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We investigate the free energy and the concentration of monovacancies in strained face-centered-cubic(fcc)
hard-sphere crystals for several densities at and above melting. We use the conventional molecular dynamics
method for simulations and employ a bias insertion method to extract properties of a monovacancy. We study
two distinct constant-volume strains, considering a simple shear and an orthogonal expansion and contraction.
Strains are examined across the linear elastic region and include also some nonlinear elastic deformations.
Second-order elastic constants are reported as a function of density. The concentration of monovacancies
decreases as density increases for both strained and unstrained crystals. The effect of strain is to cause the
monovacancy concentration to increase by up to 72% for the expansion-contraction strain at the largest
deformation studied. The effect of the shear strain is considerably less, and produces an increase in monova-
cancy concentration of at most 9% for the conditions studied here.
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I. INTRODUCTION

Vacancies are defects in crystal lattices in which atoms
are absent from their expected positions. They exist in low
concentration in equilibrium crystals, yet they are empha-
sized in studies of solid state materials because of their dis-
proportionate effect on material properties.1–5 Known ex-
amples can be found in phenomena of photonic materials,
stress relaxation, influences on the first-order transition of
solid materials(with some exceptions6), and so on. Vacancies
are able to increase the electrical conductivity by introducing
discrete states in the band gap so that charge carriers(elec-
trons or holes) can easily jump between conduction and va-
lence bands. Local stress often resides in crystal structures
due to abnormal atomistic forces around a vacancy.7 From
the thermodynamic point of view, contributions of vacancies
must be included for accurate free energy calculations of
solid state materials.

Molecular modeling studies have provided a great deal of
insight on vacancies in crystals. Bennett and Alder8 reported
the equilibrium concentration of monovacancies and higher
order vacancies in hard-sphere crystals by a molecular dy-
namics(MD) approach. The equation of state approach was
taken by Speedy and Reiss9 and Bowles and Speedy.10 They
reported number, size, and surface area of cavities in
D-dimensional hard-sphere fluids and crystals. Swope and
Anderson11 explored computer simulation methodologies for
considering vacancies with appropriate ensembles taking
into account thermodynamic constraints involved in fixing
the number of lattice sites. Recently, Pronk and Frenkel12

reviewed the statistical mechanics of a crystal with point
defects. They considered two approaches, using grand-
canonical and isothermal-isobaric formalisms, respectively.
With Monte Carlo(MC) simulation, they estimated the con-
centration of interstitials in hard-sphere crystals. They intro-
duced the concept of the number of lattice sites into the
grand-canonical ensemble and considered the fluctuation of

the lattice sites for the equilibrium of the system.
The coupling between point defects and mechanical strain

is a topic of some interest, relevant, for example, to the study
of damage mechanics. However, the effects of external strain
on equilibrium properties of monovacancies in a crystal sys-
tem are not well studied from a molecular thermodynamic
point of view (i.e., emphasizing free energies and defect
equilibria). In the present study we address this issue, apply-
ing molecular simulation to study vacancies in equilibrated
systems under distinct strains. We consider only monovacan-
cies and examine them in the fcc hard-sphere crystal system.
The hard-sphere model is a very well studied system, and
derives its importance from its ability to describe qualita-
tively the behavior of atomistic crystals, and quantitatively
the behavior of some colloidal materials. We use the conven-
tional collision-based MD method13 in conjunction with the
insertion-deletion bias method introduced by Pronk and
Frenkel.12 In Sec. II, we briefly explain the theoretical ap-
proach of the grand-canonical scheme and ways it can be
extended to examine vacancies in strained systems. In Sec.
III, we describe computational details and in Sec. IV we
present and discuss results. We summarize and conclude in
Sec. V.

II. THEORETICAL APPROACH

A. Free energy of monovacancy formation

We adopt the Pronk and Frenkel12 approach to obtain the
concentration of monovacancies in an otherwise perfect crys-
tal. They present a formalism using the grand-canonical en-
semble. Beginning with a system having a fixed number of
lattice sitesM, they define the change in the free energy for
the creation of a single vacancy: −f1sMd=Fs1d−Fs0d, where
Fsnd is the Helmholtz free energy of a system havingn va-
cancies. The number of lattice sites is allowed to fluctuate to
adjust to the number of vacancies, and the true grand-
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canonical partition function is obtained as a sum over all
states with different numbers of lattice sites,

