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The topological state of entangled polymers has been analyzed recently in terms of primitive paths
which allowed obtaining reliable predictions of the static �statistical� properties of the underlying
entanglement network for a number of polymer melts. Through a systematic methodology that first
maps atomistic molecular dynamics �MD� trajectories onto time trajectories of primitive chains and
then documents primitive chain motion in terms of a curvilinear diffusion in a tubelike region
around the coarse-grained chain contour, we are extending these static approaches here even further
by computing the most fundamental function of the reptation theory, namely, the probability ��s , t�
that a segment s of the primitive chain remains inside the initial tube after time t, accounting directly
for contour length fluctuations and constraint release. The effective diameter of the tube is
independently evaluated by observing tube constraints either on atomistic displacements or on the
displacement of primitive chain segments orthogonal to the initial primitive path. Having computed
the tube diameter, the tube itself around each primitive path is constructed by visiting each
entanglement strand along the primitive path one after the other and approximating it by the space
of a small cylinder having the same axis as the entanglement strand itself and a diameter equal to
the estimated effective tube diameter. Reptation of the primitive chain longitudinally inside the
effective constraining tube as well as local transverse fluctuations of the chain driven mainly from
constraint release and regeneration mechanisms are evident in the simulation results; the latter
causes parts of the chains to venture outside their average tube surface for certain periods of time.
The computed ��s , t� curves account directly for both of these phenomena, as well as for contour
length fluctuations, since all of them are automatically captured in the atomistic simulations. Linear
viscoelastic properties such as the zero shear rate viscosity and the spectra of storage and loss
moduli obtained on the basis of the obtained ��s , t� curves for three different polymer melts
�polyethylene, cis-1,4-polybutadiene, and trans-1,4-polybutadiene� are consistent with experimental
rheological data and in qualitative agreement with the double reptation and dual constraint models.
The new methodology is general and can be routinely applied to analyze primitive path dynamics
and chain reptation in atomistic trajectories �accumulated through long MD simulations� of other
model polymers or polymeric systems �e.g., bidisperse, branched, grafted, etc.�; it is thus believed
to be particularly useful in the future in evaluating proposed tube models and developing more
accurate theories for entangled systems. © 2010 American Institute of Physics.
�doi:10.1063/1.3361674�

I. INTRODUCTION

Dynamics in high molecular weight polymeric liquids is
determined by topological constraints arising from chain
connectivity and chain uncrossability. As discussed by Doi
and Edwards1 such a type of interaction is singular, since
there is no parameter describing its strength. Its effect, how-
ever, on the viscoelastic properties of a polymeric system can
be captured in a mean-field approach by the effective tube
model, according to which mutual entanglements with sur-

rounding chains restrict the number of allowed conforma-
tions of a reference chain at short times compared to those in
free space. The allowed chain conformations are effectively
confined in a tubelike region whose main axis is defined by
the shortest path connecting the two ends of the chain and
having the same topology with the chain itself relative to the
constraints; this is the primitive path �PP�.1 As a result, the
polymer chain moves back and forth �i.e., reptates� only
along its contour with a diffusion coefficient which corre-
sponds to the overall translation of the Rouse chain along the
tube. Then, the parameter defining the strength of the topo-
logical interactions is the effective tube diameter.1

Through the pioneering works of de Gennes2 and Doi
and Edwards,3 the reptation �or tube� model has been con-
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sidered as the most successful theory of polymer physics for
the description of the dynamics of entangled polymer melts
and concentrated solutions. The gist of the reptation theory
lies in the mathematical treatment of the highly complicated
problem of how to account for the topological constraints
imposed on the dynamical behavior of a chain due to its
interactions with surrounding chains. A detailed description
of such interactions �e.g., taking into account even small-
scale fluctuations� would be practically almost intractable.
With a great physical insight based on the concept of mean
field, however, the reptation theory proposes representing the
whole topological constraints effectively by a simple one-
dimensional curvilinear “tube.”1,3 Considering that the intrin-
sic properties of the chain should be still represented by the
Rouse model �a chain consisting of N segments with bond
length b and friction coefficient ��, in the new conceptual
picture only one additional parameter is considered, the tube
diameter dt. Furthermore, instead of looking at the local dy-
namics of each monomer �or of each Rouse bead represent-
ing a few monomers, usually 4–6 depending on chain stiff-
ness�, the reptation theory focuses on the dynamics at a
coarser level, that of the primitive chain. The underlying as-
sumption is that the global rheological behavior of a melt of
entangled polymer chains is equally well represented by the
dynamics of the ensemble of their primitive chains �small-
scale fluctuations being omitted� whose motion is assumed to
be confined within a tubelike region around the PP, and how
this changes as the chain moves �creating and destroying the
ends of the PP�. Therefore, within the reptation theory, the
initial formidable task of the intricate full topological prob-
lem and its effect on polymer dynamics is reduced to a sim-
pler one �the motion of the primitive chain within a tubelike
region� dealing only with one single parameter related to the
tube, its diameter dt.

Key in the reptation theory is the function ��s , t� de-
scribing the probability that the original tube segment s re-
mains after time t. It also represents the probability that the
primitive chain segment s is inside the original tube �the tube
specified at time t=0� after time t. In general, as the chain
moves back and forth, some parts of the chain leave the
original tube. When a tube segment is reached by either end
of the reptating primitive chain, it disappears; that is, as time
passes, the original tube segment s tends to loose part of the
primitive chain. The segment survival probability function
��s , t� is central in the Doi–Edwards theory as it is behind all
linear viscoelastic �LVE� properties of the polymer.1 In par-
ticular, it defines: �i� the portion of the primitive chain that
remains inside the original tube after time t through

��t� =
1

L
�

0

L

��s,t�ds , �1a�

where L denotes the contour length of the primitive chain,
�ii� the spectrum of relaxation times, and consequently the
disentanglement or reptation time �d, �iii� the �reduced� re-
laxation modulus of the polymer through

G�t� = GN
0 ��t� , �1b�

where GN
0 is the plateau modulus �the relation holds for times

t longer than the characteristic entanglement time �e that seg-
ments “hit” the tube�, �iv� the zero shear rate viscosity �0

through

�0 = �
0

�

G�t�dt = GN
0�

0

�

��t�dt , �1c�

�v� the steady-state compliance Je
0 through

Je
0�0

2 = �
0

�

tG�t�dt = GN
0�

0

�

t��t�dt �1d�

and �vi� the storage G���� and loss G���� moduli through

G���� = ��
0

�

G�t�sin��t�dt = GN
0 ��

0

�

��t�sin��t�dt

�1e�

and

G���� = ��
0

�

G�t�cos��t�dt = GN
0 ��

0

�

��t�cos��t�dt ,

�1f�

respectively.
Despite the success of the original �Doi–Edwards� rep-

tation model to elucidate a great deal of puzzling phenomena
unique to entangled polymers1–4 and biopolymers,5,6 its
quantitative predictions were not convincing in all aspects.7,8

For example, for the particular case where the function
��s , t� is analytically given by the simple formula ��s , t�
=�p:odd�4 / p	�sin�p	s /L�exp�−p2t /�d� as in the original
Doi–Edwards theory,1 the resulting expressions for the zero
shear rate viscosity �0 and the chain center-of-mass self-
diffusion coefficient DG suggest that �0�N3 and DG�N−2,
which do not agree completely well with experimental
data.7,8 This motivated refinements in the theory through
consideration of additional phenomena and mechanisms
present in real systems that had been neglected at first place.
Indeed, two important mechanisms addressed by modern
tube theories are those related to contour length fluctuations
�CLFs� of the primitive chain and constraint release �CR�
caused by the movement of surrounding chains.7 While the
latter considers cooperative phenomena between chains, the
former can be characterized as a single-chain phenomenon
which becomes negligible for infinitely long chain lengths
�but it is not negligible for moderate-to-long chain lengths
that are typically encountered in practical applications�. Vari-
ous models have been proposed to account for these effects
�e.g., the calculation of CLFs on the disentanglement time
can be analyzed as a first passage problem in multidimen-
sional phase space or through a variational approach9–11�,
resulting in significant improvements7,12,13 of the theory
while further developments are still in progress.

