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APPENDIX A: PROOF OF �zz=0 FOR THE CASE OF �

GIVEN BY Eq. (14) WITH f3= f4=0

In this appendix, we first show that an expression for the
relaxation matrix of the form of Eq. �14� with f3= f4=0, i.e.,
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FIG. 6. ��xx−�yy� /�xy versus �c̃xx− c̃yy� / c̃xy, as a function of
shear rate in the three simulated PE melts: C50H102 �circles�,
C78H158 �diamonds�, and C128H258 �squares�.
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��	��c̃� = f1�I1��c̃�	��� + c̃����	 + c̃�	��� + c̃����	�

+ 2f2�I1��c̃�	c̃�� + c̃��c̃�	� , �A1�

together with a free-energy function A representing a general
FENE spring �see Eq. �A6� below�, leads to �zz=0 in the
case of steady shear. Indeed, solving Eq. �11� for the zz com-
ponent of c̃ for the flow described by Eq. �20�, we get

ĉ̃zz = − nkBT�
zzxx�xx + 2
zzxy�xy + 
zzyy�yy + 
zzzz�zz� = 0.

�A2�

From Eq. �A1�, on the other hand, it is also found that


zzxx = 
zzxy = 
zzyy = 0, 
zzzz = �f1c̃zz + f2c̃zz
2 � . �A3�

Substituting then Eq. �A3� into Eq. �A2� yields

�f1c̃zz + f2c̃zz
2 ��zz = 0. �A4�

Now, let us consider the range of admissible values for the
functions f1 and f2 for which the second law of thermody-
namics is not violated. This is equivalent to requiring10

�A�

�c̃��


��	�

�A�

�c̃	�

� 0 �A5�

representing a non-negative rate of entropy production by the
degradation of mechanical energy. The normalized �by nkBT�
free energy A� for a general nonlinear FENE spring can be
written as

A��c̃� =	 1

2
���tr c̃� − ln�det�c̃���d3x =	 1

2
���I1�

− ln�I3��d3x , �A6�

where I3 is the determinant of c̃ and � an arbitrary function
of I1. Differentiating A� with respect to c̃ gives

�A�

�c̃��

=
1

2
�h1�I1���� − c̃��

−1 � , �A7�

where h1�I1�= �A�

�I1
= ��

�I1
, while c̃−1 denotes the inverse of c̃.

Multiplication of Eq. �A1� by Eq. �A7� results in


��	�

�A�

�c̃	�

= 2f1�I1��h�I1�c̃�� − ����

+ 2f2�I1��h�I1�c̃�	c̃	� − c̃��� . �A8�

Then, multiplying Eq. �A8� by Eq. �A7� �and after some
mathematical operations� leads to

�A

�c̃��


��	�

�A

�c̃	�

= �h��� − c̃��
−1 ��f1�I1��hc̃�� − ���� + f2�I1�

��hc̃�	c̃	� − c̃����

= f1�I1��h2 tr�c̃� − 6h + tr�c̃−1�� + f2�I1�

��h tr�c̃ · c̃� − 2h tr�c̃� + 3�

= �
i=1

3

�f1�I1��h2�i − 2h + �i
−1�

+ f2�I1��h2�i
2 − 2h�i + 1��

= �
i=1

3
1

�i
�h�i − 1�2�f1�I1� + f2�I1��i� , �A9�

where the � ’s are the eigenvalues of c̃ in three-dimensional
space; we have also used that tr�c̃�=�i=1

3 �i and tr�c̃ · c̃�

=�i=1
3 �i

2 �more generally, tr�c̃ · c̃¯ c̃

n

�=�i=1
3 �i

n�. Since c̃ is

i

positive definite by definition �see Eq. �10��, all �i’s must be
positive. Hence, a sufficient condition for inequality �A5� to
be satisfied is

f1�I1� � 0 and f2�I1� � 0. �A10�

Combining Eq. �A4� with Eq. �A10�, we finally arrive at
�zz=0.

That �zz should be zero for Eq. �A1� is also found even if
one considers a more general form for � by allowing for
higher-order terms in c̃ while maintaining the symmetric
structure in the permutation of indices �, �, 	, and � implied
by Eq. �A1�, namely,

A�	B�� + A��B�	 + A�	B��

+ A��B�	 for two different second-rank objects.