J = o
DM=−`

`

JM+DM8 = o
DM=−`

`

QM+DM expfsM + DMdbmg

3expfsM + DMdexps− bfm − f1sM + DMdgdg, s1d

where b=1/kBT=1, kB is Boltzmann’s constant,T is the
temperature,m is the chemical potential for the perfect crys-
tal, m=sF+pVd /M with p the pressure andV the volume.
QM+DM is the canonical partition function with the lattice
fluctuationDM. Assuming that the ensemble is dominated by
the largest term in theDM sum when in the thermodynamic
limit, the maximum distribution of the ensemble is found by
maximizing the exponent, which undergoes Talyor series ex-
pansion in terms ofM. Also, it is assumed that monovacan-
cies are noninteracting with each other due to their low con-
centration in the system. To this end, the maximum value of
the fractional change of the number of lattice sitesDM /M
was found and thus the maximum grand canonical ensemble
containing first and second orders of the leading quantity
expf−bsm− f1sMddg was obtained. The concentration of the
vacancies is, then, found by using a thermodynamic
relation.12 The monovacancy concentrationxMV is thereby
expressed

xMV =
knl
M

= expf− bsm − f1dg. s2d

Since the equilibrium concentration of vacancies is generally
very low, the second order term can be omitted. The argu-
ment of the exponent in Eq.(2) without a negative sign is a
driving force for the insertion of a particle into a vacant site,
and it is balanced by the entropic gain made in maintaining
the site vacant.

B. Strain energy and stress/free-energy derivative relation

Both m and f1 of Eq. (2) are altered by the presence of
strain, and the effect of strain on the monovacancy concen-
tration is made through its effect on these quantities. The free
energy of the strained system is defined by Wallace,14

rfshi jd = rfs0d + Tijhi j + 1
2Cijklhi jhkl + ¯ , s3d

where 1, i , j ,k, l ,3,r is the lattice-site number density
M /V, fs0d=Fs0d /M is the free energy(per site) of the un-
strained system,Tij is the stress tensor, andCijkl are the
second-order elastic constants, known as Young’s moduli.
The Einstein summation convention is assumed. Note that
Eq. (3) is a series expansion of the free energy with respect
to the Lagrangian strain tensorhi j , which explicitly describes
the state of the deformation. This tensor is defined in terms
of the displacement gradients]ui /]xj,

hi j =
1

2
F ]ui

]xj
+

]uj

]xi
+

]uk

]xi

]uk

]xj
G , s4d

where ui are differences of positions of atoms between
strained and unstrained systems, andxi are the atom coordi-
nates. Crystal symmetries introduce simplifications that

greatly reduce the number of distinct elastic-constant coeffi-
cients, and the Voigt notation15 is used to wrap two indices to
one, s11→1;22→2;33→3;12,21→4;23,32→5;13,31
→6d. To this end, total number of second-order elastic con-
stants of fcc crystal is reduced to three,C11, C12, andC44.

By definition, in the linear elastic regime these elastic
constants are sufficient to determine, via Eq.(3), the free
energy of a strained system relative to an unstrained one.
Inasmuch as this study is not restricted to the linear elastic
region and moreover is confined to a constant volume, we
develop a direct approach to evaluate the strain energy in
cooperation with the stress/free-energy derivative relation, as
given by Wallace,14

]srfd
]«

=
]srfd
]hkl

]hkl

]«
= Tijshhjdgikg jl

]hkl

]«
, s5d

whereTijshhjd is a stress-tensor element in a deformed sys-
tem, gik is an element of the inverse of the transformation
tensor(detailed description can be found from Ref. 14), and
« is the strain parameter. We evaluate free energies in the
strained system by numerical integration of Eq.(5), using
simulation data forTijshhjd. We do this, rather than use Eq.
(3), to avoid errors resulting from nonlinear elastic behavior
[i.e., neglect of high order terms in Eq.(3)].

C. Strain effects on monovacancy concentration

Our aim in the present work is to determine the change in
the equilibrium monovacancy concentration as different
strains are applied to the crystal. A closely related problem is
to determine the local effect of monovacancies on the elastic
constants. A straightforward way to approach this calculation
is to adopt the formalism of Pronk and Frenkel,12 modified
only in that it is applied to a strained system. We call this
method the insertion-deletion simulation(IDS) approach.
Thus the monovacancy concentration is again given by Eq.
(2), but with the chemical potentialm and the free energy of
monovacancy formationf1 both taken for the strained crys-
tal. The ratio of the monovacancy concentration in the
strained to the unstrained crystal is then

xMVshd
xMVs0d

= expf− bssmshd − f1shdd − sms0d − f1s0dddg, s6d

where shd indicates the strained system, and(0) the un-
strained one.