Despite these further efforts to improve on the tube
theory, two fundamental issues related to the initial idea �that
could provide a microscopic foundation of such a highly
successful phenomenological model� have remained unre-

124904-2 Stephanou et al. J. Chem. Phys. 132, 124904 �2010�
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solved over the years: �a� how to analyze the topological
state of a polymeric liquid in terms of PPs, and �b� how to
systematically obtain the function ��s , t�, which is consid-
ered as the central element in all tube models. Computer
simulations are regarded here as the best tool �maybe the
only one� with the potential to address the two questions,
since they can provide us with the full phase-space informa-
tion �positions and velocities� in time at any level of the
description needed. To this, by implementing the tube model
idea into a simulation code for dense melts of bead-spring
polymer chains with variable intrinsic stiffness �chain seg-
ments represented as spheres with short-ranged excluded-
volume interactions and connected via springs to form model
polymer chains� and analyzing their topological state in
terms of PPs, Everaers et al.14 provided practically the first
solution to question �a� above, with remarkable quantitative
predictions for the plateau modulus for all major classes of
synthetic polymers �polyolefins, polydienes, polyacrylates,
and polycarbonate�. They achieved this through an approach
that minimizes the energy of the system by slowly cooling
down its temperature to 0 K while keeping chain ends fixed
in space and maintaining only interchain excluded volume
interactions. Without thermal fluctuations and with all intra-
chain excluded volume interactions being disabled, chains
are pulled taut without crossing �but by simply sliding past�
each other. Independent efforts by Kröger and
co-workers15,16 and Tzoumanekas and Theodorou17 employ-
ing geometrical rather than dynamical operations to calculate
the PP helped gain additional insight into the statistical prop-
erties of the PP mesh �entanglement length, PP length, PP
potential, etc.� for a number of linear polymers and compare
against analytic expressions derived from statistical mechan-
ics for a chain that is random walk with randomly scattered
entanglements.18

We provide here an answer to question �b�, namely the
systematic calculation of the function ��s , t� which makes
the connection between primitive chain dynamics on one
hand and macroscopic viscoelastic properties and theoretical
models on the other hand, for an entangled polymeric liquid.
We achieve this by introducing a methodology that reduces
trajectories from detailed �and very long� atomistic molecu-
lar dynamics �MD� simulations to trajectories of PPs, fol-
lowed by a geometric and dynamical mapping onto the tube
model. The power of the new method is demonstrated in
direct comparisons of the results obtained from the computed
��s , t� curves for the viscoelastic properties of three kinds of
moderately entangled polymer melts �linear polyethylene,
linear cis-1,4-polybutadiene �PB�, and linear trans-1,4-PB�
with available experimental rheological data and the predic-
tions of theoretical models.

II. COMPUTATIONAL METHODOLOGY

Our procedure entails the following five steps:

�1� We determine the entanglement time �e, the Rouse time
�R, and the disentanglement time �d by analyzing the
segmental mean square displacement �msd� versus time
t �see Fig. 1�a�� obtained directly from the atomistic
simulations by observing the three characteristic breaks

denoting the onset of tube constraints on segmental dif-
fusion, the Rouse-like diffusion combined with tube
constraints, and the passage from the Rouse-like diffu-
sion to reptation dynamics.1 The results obtained for
three types of model polymers linear PE, cis-1,4-PB,
and trans-1,4-PB� are reported in Table I.

�2� We perform the PP analysis of the atomistic trajectory
with the recently proposed Z1 code15,16,19 to obtain the
dynamic trajectory of primitive chains: such a reduc-
tion provides not only the statistical properties �average
and standard deviation or fluctuation� of the underlying
topological network but also the position of each kink
�entanglement� point along the path. The algorithm
considers primitive paths as thin lines connecting the
two ends of a polymer chain that are considered as
fixed in space. The primitive paths are obtained under

FIG. 1. �a� Calculation of the tube diameter dt based on the atomistic seg-
mental msd of the innermost chain segments 
�t�= ��rn�t�−rn�0��2	 vs time
t. Four distinct regimes are seen in the figure exactly as predicted by the
reptation theory �Ref. 1�. The tube diameter is estimated as dt=2

�t��
where 
�t�� is registered at t= t� when the slope of 
�t� starts to change as
it leaves the initial t1/2 regime to enter the next t1/4 regime. �b� Calculation of
the tube diameter dt based on the time displacement of the primitive chain
segments orthogonal to the initial PP �the PP at time t=0� vs time t. As the
segments “feel” the tube constraints, a break in their displacement appears.
The average value of the perpendicular displacement at the break point
�which we locate by fitting the curve before and after it with straight lines�
provides a reasonable estimate of dt /2.

124904-3 Reptation J. Chem. Phys. 132, 124904 �2010�
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the constraints of chain connectivity and uncrossability
through a set of special geometric operations designed
to minimize the contour length of the multiple discon-
nected path �i.e., the contour length summed over all
individual PPs� simultaneously for all chains present in
the simulation cell.

�3� We determine the tube diameter dt with two methods:
�a� by analyzing the segmental msd versus time as ob-
tained directly from the atomistic simulations �Fig.
1�a��, and �b� by monitoring the displacement of primi-
tive chain segments orthogonal to the initial PP �Fig.
1�b��. In the first case, we follow the segmental msd

�t�= ��rn�t�−rn�0��2	 in time and we estimate the tube
diameter as dt=2

�t�� where 
�t�� is registered at t
= t� where the slope of 
�t� changes as it leaves the
initial t1/2 regime �in a log-log plot� to enter the t1/4

regime �see p. 213 in Ref. 1 for details�. Here, rn de-
notes the position vector of the nth monomer, and only
monomers close to the middle of chains are included in
the calculations to avoid chain free-end effects. In the
second case, we monitor the displacement of primitive
segments orthogonal to the initial PP: The value of the
perpendicular displacement at the intersection of the
curves marking the onset of tube constraints on their
motion is taken as the average tube radius �see Fig.
1�b��. The results obtained with the two methods for the
simulated polymers are practically identical �within the
statistical uncertainty�, thus in Table I only their aver-
age value is reported.

