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We report coefficients of the-bond expansion of the bridge function of the hard-sphere system up
to orderp* (wherep is the density in units of the hard-sphere diametehich in the highest-order

term includes 88 cluster diagrams with bonds representing the total correlation fuh¢tjon
Calculations are performed using the recently introduced Mayer-sampling method for evaluation of
cluster integrals, and an iterative scheme is applied in whiclhheused in the cluster integrals is
determined by solution of the Ornstein—Zernike equation with a closure given by the calculated
clusters. Calculations are performed for reduced densities from 0.1 to 0.9 in increments of 0.1.
Comparison with molecular simulation data shows that the convergence is very slow for the density
expansion of the bridge function calculated this way2@5 American Institute of Physics
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I. INTRODUCTION and too low(PY) in comparison to molecular simulation.
They also can be shown to lead to certain thermodynamic

Integral equation theoty (IET) provides a means to . stenci d thods 10 i th h
predict the behavior of condensed phases from the intermdh CONSISIENCIES, and Metnods 1o Improve these approaches
se similar approximations, but proceed in different ways

lecular interactions. IET methods are useful because they a}% ) . 3-10
that remove the inconsistenci&s’

computationally efficient, and in some cases can yield com- S Lof th hes 1o | IET ¢l ¢

pletely to analytic treatment. A primary aim in these ap- theveralot ;spgroa? est.dz('Tp_rr%\le c?sures ocus

proaches is the direct evaluation of the pair correlation funcO" € Negiected bridge Tunclidsir). There are two main
routes to construdi(r). One general approach works within

tion g(r), wherer is the relative distance of a pair of the IET f K derivi f t
moleculeswhich we take here as monatomi@heories can € Iel framework, envmtjp(r)' rom measurements or ap-
proximations. The former then is an empirical approach: mo-

be developed in terms of the direct correlation functon, lecular simulation i d 10 obtai f hich
which is defined by the Ornstein—Zernik®Z) equation, ecuiar simulation 1s used to obtain accurg(e) rom which
b(r) is evaluated via its definitioh. The resulting form is

sometimes fitted to give an empirical expression through ad-
justable parametef@.‘“The parametrization processes have

) ) been shown to provide fast and reliable ways to construct
where h(r)=g(r)-1 andp is the number density of mol- ) for some interesting model systems. However, this ap-

ecules. Application of Eq(1) requires a closure, which also 440k sometimes shows inaccuracy with respect to the signs
introduces into the theory the pair potentigt) that defines of b(r)®*56 and zero-separation theoren’ﬁ§2.1Approaches

the molecular interactions. The basic idea is to solve anothgf,seq more on first principles include a perturbation method,
relation betweert(r) andh(r) with the OZ equation. A par- \ hich approximate$(r) of the potential of interest using a
ticularly suitable choice involves the cavity distribution func- simpler short-ranged potenti. 2>
tion y(r), Another route to obtairb(r) is a direct evaluation in
y(r) = g(r)exd Bu(r)] = exdh(r) - c(r) + b(r)], (2)  terms of the bridge-function coefficients defined by the den-
sity expansion of the function

h(r) =c(r) + pf c(rh(r =r’dr’, (1)

where B=1/kgT, kg is Boltzmann’s constant, and is the

temperature. This relation does not yet provide a closure, - N

because it introduces another quantty), which is known b(r) = 2_: bn(r)p". 3)

as the bridge function. From this point approximations are =2

introduced that yield a well defined set of integral equationsThe coefficientsh,(r) are multidimensional integrals which
that can yieldg(r) from u(r). The hypernetted chaifHNC) can be written in terms of cluster diagran’r@,which consist
closure simply take$(r)=0, while the Percus—YevickPY) of n field (blacK points, two referencéwhite) points in rela-
closure goes one step further and takes aig9=1+h(r) tive distancer, and bonds that define the integrand. In one
—c(r); the PY approximation seems to benefit from a cancelireatment the bonds represent the Mayer functign
lation of errors when applied to short-ranged potentials. The=exg—pBu(r)]-1, while in another the bonds represent the
approximate nature of both of these closures is evident iotal correlation functiorh(r). An advantage of thé-bond
several ways. When applied to the hard-spH&t8) model, expansion is that the coefficienibg(r) remain truly density
they yield pressureéria the viria) that are too higfHNC) independent. In comparison, becauge) depends on den-
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N sphere systems and their mixtures using a Legendre polyno-
15, oe mial expansion, and they used these results to form a Padé
approximant that represented the function well to higher den-
sities and for highly asymmetric mixtures. There have been
@ @ @ @ several recent attempts to perform these calculations to
6 2 2 2 higher orders and for other models. Perkyns, Dyer, and
Pettitt” applied the Attard—Patey formalism to calculdte
@ @ @ andbg for the h-bond expansion for the Lennard—Jorie3)
2 2 1

system. They obtained a self-consistent solution through it-
eration, in which the calculated bridge-function coefficients
%%%%%%%%%%% are used to estimat#r) and therh(r), which is in turn used
% > /e > A 2\ = 2 to calculate the bridge-function coefficients. We apply this
%%%%%%%%%%% iterative approach in the present work, but employ a different
DRSS 27 947 C2 1 2 %

method for calculating the relevant cluster integrals.