Alternatively, we can examine the change in the free en-
ergy upon the application of the strain to a perfect crystal
with and without a monovacancy. We call this method the
strain energy calculation(SEC) approach. A key quantity in
Eq. (6) is the difference inf1 between the strained and un-
strained systems. In the IDS approach this difference is
evaluated by performing insertion/deletion averages in the
strained and unstrained systems, respectively, to get eachf1,
and taking their difference. Thus
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f1shd − f1s0d = sFs0dshd − Fs1dshdd − sFs0ds0d − Fs1ds0dd

= sFs0dshd − Fs0ds0dd − sFs1dshd − Fs1ds0dd,

s7d

where F is the total free energy of the system. The latter
equality indicates evaluation of the difference inf1 by mea-
suring the free-energy change associated with strains in crys-
tals with 0 and 1 vacancies, respectively. Also, to the extent
that the system obeys linear elastic behavior, the difference
in f1 relates to the change in the stress tensor and elastic
constants with the addition of a vacancy,

f1shd − f1s0d = VFsTij
s0d − Tij

s1ddhi j +
1

2
sCijkl

s0d − Cijkl
s1d dhi jhklG .

s8d

III. SIMULATION DETAILS

We conducted MD simulations of systems of hard spheres
(diameters=1) occupying anM =108-site fcc lattice(333
33 unit cells), examining volumes V from melting
s1.359Vod to 1.2Vo, whereVo=Ms3/Î2 is the volume of the
system at close packing. Finite-size effects were examined
by performing some simulations of systems with 256 lattice
sites(43434 unit cells) and differences were found to be
negligible over densities of interest. Keeping the volume
constant, the symmetry of the fcc crystal provides for only
two independent deformations. We chose one as a shear
strain in thex–y plane, with a strain parameter« defined to
produce the coordinate transformation,

x8 = x, y8 = y + «x, z8 = z, s9d

wherex8, y8, z8 are coordinates of the strained system,x, y,
z are those for the unstrained system. The other strain ex-
pands uniformly along thex axis and contracts along they
axis (the expansion-contraction strain) defined by

x8 = s1 + «dx, y8 = S 1

1 + «
Dy, z8 = z. s10d

Figure 1 illustrates these strains. Note that both deforma-
tions keep the volume of the system constant. Within the
assumption of linear elasticity, the concentration and the for-
mation free-energy of monovacancies for any combination of
the above strains, plus those that do change the volume, can
be extracted from analysis of those two deformations with
knowledge of the dependence of the vacancy properties on
density for the unstrained system.

The stress tensor is obtained by summing contributions
from the collision virial over all pair collisions processed in
the simulation.13 Then the free energy as a function of strain
is obtained by numerical integration of the stress-tensor data
according to Eq.(5). For the shear strain[Eq. (9)], this equa-
tion reduces to

]srfd
]«

= T12s«d − 2T12s«d«2 + T22s«d«3 s11d

and for the expansion-contraction strain[Eq. (10)] it is

]srfd
]«

=
T11s«d − T22s«d

1 + «
. s12d

The integration was accomplished by fitting each right-hand
side to a polynomial quadratic in«, which describes the data
very well over the conditions studied.

Elastic constants were obtained by differentiating Eq.(3)
with respect to« for each strain and equating to Eqs.(11)
and(12) and in the limit«→0. C44 can be directly evaluated
from the shear-strain data, via

]srfd
]«

= sC44 − pd«. s13d

The expansion-contraction data yield information regarding
the combination ofC11 andC12,

]srfd
]«

= 2sC11 − C12 − 2pd«, s14d

where in both equations the termT11s0d is replaced by the
negative of the pressure, −p, as the equations apply for the
limit of an unstrained system. Decoupling ofC11 andC12 is
completed through their connection to the isothermal com-
pressibility, which satisfies14,15

rS ]p

]r
D

T
=

1

3
sC11 + 2C12 + pd. s15d

We examined strain parameters«=0.0025, 0.005, 0.0075,
0.01, 0.02, and 0.03. To calculate elastic constants, we could
use the linear term of a quadratic fit of]srfd /]« for the
left-hand side of Eqs.(13) and (14). We examined instead
using a linear fit of the data only up to«=0.0075 for the
shear strain and 0.005 for the expansion-contraction strain,
and found little difference in the results; the data we report
are based on this latter approach. We used the equation of
state of Speedy16 to determines]p/]rdT for the unstrained
system at each density for use in Eq.(15).