�4� Knowing dt and using the mapped time trajectory of
primitive chains, we calculate ��s , t� as follows: �a�
First, we geometrically construct the initial �corre-
sponding to time t=0� tube around each entanglement
strand for a given primitive path �see Fig. 2�a�� by ap-
proximating it with the space of a small cylinder
around it having the same axis as the entanglement
strand itself and a diameter equal to the estimated av-
erage tube diameter dt �see Fig. 2�b��. �b� We properly

place segments along the contour of the primitive chain
at equidistant points on the normalized �0,1� interval by
taking into account that each such chain is made up of
rectilinear strands. Clearly, this does not alter the in-
stantaneous value of the chain contour length; on the
other hand, working on the normalized �0,1� interval
greatly facilitates the computations because the number
of kinks �entanglements� along a given chain changes
with time in the course of the MD simulation �and the
same happens with the contour length�. In this work,
101 points were chosen to be placed along each primi-
tive chain and monitored in time, implying that the dis-
tance between any two consecutive primitive chain seg-
ments is 0.01 in dimensionless units. By maintaining
special lists, a one-to-one correspondence between a
segment s in the normalized �0,1� interval and true co-
ordinate in the dimensional �0,L� interval is estab-
lished, which is always available in the computations
together with the information about the entanglement
strand to which the dimensionless arc-length coordinate
s should correspond to at any time instance t �thus, also
its true position with respect to the confining tube�.
This is important because it helps avoid errors arising
from the fact that entanglements are continuously being
created and lost or from the strong CLFs characterizing
the �moderately entangled� systems studied here. �c�
We monitor the displacement of each segment s at
times t�0 to determine whether the segment has, or
has not, escaped the initial tube. To this, we measure its
shortest spatial distance x from the entire initial PP �see
Fig. 2�b��. Since a segment can escape either perpen-
dicularly or longitudinally, we set two criteria: �i� If
x�s��dt /2, we consider this segment as having escaped
the initial tube perpendicularly and we set ��s , t�=0,
�ii� if x�s��dt /2, the segment has not escaped the tube
perpendicularly, but we further check if it has escaped
it longitudinally along the curvilinear axis of the tube.
When applying the two criteria, special care should be

TABLE I. Results for the density , the entanglement time �e, the disentanglement time �d, the tube diameter dt

as obtained from the methodology presented in this work, and the step length as of the PP estimated as as

= �R2	 / �L	, for the simulated polymer melts. The atomistic MD simulations were performed at T=450 K and
P=1 atm for the PE systems and T=413 K and P=1 atm for the PB systems.

Systema


�g /cm3�
�e

�ns�
�d

�ns�
dt

b

�Å�
as

�Å�

PE320 �32� 0.767 2.1�0.5 316�32 33�4 37�4
PE400 �16� 0.768 2.9�0.4 489�25 33�7 39�7
PE500 �16� 0.769 2.8�0.4 1042�46 32�6 43�9
PB-trans320 �32� 0.837 3.2�0.7 264�34 26�6 39�5
PB-trans400 �32� 0.838 3.1�0.5 355�25 26�4 38�5
PB-cis320 �32� 0.863 1.8�0.2 138�18 32�6 38�5
PB-cis400 �32� 0.865 2.3�1.0 256�24 29�4 39�4
PB-cis800 �24� 0.864 2.3�0.5 1255�50 30�4 43�5

aNumber in parenthesis gives the number of chains.
bTube diameter values calculated either as dt=2

�t�� where 
�t�� denotes the segmental msd at the time t
= t� where the slope of 
�t� begins to change as segments leave the initial t1/2 regime �in a log-log plot� and
enter the t1/4 regime, or from the perpendicular displacement of the PP segments at the time marking the onset
of tube constraints on their motion. The two methods gave approximately the same result, thus only one value
of tube diameter per simulated system is reported in the table.

124904-4 Stephanou et al. J. Chem. Phys. 132, 124904 �2010�
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taken at the kink points where two cylinders intersect
each other: In this case, if a segment s is found outside
the space spanned by the two cylinders on the right and
the left of the kink �i.e., in the space where the two
cylinders do not overlap�, then the criteria are applied
by checking the distance x of the primitive chain seg-
ment directly from the kink �this is, e.g., the case with
primitive chain segment B4 in Fig. 2�b��.

The above criteria capture correctly the dynamics of
PP segments at rather short time scales when the seg-
ment s is either inside the original tube or just outside.
At larger time scales, we need to impose an additional
criterion on ��s , t�, since chains may return back to
their original tubes through self-diffusion or thermal
fluctuations. To capture this, we have been guided by
Doi20 who proposed a methodology for computing the
fluctuation in the tube radius by considering its mean
value, at, as the average distance of segments of one
chain from their nearest segments in other chains. More

precisely, Doi20 proposed that at= �r	=�0
�drQ�r ;��r,

where Q�r ;��dr denotes the probability that the nearest
segments of others chains lie in the domain r and r
+dr; this is a function of the dimensionless parameter �
defined as �= ��R2	 /6�1/2 / l where R denotes the chain
end-to-end vector and l the intermolecular separation
given approximately by l=c−1/3 where c is the polymer
number density. Based on the above considerations, one
can compute an estimate of the fluctuation in the
tube radius through ��r2	 /at

2= ��r2	− �r	2� /at
2= ��r2	 /

�r	2�−1. For the systems dealt with in the present work,
��r2	 comes out to be approximately equal to at

2 �i.e.,
to the square of the average tube radius�, implying that
the fluctuation in the tube radius is practically equal to
its average value. Motivated by this result, our criterion
for the perpendicular escape of segments that have
moved a distance larger than the tube radius, dt /2, is
stated more precisely as follows: If the total perpen-
dicular distance is less than two times the tube radius,

FIG. 2. Schematic of the tube construction around a chain PP for the computation of the function ��s , t�. Shown in part �a� of the figure are an atomistic chain
�in light orange�, its PP �in blue�, and the tube constraining the lateral motion of the chain, all at time t=0. The tube is constructed piece-by-piece, see part
�b� of the figure where we have zoomed at a small portion of the original primitive chain �the part labeled A1-A2-A3-A4-A5�, by visiting each entanglement
strand along the PP at t=0 and building a small cylinder around it which has the same axis as the entanglement strand itself and a diameter equal to the
computed average tube diameter dt. The function ��s , t� is obtained by monitoring the primitive chain at times t�0 �when, e.g., the part of the chain labeled
A1-A2-A3-A4-A5 in Fig. 2�b� has moved to the new conformation labeled B1-B2-B3-B4-B5�, computing the perpendicular displacement x at primitive chain
segment s, and comparing it to the tube radius dt /2. We also check if segment s has escaped laterally �i.e., if it has moved to the left of the very first small
cylinder or to the right of the very last small cylinder�.