�A11�

It is important to recognize that this structure satisfies the
Onsager symmetry properties required for �:


��	� = 
	��� = 
��	� = 
���	. �A12�

Making use of the symmetry properties of Eq. �A11�, the
more general form of Eq. �A1� for � is then derived to be


��	��c̃� = f1�I1��c̃�	��� + c̃����	 + c̃�	��� + c̃����	� + 2f2�I1��c̃�	c̃�� + c̃��c̃�	� + f3�I1��c̃�	c̃��c̃�� + c̃��c̃��c̃�	 + c̃�	c̃��c̃��

+ c̃��c̃��c̃�	� + 2f4��I1��c̃�c̃	c̃��c̃�� + c̃�c̃�c̃��c̃�	� + f4��I1��c̃�	c̃�c̃�c̃�� + c̃��c̃�c̃�c̃�	 + c̃�	c̃�c̃�c̃��

+ c̃��c̃�c̃�c̃�	� + f5��I1��c̃�c̃	c̃�c̃�c̃�� + c̃�c̃�c̃�c̃�c̃�	 + c̃�c̃	c̃�c̃�c̃�� + c̃�c̃�c̃�c̃�c̃�	�

+ f5��I1��c̃�	c̃�c̃�c̃��c̃�� + c̃��c̃�c̃�c̃��c̃�	 + c̃�	c̃�c̃�c̃��c̃�� + c̃��c̃�c̃�c̃��c̃�	� + ¯ . �A13�
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This should be analyzed together with the following general
form for the free energy:

A��c̃� = A��I1,I2,I3� , �A14�

where I2=tr�c̃ · c̃�. Differentiating Eq. �A14� with respect to c̃
gives

�A�

�c̃��

=
1

2
�h1�I1,I2,I3���� + h2�I1,I2,I3�c̃�� − h3�I1,I2,I3�c̃��

−1 � ,

�A15�

where h1�I1 , I2 , I3�=2 �A�

�I1
, h2�I1 , I2 , I3�=4 �A�

�I2
, and

h1�I1 , I2 , I3�=−2I3
�A*

�I3

. Multiplication of Eq. �A13� with Eq.

�A15� and performing the same mathematical operations as
we did with Eq. �A9� lead eventually to

�A

�c̃��


��	�

�A

�c̃	�

= �
i=1

3
1

�i
�h1�i + h2�i

2 − h3�2�f1 + f2�i + f3�i
2

+ f3�i
3 + f4��i

4 + f4��i
4 + f5��i

5 + ¯� . �A16�

A sufficient condition for inequality �A16� to be satisfied
�taking again into account that the �i’s should be positive� is

f i � 0 for all i . �A17�

For a shear flow, then, it is again found from Eq. �A13� that


zzxx = 
zzxy = 
zzyy = 0, �A18�


zzzz = 4�f1c̃zz + f2c̃zz
2 + f3c̃zz

3 + f4�c̃zz
4 + f4�c̃zz

4 + f5�c̃zz
5 + ¯� ,

which leads to

�f1c̃zz + f2c̃zz
2 + f3c̃zz

3 + f4�c̃zz
4 + f4�c̃zz

4 + f5c̃zz
5 + ¯��zz = 0.

�A19�

Using that all functions f i are non-negative �Eq. �A17�� and
c̃zz positive by definition, we conclude again that �zz=0.
Hence, higher-order expansions in the expression for � do
not result in nonzero values of the zz component of the field
tensor � as long as the symmetry structure inherent in Eq.
�A11�, e.g., f3= f4=0 in Eq. �14�, is maintained.

APPENDIX B: PROOF OF �zzÅ0 FOR THE CASE OF �

GIVEN BY Eq. (14) WITH f3Å0 AND/OR f4Å0

Here we show that if f3�0 and/or f4�0 in the general
expression for �, Eq. �14� in the main text, can indeed result
in nonzero values for �zz. To this, we see that the first-order
term with respect to c̃ in Eq. �14�, c̃���	�+ c̃	����, which still
satisfies Onsager’s symmetry requirements �Eq. �A12��,
leads to

ĉ̃zz = 0 = 
zzxx�xx + 2
zzxy�xy + 
zzyy�yy + 
zzzz�zz

= �f1c̃zz + f2c̃zz
2 ��zz + f3�c̃zz + c̃xx��xx + f3�c̃zz + c̃yy��yy .

�B1�

Therefore, �zz may not be zero even with the conditions that
f1�I1��0 and f2�I1��0. The same result is obtained when �
contains the additional c̃��c̃	� second-order term �which
again satisfies Onsager’s symmetry�. To this, we see that for
the case of steady shear, the zz component of c̃ turns out to
be

ĉ̃zz = 0 = 
zzxx�xx + 2
zzxy�xy + 
zzyy�yy + 
zzzz�zz

= �f1c̃zz + f2c̃zz
2 ��zz + �f4�c̃zz + c̃xx� + f4c̃zzc̃xx��xx

+ f4c̃zzc̃xy�xy + �f4�c̃zz + c̃yy� + f4c̃zzc̃yy��yy , �B2�

implying nonzero values for �zz under the conditions that
f1�I1��0 and f2�I1��0.

Modifications similar to the above but extended to higher-
order terms in the conformation tensor can also be included
in the expression for � as was done with the terms propor-
tional to f1 and f2 in Eq. �A13�. However, a word of caution
is in order here: although all these modifications of � are
perfectly allowed based on Onsager’s symmetry properties
and the second law of thermodynamics, one should critically
examine their consequences from a physical point of view
before actually employing them in real flow calculations. Fu-
ture efforts here would be very beneficial since they could
help formulate rheological models with increased capacity in
terms of their ability to describe more accurately the compli-
cated viscoelastic properties of polymeric materials.
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