FIG. 1. Illustration of strains defined by Eqs.(9) and(10), using
32 particles of the fcc system(23232 unit cells). (a) The un-
strained system;(b) shear-strained system with«=0.03 and(c) with
«=0.2; (d) expansion-contraction strained system with«=0.03 and
(e) with «=0.2. High-strains«=0.2d images are included only to
illustrate better the nature of the strains, as the distortions are barely
visible for «=0.03.
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We evaluated the free energy of monovacancy formation
f1 using the bias particle-insertion method as given by Pronk
and Frenkel11 which is applicable also to strained systems.
The quantityf1 is given by

f1 = − kBT lnS vPaccsvd
PremsvdL3D , s16d

where Paccsvd is the fraction of time in which no overlap
with another particle is encountered upon random insertion
of a particle into a bias subcell of volumev, andPremsvd is
the fraction of the time that a simulated particle is observed
to lie inside its assigned subcell. Note that these simulations
are microcanonical simulations so that the number of par-
ticles in the system does not change; only trial insertions/
deletions are examined. The de Broglie wavelength termL3

cancels with the ideal part of the chemical potential when
combined in Eq.(2). The natural choice of the insertion re-
gion is the Wigner-Seitz(WS) cell for the lattice site associ-
ated with the vacancy. However, most of the WS cell region

is not accessible to a sphere center so, following Pronk and
Frenkel,11 a subcell was introduced to increase the efficiency
of successful insertion trials. For the subcell we chose(for
convenience) a cubic box, no larger than a size that inscribes
the WS cell, so that the subcells do not overlap each other in
space. For the unstrained system, the largest such subcell
was used; examination of smaller cell sizes found no effect
on the results forf1. Full-size inscribed cells would overlap
in the strained systems, so for those simulations we em-
ployed subcells of volume 73% of the unstrained inscribable
size. Note that care must be taken to avoid spurious results
arising from center-of-mass drift of the system, especially at
the melting density. For the final results, approximately
1.0–5.03105 collisions per particle for the insertion and the
deletion simulations were done after an equilibration period
of 53104 collisions per particle.

IV. RESULTS AND DISCUSSION

Figure 2 presents the results of simulations performed to
verify calculation of the elastic constants and the simulation
approach; our data are presented also in Table I, along with
the inverse isothermal compressibility from Speedy’s equa-
tion of state.16 At melting we have good agreement with the
results of Runge and Chester,15 which are available only at
this density. Runge and Chester employed MC simulation
and applied the method of variation of density to evaluate
s]p/]rdT. On the other hand, our results forC11 and C12

differ from the data reported by Frenkel and Ladd17 over the
region of density studied here. The difference may lie in the
manner used to decoupleC11 andC12. In support of the va-
lidity of our data, we point out that the Frenkel and Ladd
elastic constants are not consistent with the isothermal com-
pressibility via Eq.(15) using Speedy’s equation of state16

for s]p/]rdT.
Figures 3 and 4 show the combination of elastic constants

as a function of strain. In particular, Fig. 3 showsC44−p as a
function of«, minus its value as«→0, while Fig. 4 presents
the same for 2sC11−C12−2pd. At sufficiently high strain pa-
rameter the elastic constants start to deviate from the zero-
strain limiting values, indicating departure from the linear

TABLE I. Monovacancy concentration, elastic constants, and the inverse isothermal compressibility[according to Speedy’s equation of
state(Ref. 16)] for the unstrained crystal. Values are given as a function of volumeV relative to the close-packed volumeVo (largest value
corresponds to melting). Confidence limits(67%) for last digit of each quantity are indicated by values in parentheses. Elastic constants and
the inverse isothermal compressibility are given in units ofkBT/s3.

V/Vo

xMV

C11 C12 C44 rs]p/]rdTThis work
Bennett and

Aldera
Bowles and

Speedyb

1.359 2.24s1d310−4 2.3s5d310−4 2.3s4d310−4 73.4(5) 20.5(2) 46.1(5) 42.03

1.3 3.41s2d310−5 4.0s4d310−5 3.1s5d310−5 105.5(6) 29.1(2) 65.7(6) 59.19

1.25 3.98s2d310−6 4.3s4d310−6 4.1s6d310−6 150.8(6) 40.9(2) 94.2(6) 83.10

1.2 1.774s6d310−7 1.8s2d310−7 232.6(7) 61.9(3) 146.3(7) 125.75

aReference 8.
bReference 10.