124904-5 Reptation J. Chem. Phys. 132, 124904 �2010�
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then although we set ��s , t�=0, we still allow the seg-
ment to return back to the original tube at later times
�i.e., the segment in this case is assumed to fluctuate in
and out the tube in the vicinity of its outer surface�. If,
however, the total perpendicular distance is greater than
two times the tube radius, then the segment is consid-
ered as having completely escaped the original tube; in
this case, we set ��s , t�=0 and we do not allow the
segment to return back to its original tube, thus we also
set ��s , t�=0 for all subsequent times. This is to indi-
cate complete relaxation of the stress imposed by the
initial tube. That is, as far as perpendicular escape is
concerned, we distinguish eventually between three
cases: �a� If x�s��dt /2 then ��s , t�=1; �b� If dt /2
�x�s��dt, then ��s , t�=0 but the segment can return
back to the original tube; and �c� If dt�x�s� then
��s , t�=0 and the segment cannot return back to the
original tube, thus ��s , t�=0 for all subsequent times as
well. Perpendicular escape is very important to con-
sider, especially in the present study, in the light of the
relatively small length of the simulated �moderately en-
tangled� melts: driven by CR, this is an important re-
laxation mechanism for these systems.

�5� The function ��s , t� for each segment s is obtained by
using the results of step �4� and averaging over all
chains in the system as follows. The MD simulation
provides us with the system trajectory at the level of
individual atoms �carbon atoms and hydrogens�, at all
times t. By invoking the Z1 code, the atomistic snapshot
at any time t is transformed into a snapshot of primitive
chains. For a given chain, we make use of the criteria
discussed in step �4� to decide about the value of
��s , t�. For example, for the primitive chain segments
B1, B2, B3, B4, and B5 shown in Fig. 2�b�, at the given
time t for which the snapshot is illustrated, we have
that: ��B1, t�=0, ��B2, t�=1, ��B3, t�=0, ��B4, t�=1,
and ��B5, t�=0. Then we repeat the calculations for all
chains and we take their average for the given segment
s. To improve statistics, we further make use of the
technique of multiple time origins. Eventually, for the
given segment s in the normalized interval �0,1� along
the contour of the primitive chain and for the given
time interval t, ��s , t� is calculated as the mean value
�the average� of all values 1 and 0 collected for all
chains present in the system and for all possible time
origins analyzed. The converged result is the desired
survival probability ��s , t� reported in the paper. Since
the polymer chains possess head-to-tail symmetry, sta-
tistics is further improved by restricting �without loss of
generality� the primitive path analysis to s� �0,1 /2�
and using ��s , t�=��1−s , t� , ∀s� �0,1 /2� and ∀t.

A few points about the methodology outlined in
steps �1� through �5� above are in place here in order to
make clear its distinction from theoretical approaches
to the reptation problem:

�a� It borrows only the most fundamental idea of the tube
model, namely, the postulate that entanglements or to-
pological constraints can be equally represented by a

mean-field effective tube of a certain width or diameter
surrounding the polymer molecule, and chain relax-
ation occurs as the chain escapes from the tube through
reptation and any additional mechanism such as CLF
and CR. In essence, following Rubinstein and
Helfand,21 our view of the primitive chain and of its
confining tube is the one which considers a time expo-
sure of the reference chain �in the sea of the rest of the
chains�: A time averaged single molecule density pat-
tern would lead then to a curve with a characteristic
width. The curve or line or ridge which follows the
maximum value of this averaged pattern defines the
primitive chain while its width �which is representative
of the fluctuations orthogonal to the primitive chain�
defines the effective tube diameter. More precisely, in
the present study, the primitive chains are constructed
not as the loci of the maximum values of the time-
averaged molecular density patterns but as the shortest
paths connecting the two chain ends �which are as-
sumed to be fixed in space� which, further, are consis-
tent with the topology imposed on each chain by the
uncrossability constraints due to surrounding chains.
However, we do make use of Rubinstein–Helfand’s
view of the confining tube as representing the charac-
teristic width of this averaged molecular density pattern
given the underlying entanglement network.

�b� It automatically accounts for CLF and CR phenomena,
since the primitive chains are computed directly from
the instantaneous trajectories of the simulated poly-
mers by taking into account at any time instant the
current topological constraints, as atoms move in time
in the course of the MD simulation according to New-
ton’s equations of motion at the specified conditions of
temperature and pressure. This is the strongest point of
the present approach: It extracts information about the
relaxation mechanisms in entangled polymers by pro-
jecting dynamic data obtained at the most fundamental
level �the atomistic� to a coarser level �that of primitive
chains�. As such, the method can be used in the future
to evaluate modern tube theories proposed to account
for a hierarchy of effects in entangled polymer melts
either at equilibrium or under flow.

�c� Eventually, the function ��s , t� will be used to compute
the viscoelastic properties of the melt, such as the
modulus of relaxation, the zero shear rate viscosity, and
the spectra of loss and storage moduli, by making use
of Eqs. �1a�–�1d� and �1f� above. From a statistical
mechanics point of view, the relaxation modulus is
given by the time autocorrelation function of the non-
diagonal elements of the instantaneous stress tensor
��t�

G�t� =
V

kBT
�����t�����0�	, � � � = x,y,z , �2�

where V denotes the system volume, T the temperature,
and kB is the Boltzmann constant. In principle, the in-
stantaneous stress tensor ��t� needed in Eq. �2� is ob-
tainable directly from the MD simulations through the
virial theorem. Unfortunately, because of the strong
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fluctuations in the values of the off-diagonal compo-
nents of ��t�, extremely long configurational averaging
is required to calculate G�t� with the required accuracy.
In the literature, calculations of G�t� for detailed, fully
atomistic models of polymers based on the above ex-
pression have been reported by Mondello and Grest,22

but only for short alkanes. Harmandaris et al.23 have
also used Eq. �2� to directly calculate G�t� for short
polymer melts �such as a C24 and a C78 polyethylene
melt� but that was possible only for times less than 10
ps; for longer times, the statistical noise in the calcu-
lated �����t�����0�	 time autocorrelation function val-
ues was too large to allow for any meaningful results to
be obtained. The present methodology allows one to
overcome numerical difficulties associated with the use
of Eq. �2� by reconstructing G�t� for times t referring to
the entangled state �i.e., t��e � with the help of the
��s , t� function.

�d� The value of the plateau modulus GN
0 needed in Eqs.

�1a�–�1f� can be estimated by using the following
expression:1

GN
0 =

4

5

RT

M

�L	
as

, �3�

where as denotes the step length of the primitive path.
�e� Although we cannot directly apply the exact expres-

sion, Eq. �2�, at the atomistic level for the calculation
of G�t�, one can make use of a simplified formula for
the stress, namely1,3,7

��� =
1

V
�
i=1

Nchain

�
a=1

Z

ria,�Fia,�

=
3kBT

V�R2	 �
i=1

Nchain

Li�
a=1

Z

ria,�uia,�, � � � = x,y,z �4�

relying on the entropy loss due to applied stress. Its
origin lies on rubber elasticity theories according to
which the stress arises from the anisotropic orientation
of the elastically active segments and is dominated by
the entropy associated with their orientation. It is de-
rived by assuming that the tension along every en-
tanglement segment is Fia= �3kBT / �R2	�Liuia and by
counting strands transferring tension across entangle-
ment points.1,7 In Eq. �4�, u denotes the unit vector
tangent to the primitive contour containing a chain seg-
ment of end-to-end length approximately equal to the
tube diameter. But we should keep in mind that this is
only an approximate expression: it is derived by em-
ploying a coarse-grained representation for the polymer
chains, it is purely entropic in origin, and it accounts
only for contributions from the slow degrees of free-
dom since only length scales larger than the tube diam-
eter are considered.7

�f� If CR effects are neglected, then according to the Doi–
Edwards theory,1 one can compute the function ��s , t�
also from the time correlation function of the tangent
vectors u at primitive path segments s and s� after time
t. That is, if we define the correlation function

���s,t� =
1

as
�

0

L

�u�s,t� · u�s�,0�	ds� �5a�

then, in the absence of CR we have that ��s , t�
=���s , t�. In that case �i.e., in the absence of CR� by
integrating the function ���s , t� with respect to time t, it
is easy to see that the function ���t�
= �1 /L��0

L���s , t�ds defining the average portion of the
primitive chain that remains inside the original tube
after time t should be equal to the time autocorrelation
function of the chain end-to-end vector R

���t� =
�R�t� · R�0�	

�R2	
. �5b�

That is, if CR effects are neglected, then not only
��s , t�=���s , t� but also ��t�=���t�. However, in our
analysis, CR effects are directly �and automatically� ac-
counted for, so for the polymeric systems simulated
here we expect the function ��s , t� from the direct PP
analysis to be different from the function ���s , t� com-
puted from Eq. �5a� and that also ��t�����t�. In fact,
since CR accelerates stress relaxation �by removing to-
pological obstacles along the chain� without affecting
the decay of the chain end-to-end vector autocorrela-
tion, ��s , t� and ��t� should decay faster than ���s , t�
and ���t�, respectively. We confirm all these in Sec. III
below.

III. RESULTS AND DISCUSSION

We have applied our methodology to atomistic MD
simulation trajectories accumulated in the recent past24,25 for
a number of model linear PE and PB melts: C320, C400, and
C500 PE melts �denoted as PE320, PE400, and PE500, re-
spectively�, C320, C400, and C800 cis-1,4-PB �denoted as PB-
cis320, PB-cis400 and PB-cis800, respectively� and C320 and
C400 trans-1,4-PB melts �denoted as PB-trans320, and PB-
trans400, respectively�. All PE and trans-1,4-PB systems
and the PB-cis800 system are strictly monodisperse �polydis-
persity index I=1�, whereas the PB-cis320 and PB-cis400
systems are slightly polydisperse �I=1.08 and I=1.05 for
PB-cis320 and PB-cis400, respectively�. The atomistic data
have been obtained through isothermal-isobaric �NPT� MD
simulations at T=450 K and P=1 atm for the PE melts, and
at T=413 K and P=1 atm for the PB melts. To improve the
statistics of the configurational averages, sufficiently long
trajectories �from 750 ns up to 4 �s� were accumulated for
each system. For more details on the atomistic MD simula-
tions, we refer interested readers to Refs. 24 and 25.

In Table I, we have collected our data for the density ,
the entanglement time �e, the disentanglement time �d, and
the average tube diameter dt for all studied systems. Despite
the independent measurements for each one of them, the re-
sults appear to be physically very reasonable �e.g., dt and �e

are approximately chain-length independent within the statis-
tical uncertainty�. In the last column of Table I, we also
report values for the step length as of the primitive path as
calculated by using as= �R2	 / �L	, where L denotes the instan-
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FIG. 3. A reptating chain. On the left we show how the atomistic configuration of a single chain from the simulations with the PE500 system changes with
time and on the right the corresponding changes in its PP. Atomistic and primitive chain configurations at t=0 are also shown. The primitive chain pictures
reveal that the polymer chain moves mainly back and forth its main contour, which brings more and more segments out of the original tube. Chain ends escape
first and middle segments follow.
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taneous value of the contour length of the primitive chain.
Although dt and as in tube models are typically assumed to
have about the same value �although Öttinger26 argues that as

should be twice as large as dt for the Porod–Kratky chain, by
making use of a competing-spring coarse-grained model�,
their quantitative relation is still unknown. For the moder-
ately entangled melts investigated here, our results show that
as is approximately 15%–30% larger than dt. We further note
that the results for the step length are consistent with those
obtained by applying the formula suggested by tube
theories,1 namely as

theory= �l0lKNe�1/2 where l0 is the equilib-
rium carbon-carbon length, lK the Kuhn length �calculated as
the ratio of the average end-to-end distance and the maxi-
mum length of the chain, �R2	 /Rmax� and Ne the entangle-
ment length. The values used here are: l0=1.54 Å, lK

=13 Å �Refs. 27 and 28� and Ne=68 �Refs. 27 and 29� giv-

ing as
theory=36.9 Å for all PE systems, and l0=1.54 Ǻ, lK

=9.4 Å,28 and Ne=130 �Ref. 28� �corresponding to 1,4-PB
systems with the composition of 50/40/10 trans/cis/vinyl�
giving as

theory=43.4 Å for all trans-1,4-PB systems. Alterna-
tively, one can make use of the lK and Ne values obtained
directly from the topological analysis of the atomistic trajec-
tories carried out in the course of this work: lK

=14.8�2.2 Å and Ne=76�11 giving as
theory=41.6�6.2 Å

for PE, lK=10.0�1.5 Å and Ne=119�15 giving as
theory

=42.7�5.9 Å for trans-1,4-PB, lK=8.9�1.3 Å, and Ne

=144�19 giving as
theory=44.4�6.0 Å for cis-1,4-PB. Over-

all, the agreement between theoretical and simulation results
for as is fairly good.

In Fig. 3, we show successive pictures of the instanta-
neous conformation of a C500 PE chain taken from the simu-
lations with the PE500 system in time intervals of 100–300

ns. For clarity, only the configuration of one chain �out of 16
present in the simulation box� is shown. We can see on the
left the changes at the atomistic level and on the right the
changes at the coarse grained level �the primitive chain,
where only the slow degrees of freedom, i.e., length scales
larger than the tube radius, are considered� as extracted di-
rectly from the Z1 code. The primitive chain consists of rec-
tilinear entanglement strands with strongly varying lengths
coming together sharply at the nodal or kink points, and
fluctuates mainly longitudinally by moving continuously
back and forth along its contour. It is evident from the figure,
however, that this reptative motion is not the only mode of
dynamics of the primitive chain. The number of kinks along
the chain contour also fluctuates, indicative of both CLF and
CR effects. The CR effects give rise to the development and
relaxation of local transverse modes along the contour which
cause parts of the chain to venture outside the average tube
surface for certain periods of time �before they escape com-
pletely�. These are further enhanced by fast local fluctuations
in the direction perpendicular to the main primitive chain
orientation due to thermal motion. Overall, and as time goes
on, more and more segments of the chain are brought outside
the original tube �in the directions both parallel and normal
to its main axis�. Eventually, the entire chain escapes. For the
chain shown in Fig. 3, this happens after approximately 950
ns, which is comparable to the disentanglement time of the
PE500 melt ��1040 ns�, as estimated by the third break in
the computed segmental msd curve �see, Fig. 1�a��.