FIG. 2. Density dependence of elastic constants. Solid, dashed,
and dotted lines are simulation results; error bars indicate location
of data points, which are joined by the lines as a guide to the eye.
Open markers are elastic constants of Frenkel and Ladd(Ref. 17).
Filled markers are elastic constants of Runge and Chester(Ref. 15).
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elastic region. For the case of the shear strain, Fig. 3, at
melting linear behavior is observed over the entire range of
strains studied, while at the highest density nonlinear behav-
ior is observed at aboute=0.01. The linear regime is much
more restricted for the expansion-contraction strain, Fig. 4,
where for all densities the linear regime extends no further
than «=0.0075. A perfect fcc lattice can be sheared up to
strain parameter of about 0.21 at the melting density without
overlap of spheres located at each site; for the expansion-
contraction strain the corresponding maximum is 0.26.

Now we turn to results for the free energy of formation of
a monovacancy in the unstrained system. The values off1
and the chemical potentialm are shown in Fig. 5 over the
range of density of interest. Values off1 increase slightly as
density increases, which means that the entropy gain of
neighboring atoms from the vacancy formation is greater at
higher density. Offsetting this is a much greater increase in
the chemical potential with density, leading to a net increase
in m− f1, the driving force to fill the vacancy. Consequently

the concentration of monovacancy is, as expected, decreased
with increasing density. Results are presented in Table I,
where they are compared to the simulation data of Bennett
and Alder8 and the monovacancy-concentration model of
Bowles and Speedy.10 The agreement is very good, and
within the confidence limits of the calculations.

Next, we investigate strain effects on the free energy and
the concentration of a monovacancy in the equilibrated sys-
tem. Results are presented in Fig. 6. We find some significant
effects on the monovacancy concentration depending on the
nature of the strain. Generally, strain effect on a low-density
solid is smaller than on one at high density. For the case of
the shear strain the monovacancy concentration increases by
4% to 8%, depending on density, at the maximum strain

FIG. 3. The quantityD, which is defined here asC44−p as a
function of the strain« minus its limiting value for«→0. Values of
V/Vo indicate the system volume relative to the close-packed
volume.

FIG. 4. The quantityD, which is defined here as 2sC11−C12

−2pd as a function of the strain« minus its limiting value for«
→0. Values ofV/Vo indicate the system volume relative to the
close-packed volume.

FIG. 5. Free energy of monovacancy formationf1 and the
chemical potentialm for the unstrained crystal, as a function of
density. Determination off1 is as described in the text;m is deter-
mined by thermodynamic integration using Speedy’s equation of
state(Ref. 16) from the melting point, at whichm is given by the
data of Frenkel and Ladd(Ref. 18).

FIG. 6. Normalized monovacancy concentration as a function of
strain for a shear deformation.xMV,Unstrained is the monovacancy
concentration of the unstrained system andxMV,XYStrained the con-
centration in the shear-strained system. Solid lines represent results
from the IDS approach and dotted lines from the SEC approach.
Values ofV/Vo indicate the system volume relative to the close-
packed volume.
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studied here. Qualitatively similar behavior occurs for the
expansion-contraction case, as shown in Fig. 7. The effect
however is much larger, with the concentration increasing at
largest strain by 42% to 72%. Considering the restriction of
constant volume, this is a quite interesting result since no
extra vacant volume is introduced to the original vacant site.
For both types of strain, the effect onm [in Eq. (6)] is ob-
served to be small(not shown), and the change in the va-
cancy concentration is due largely to the effect of strain on
f1. This phenomenon can be explained in terms of a cell
model, which considers the volume accessible to a sphere in
its Wigner-Seitz cell in a distorted lattice with all other atoms

constrained to their lattice sites. Numerical studies of such a
system show that the shear strain causes a smaller decrease
in accessible volume in comparison to a corresponding
expansion-contraction strain. This effect shows up inf1,
causing it to increase towardm and thereby decreasing the
driving force to fill the vacancy. As the magnitude of the
strain becomes larger, this effect grows accordingly.

Finally, we note that the results of SEC method and the
IDS method are, within their confidence limits, in perfect
agreement for all conditions and strains studied.

V. CONCLUSION

In summary, we performed MD simulations to evaluate
the elastic constants and the monovacancy concentration of a
system of fcc hard spheres. Both properties were measured
as a function of strain, considering two types of constant-
volume deformation: shear and expansion-contraction. As
expected, the equilibrium concentration of monovacancy de-
creases as density increases, and this behavior holds also for
the strained systems. Investigation of strain effects on mono-
vacancy finds that strain increases the monovacancy concen-
tration, and that this effect is enhanced with increasing den-
sity. The expansion-contraction strain shows a greater
influence on the properties of monovacancy than the shear
strain.
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