In parts �a� and �b� of Fig. 4 we present values of the
function ��s , t� for s=0 or s=1 �corresponding to the two
ends� and s=0.5 �corresponding to the middle segment� for a
randomly selected PE500 chain, as a function of time. At
very short times, we see that chain ends fluctuate rapidly in
and out the original tube, since the value of the function
��0, t� alternates rather quickly between 1 and 0. We also see
that it takes approximately 6.7 ns for chain ends to com-
pletely escape the original tube. A similar picture character-
izes the dynamics of the middle segment of the primitive
chain, since this is also seen to fluctuate in and out the origi-
nal tube. However, it takes this segment a significantly
longer time, approximately equal to 615 ns �that is, almost
two orders of magnitude longer�, to completely escape!

The corresponding segment survival probability function
��s , t� for the simulated melts accounting for all possible
relaxation phenomena at length scales larger than the tube
radius is shown in Fig. 5�a� for the PE systems and in Fig.
6�a� for the cis-PB systems. Its shape provides us with in-
valuable information for the time evolution of the primitive
path conformation as chains diffuse due to thermal motion
and under the application of intramolecular and intermolecu-
lar forces. For the very early times, most of the middle seg-
ments remain inside the initial tube, whereas many of the
outer segments seem to have escaped �especially those closer
to the two chain ends�. Furthermore, the whole ��s , t� curve
is shown to decline to lower values with time, which corre-
sponds to our expectation that more and more segments of
the primitive chain tend to move out of the initial tube with
time. On the average, the computed ��s , t� curves are con-
sistent with the conceptual reptation mechanism of the effec-

FIG. 4. Instantaneous values of the ��s , t� function for a randomly selected
PE500 chain. �a� Dynamics of end segments �s=0 and s=1�. �b� Dynamics
of the middle segment �s=0.5�.
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tive tube model: they describe a chain which diffuses along
the tube, simultaneously entering new tube segments at the
one end �the “head”� and vacating segments at the other end
�the “tail”�. In addition to reptation, CLFs and CR mecha-
nisms are also evident in the figure. We also note that, in
contrast to the simple boundary condition of ��s=0, t�=��s
=1, t�=0 assumed in classical tube theories, the present re-
sults are in favor of a very small but definitely nonzero value
for ��s , t� at chain ends for a certain time, reflecting the fact
that, on statistical average, chain ends do remain inside the
original tube for a finite time interval as they are fluctuating
rapidly over a distance equal to approximately the tube ra-
dius, as clearly shown in Fig. 4�a�. This happens because as
chain ends fluctuate or dangle for some �short but� nonzero
time interval in and out the original tube, ��s=0, t=0+� or
��s=1, t=0+� cannot come out to be identically zero. They
will be zero only after the end points have totally escaped the
tube; and clearly this takes some time to happen. This ex-
plains the small nonzero values of ��s , t=0+� at chain ends.
It also suggests that chain ends can hold some elasticity for
some time. In contrast, in all analytical theories, the end
condition is treated as a first-passage problem; thus ��s , t
=0+� is considered �i.e., assumed� to be identically zero at
chain ends �end segments are assumed to have a zero lifetime
or to be replaced instantaneously�. Our simulation results
show this not to be exactly so. But, of course, for very long
polymers, the time scale on which such end effects will per-
sist will be relatively unimportant: the time for which
��s , t=0+� for chain ends will remain nonzero in these sys-

tems will be too small compared to their reptation time. In
the literature, nonzero life times for chain ends have also
been reported by Kröger–Hess30 and Aoyagi–Doi31 based on
computations with a coarse-grained model for the polymer.

Additional insight into the dynamics of chain ends can
be gained by comparing the ��s=0, t� curves computed from
the present PP analysis with the time decay curves of the
autocorrelation function �u�s=0, t� ·u�s=0,0�	 of the unit
tangent vector u for end segments. As can be seen from the
graphs reported in Figs. 5�b� and 6�b�, although �u�s
=0, t� ·u�s=0,0�	 decays slightly faster than ��s=0, t� at
early times, both of them approach zero after practically the
same time �for a given system�. Furthermore, it is reassuring
that the rates with which the two quantities drop to zero are
nearly independent of the chain length, which emphasizes
the fact that chain end dynamics should not depend on chain
length �unless the chains are too short�. In fact, by fitting the
computed ��0, t� or �u�s=0, t� ·u�s=0,0�	 relaxation curves
with stretched exponential �i.e., KWW� functions of the
form27

��0,t� = ��1,t� = A exp�− �t/�KWW��KWW� �6a�

and

�u�s = 0,t� · u�s = 0,0�	 = �u�s = 1,t� · u�s = 1,0�	

= A exp�− �t/�KWW��KWW� , �6b�

respectively, we can have a direct estimate of the correspond-
ing relaxation times, �c=A�KWW���1 /�KWW� /�KWW�, for the

FIG. 5. Results from the present direct PP analysis for the simulated PE melts: �a� Typical plots of the function ��s , t� describing the probability that a
primitive segment s remains in the initial tube after time t. �b� Plots of computed ��s=0, t� curves for chain ends �filled symbols� and comparison with the
curves describing the time decay of the autocorrelation function �u�s=0, t� ·u�s=0,0�	 of the unit tangent vector u for end segments �empty symbols�. �c�
Typical plots of the function ��t���0

1��s , t�ds representing the fraction of primitive chain that has remained in the initial tube after time t.
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end segments; the results are shown in Table II. A careful
investigation of the numerical results for �c reported in Table
II from the two sets of curves, ��0, t� versus t and �u�s
=0, t� ·u�s=0,0�	 versus t, for the three different simulated
systems �PE, cis-1,4-PB and trans-1,4-PB� reveals that to a
very good approximation these are for all practical purposes
equal to the corresponding entanglements times �e reported
in Table I. This is a significant result of the present work
validating among others a recent proposition by van Rym-
beke et al.32 �that a time approximately equal to �e is needed
before chain ends reach equilibrium� in an effort to resolve
the so-called “time-stress discrepancy” of tube models when
these are employed to describe the apparent plateau modulus
of short, weakly entangled linear chains �despite the fact that

they capture almost accurately their terminal relaxation be-
havior�.

The segment survival probability function ��s , t� is ex-
pected to be related to the life time of entanglements. Ideally,
a single entanglement should be a binary contact involving
only two chains, implying that in principle we should be able
to compare the lifetimes of entanglements with the tube sur-
vival function. The Z1 code, however, does not provide a
unique list of binary contacts. It allows one to define en-
tanglements based solely on the shortest path information; as
a result, “kinks” on one chain formed against a straight seg-
ment of another chain do not always result in topological
constraints that are pairwise associated on the two chains.
Binary entanglements are more conveniently identified in the
contour reduction topological analysis �CRETA� algorithm
proposed by Tzoumanekas and Theodorou.17 We are cur-
rently extending the Z1 code so that it can also detect �geo-
metrically� entanglement pairing. We hope to be able to re-
port results on the relationship between the time decay of the
��s , t� function and the entanglement lifetime along the chain
contour from either of the two methods �Z1 and CRETA� in the
near future.

Having computed ��s , t� through the proposed PP analy-
sis, various LVE properties can be extracted for the simu-
lated systems. We consider first the function ��t� which rep-
resents the fraction of the primitive chain that has remained
in the initial tube after time t. Since the computed ��s , t�
curves as obtained from the direct PP analysis already con-
tain the CLF and CR effects, this defines also the �reduced�
relaxation modulus G�t� /GN

0 �see Eq. �1b� above�. The re-

FIG. 6. Same as with Fig. 5 but for the PB-cis systems.

TABLE II. Values of the characteristic relaxation times �c describing the
time decay of ��0, t� and of �u�s=0, t� ·u�s=0,0�	, Eqs. �6a� and �6b� in the
main text.

System
�c �ns� from the decay

of ��0, t� or ��1, t�

�c �ns� from the decay of
�u�s=0, t� ·u�s=0,0�	

or �u�s=1, t� ·u�s=1,0�	

PB-cis320 3.1 4.3
PB-cis400 4.4 5.4
PB-cis800 5.1 7.4
PB-trans320 5.2 6.8
PB-trans400 4.8 7.9
PE320 3.2 2.1
PE400 3.8 2.3
PE500 4.7 2.3
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sults obtained for the function ��t� are reported in Fig. 5�c�
for the simulated PE melts and in Fig. 6�c� for the simulated
cis-PB systems.

As discussed at the end of Sec. II, based on the original
Doi–Edwards theory, the segment survival probability func-
tion ��s , t� in the absence of CR comes out to be equal to the
function ���s , t� describing the correlation of the tangent
vectors along the PP. We have computed the function ���s , t�
for all systems simulated here and the curves obtained, to-
gether with the ��s , t� curves that we computed from the
direct PP analysis, are plotted in Fig. 7. The plots indicate a
faster relaxation of the ��s , t� curves which is a direct con-
sequence of CR effects: By releasing topological constraints
along the chain, CR accelerates chain relaxation especially at
the middle points, without significantly affecting the degree
of the time decay of the chain end-to-end vector autocorre-
lation function. As a result, the ��s , t� curves fall always
faster than the corresponding ���s , t� curves.

In Fig. 8 we show a comparison of the ��t� plots �cor-
responding to the PB-trans400, PE320, and PB-cis800 sys-
tems� obtained from the three different methods discussed
above: �i� the average fraction of the primitive chain that has
remained in the initial tube after time t �Eq. �1a��; i.e., di-
rectly from our topological analysis by integrating the com-
puted ��s , t� function, �ii� the simplified Green–Kubo rela-
tionship based on Eqs. �2� and �4�, and �iii� the time
autocorrelation function ���t� of the chain end-to-end vector
�Eq. �5�� which describes reptation in the absence of CR.
Good agreement between methods �i� and �iii� is observed
for all three systems only at the very early times. At later

times, ��t� as computed by the direct PP analysis relaxes
faster than the autocorrelation function ���t� of the chain
end-to-end vector, indicating once again that CR effects
make a significant contribution to the �stress� relaxation, es-
pecially for middle segments. On the other hand, the Green–
Kubo method, method �ii�, results in G�t� /GN

0 values that
suggest a faster melt relaxation at early and intermediate
time scales than the other two methods; considering, how-
ever, the assumptions behind Eq. �4� for the form of the
employed Green–Kubo relationship, the overall prediction is
not bad at all. In fact, it is very interesting that the predic-
tions of the Green–Kubo relationship at longer times are
quantitatively more consistent with the direct PP analysis of
method �i� than those based on the time autocorrelation func-
tion of the chain end-to-end vector, ���t�, which neglects
CR.

As noted above, using G�t�=GN
0 ��t� �keeping in mind

that it is only valid for times t longer than the characteristic
time �e that chain segments “hit” the tube�, we can calculate
other important LVE properties such as the zero-shear vis-
cosity �0, the steady-state compliance Je

0, and the storage and
loss moduli, G���� and G����, respectively. Figure 9 com-
pares the zero shear rate viscosities obtained from our PP
analysis with reported experimental data33–37 for a number of
model PE �Fig. 9�a�� and PB �Fig. 9�b�� melts. For both
polymers and for all chain length systems studied, the agree-
ment is considered to be quite satisfactory. For the PB sys-
tems, in particular, we should take into account that the ex-
perimental samples are not entirely 100% cis-1,4 or 100%
trans-1,4 but they contain a significant percentage of vinyl

FIG. 7. Comparison of the function ��s , t� giving the probability that the tube segment s is remaining in the tube after time t with the function ���s , t�
describing the correlation of the tangent vectors u along the primitive chain, Eq. �5a� in the main text. The results have been obtained from the simulations
with the PB-trans400 �a�, PB-cis800 �b�, and PE500 �c� melts.
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and 1,2-trans or 1,2-cis comonomer. Despite this, the com-
puted values seem to fall not too far away from the measured
ones. These first encouraging results justify the relevance of
the proposed methodology for mapping simulation trajecto-
ries onto the tube model and are in support of the basic tube
model picture for the dynamics of chains in entangled poly-
mers.

IV. CONCLUDING REMARKS

In summary, we have presented a systematic methodol-
ogy that enables one to extract the primary ingredient of all
tube theories for entangled polymer melts, the segment-
survival probability function ��s , t�, through a direct topo-
logical analysis of atomistic simulation data and dynamical
mapping of the resulting chain trajectories onto the tube
model. This complements recent contributions in the
field14–17 where only the static �statistical� properties of the
PP network were addressed. Predicted LVE properties for
various PE and PB melts with the new methodology have
been observed to be consistent with rheological data from
independent experimental measurements. PP reptation longi-
tudinally inside the tube as well as local transverse fluctua-
tions of the chain driven mainly from constraint release and
regeneration mechanisms have been recorded in the simula-
tion results. Additional results from the new approach for
longer-chain systems and a detailed comparison with the
functions ��s , t� proposed by state-of-the-art models in the
literature are currently in progress. We mention, for example,

FIG. 8. Computed relaxation curves for the PB-trans400 �a�, PB-cis800 �b�, and PE500 �c� melts, from the three different methods discussed in the main text:
�i� the proposed topological analysis that leads self-consistently to the computation of the ��s , t� function, �ii� the coarse-grained version of the Green–Kubo
expression �Eqs. �2� and �4��, and �iii� the time autocorrelation function of the chain end-to-end vector �Eq. �5b��; the latter describes stress relaxation in the
absence of CR.

FIG. 9. The zero-shear viscosity as obtained from the present PP analysis
for: �a� linear PE melts and �b� linear cis- and trans-PB melts, and compari-
son with reported experimental data.

124904-13 Reptation J. Chem. Phys. 132, 124904 �2010�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Tue, 07 Oct 2014 06:33:16



the dynamic dilution models according to which ��t�
=��t��+1 ��=1 for double reptation38 whereas Colby and
Rubinstein39 propose �=4 /3�, the Rubinstein–Colby
model40 built on the postulate of Graessley41 that ��t�
should be factorized as ��t�=��t�R�t� where ��t� accounts
for reptation and CLF while R�t� which accounts for CR
should be calculated in a self-consistent way from ��t�, the
Pattamaprom et al.42,43 model where an additional reaction-
type term is added to the Doi–Edwards evolution equation
for ��s , t�, and the Leygue et al.44 model where the diffusion
coefficient is position-dependent. These comparisons will be
very useful in: �a� evaluating existing tube-based theories
accounting for CLF and CR effects, branching and polydis-
persity in chain length, and �b� proposing suitable modifica-
tions and refinements based on atomistic-level information;
they will be reported in a future publication. For example, in
Fig. 10, we report results from our PP analysis for the func-
tion ��t��=G�t� /GN

0 � and the spectra of storage and loss
moduli, G���� and G����, of the PE500 system �the longest
polymer simulated here� and compare them with the predic-
tions of the double reptation38 and dual constraint42,43 mod-
els. The dual constraint model has been proposed by Pat-
tamaprom et al.42,43 by considering both shallow ��early� and
deep ��late� fluctuations45 �see Pattamaprom et al.43 for cor-
rections in some of the numerical prefactors following Lar-
son et al.46� and by adding a “reaction” term to the partial
differential equation �PDE� of the Doi–Edwards model �the
simple diffusion equation� in order to account for CLF ef-
fects. The mathematical equations describing the dual con-
straint model are given in the Appendix. In the Appendix, we

also report the expression for the relaxation modulus describ-
ing the double reptation model. For the comparison with the
double constraint model in Fig. 10 we used �d=1042 ns
while for the comparison with the dual reptation model we
used �R=125�20 ns, �d=1042�46 ns, and Z=6.7 �corre-
sponding to a value of Ne=74 for the entanglement length�;
all these parameter values have been extracted directly from
the atomistic MD simulations and the subsequent PP analysis
carried out in the present work. Part �a� of the figure com-
pares the three sets of data at the level of the overall prob-
ability ��t�=G�t� /GN

0 while parts �b� and �c� extend the
analysis to the level of the storage G���� and loss G����
moduli, respectively. The comparison has been restricted to
low frequencies �corresponding to times longer than the en-
tanglement time �e� and is very favorable since all three sets
of data �direct simulation, double reptation model, and dual
constraint model� are seen to be qualitatively very similar,
with the curves obtained from the direct PP analysis falling
in all cases in between the curves corresponding to the two
theoretical models. The comparison verifies that the double
reptation model overestimates somewhat the data obtained
from the direct PP analysis, something that should have been
expected given that no CLF corrections are included in this
model. On the other hand, that the predictions of the dual
constraint model are below those of the direct PP analysis
seems to suggest that, for the simulated system �PE500
melt�, CLF effects as computed with the help of Eq. �A1b� in
the Appendix are probably overestimated. As we mentioned
above, in a future effort we will extend the comparison to
include other models as well; we will also try to simulate and

FIG. 10. Comparison of the results obtained from the direct PP analysis with the computed ��s , t� curves for the overall probability ��t�=G�t� /GN
0 �a�, the

spectra of storage G���� �b�, and loss G����, �c� moduli of the PE500 melt with the double constraint �Ref. 38� and dual constraint �Refs. 42 and 43� models.
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analyze longer polymer melts �e.g., a C1000 PE melt� which
will allow for a more direct comparison with the theoretical
models which by default are designed to describe the vis-
coelasticity of truly long polymer melts.

By providing the link between microscopic level simu-
lations and macroscopic phenomenological models, the new
approach �in conjunction with state-of-the-art nonequilib-
rium MD simulations of polymers in shear47 and planar
elongation48� can also address systems subjected to flow. Es-
tablishing our concept under nonequilibrium conditions
would mark a tremendous achievement, since it could help
quantify the effect and role of other mechanisms �such as
CCR49,50� on the linear and nonlinear viscoelastic properties
of polymers. In conjunction with the design of thermody-
namically consistent coarse-graining methodologies for sys-
tems beyond equilibrium,51–55 this could enable the predic-
tion of the rheological properties of truly long polymers and
the development of more accurate constitutive equations
based on multiscale constructions �involving, e.g., projection
operators� in the framework of nonequilibrium statistical me-
chanics and thermodynamics.
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APPENDIX: DUAL CONSTRAINT MODEL

The dual constraint model is constructed in two stages.
In stage 1, the PDE considered is

�

�t
���s,t� =

Dc

�L	2

�2

�s2���s,t� −
1

���s�
���s,t� , �A1a�

where

�early�s� =
9

16
	3�R

c4 Z2�1 − cs�4,

�late
� �s� =

�R

c2 exp�U��s�� , �A1b�

U��s� =
3

2
Z�1 − cs�2,

with c=2 for a linear chain. We may also use the reptation
time 	2�d=Dc / �L	2. Then ���s�, which is needed in Eq.
�A1a�, is obtained simply as42,43

�early�s� = �early�s� �1 − cs� � C1


�early�s��late
� �s� C1 � �1 − cs� � C2

�late
� �s� �1 − cs� � C2

� ,

�A1c�

where C1 denotes the first crossover position of �early to �late

close to chain ends �1−cs=0� and C2 the second crossover
position of �late to �early deeper inside the tube. Solving PDE
�Eq. �A1a�� gives also the overall probability 
��t�
=�0

1ds���s , t�. Finally, an expression for the approximate
Rouse process is used; this Rouse process is activated when-
ever 
��t� decreases faster than the Rouse process. Pat-
tamaprom et al.42,43 used the expression proposed by Milner
and McLeish,45 namely


R
��t� = 
��t = t0�� t

t0
�−1/2

, �A1d�

where t0 denotes the time beyond which 
��t� starts to de-
crease faster than t−1/2. The expression for the average prob-
ability ���t� is taken then as

���t� = �
��t� if 
��t� � 
R
��t�


R�t� if 
��t� � 
R
��t� � . �A1e�

In stage 2, CR is also taken into account by including ���t�
into the deep fluctuations by considering the following PDE:

�

�t
��s,t� = 	2�d

�2

�s2��s,t� −
1

��s�
��s,t� , �A2a�

where �early is the same as in Eq. �A1b� but now

�late�s� =
�R

c2 exp�U�s�� ,

�A2b�

U�s� =
3

2
Z���t��1 − cs�2.

On the other hand, ��s� is obtained in a way which is com-
pletely analogous to that in stage 1 as42,43

�early�s� = �early�s� �1 − cs� � C1�t�

�early�s��late�t,s� C1�t� � �1 − cs� � C2�t�
�late�t,s� �1 − cs� � C2�t�

,�
�A2c�

with the crossover positions now depending on time through
the inclusion of ���t� into the activation energy. Solving the
PDE gives also the overall probability 
�t�=�0

1ds��s , t�. Us-
ing the Rouse process45


R�t� = 
�t = t0�� t

t0
�−1/2

, �A2d�

where t0 is the time when 
�t� starts to decreases faster than
t−1/2, the expression for the average probability ��t� is given,
in a similar manner, as
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��t� = �
�t� if 
�t� � 
R�t�

R�t� if 
�t� � 
R�t� � . �A2e�

The overall survival probability ��t�, which enters the cal-
culation of the relaxation modulus through G�t�=GN

0 ��t�, is
finally obtained by multiplying ��t� with ���t� �Refs. 42 and
43�

��t� = ���t���t� . �A2f�

For completeness, we also note that the double reptation
model is obtained by choosing in Eq. �A2f�

���t� = ��t� = �
p:odd

�
8

p2	2exp�− p2 t

�d
� . �A3�
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