%%%%%%%%%%% Rast, Fries, and Krienk&first proposed a general biased
1 2> Y2Y YU T4V TR U Vg Var VY V2

Monte Carlo(MC) method for evaluation of cluster integrals,
@%%%%%%%%%% and used it to calculath, and b; for the h-bond expansion
4 2 1 L2 9 A 2 1 1 1 A for the HS and LJ systems; in their work they used accurate
%%%%%%%%@%% data forh(r) from the literature to calculate the coefficients.
20 9 A 2 9 : ) > ) ¥ 3, The form of the bias was obtained in part by a variance
minimization procedure, supplemented by application of
%%%%%%%%%%% some judgment regarding the appropriate form to use for
L & e A A D A A A A A large separations, including a finite volume to contain the
%%%%%%%%%%% particles. The bias significantly improved the MC sampling.
2”0 Y2¥ Y4t Ya¥ 7y 1 1 1 1 1 1

Labik et al*! built on the ideas of Rat al. and evaluated

%%%%%%%%%%% up to bs for the f-bond expansion applied to the hard-sphere
4 1 1 1 2 6 1 2 4 2 1

model. Unlike the approach of Rast al,, Labik et al. evalu-

FIG. 1. Clusters in thébond densit ion of the bridge functieig ated the cluster integrals separatély in small groupsin
. 1. Clusters in thé-bond density expansion of the bridge funct|cy. . .
(3)]. The first row shows the single diagram fip. The numbers 1 and 2 different MC samples, rather tha'_’l't()gether as their sum for
label the root pointgfor clarity, these labels are omitted in the other dia- Bn. FOr each cluster, they identified feamework cluster,
grams. The second and third rows show diagram&jnwhich consists of  which was chosen for its analytic tractability and for its simi-
seven distinct clusters. The remainder of the rows show diagranhs, in larity to the cluste(s) of interest. The framework cluster pro-
which consists of 88 distinct clusters. Values of each coefficient can be ided th bability distrib t.' for the bi d MC
obtained from evaluating the sum of all diagrams, respectively. Numberéll. e € pro a_ ity distribu !On o.r N |as§ S.am'
below diagrams represent their symmetry numbers; the weight of each dig?ling. The quantity averaged in their method is the ratio of
gram is the reciprocal of the given value. the desired cluster to the framework cluster.
Recently, Singh and KofRé recognized that molecular

sity, coefficients given in terms of it implicitly incorporate simulation methods developed for evaluation of the free en-

higher-order components of the density expansion, and the§f9Y could be applied toward the evaluation of cluster inte-
must be evaluated separately at each density. This is also ti#!S- They proposed the terMayer samplingto describe
advantage of thé-bond expansion. One might expect fewer this general approach and_ application. In the present work
terms in the expansion to yield a better representation of'€ aPply the Mayer-sampling method to evaluate up to the
b(r), because the higher-order terms are present implicitly. fourth coefficient of ther-bond expansion di(r), applied to
Stell has given a prescription to construct bridge dia-th€ hard-sphere fluid system. _ _
grams composed of bonds®® For instance, the second, In Sec. Il, we describe the Mayer-sampling technique
third, and fourth coefficientdy,, bs, andb, are shown in Fig. and briefly explain the procedure used to solve Etjsand
1. It is worth noting that the number of diagramsbincould (2 With respect tob(r). In Sec. Ill, we describe computa-
be further reduced to 5 and thosebinto 56 because some of tional details and in Sec. IV we present and discuss our re-
diagrams are symmetric with respect to exchange of the 1a8Ults: In the last section, we summarize and conclude.
bels of the white reference points, and thus have identical

values. _ . o _ .. 1. BACKGROUND
Evaluating the bridge-function coefficients is a difficult
task becausél) their number expands rapidly with increas- The thermodynamic free energy is known from statisti-

ing order of the expansion ar{@) each cluster diagram rep- cal mechanics to be directly related to the partition function,
resents a high-dimensional integral over the coordinates dbr classical fluids is a straightforward configurational inte-
several particles. Nijboer and van H&{eerived an analyti- gral. Thus methods to evaluate free energies are methods for
cal solution ofb, with f bonds for the hard-sphere system, evaluation of configurational integrals, and if cast in the
and by diagrams for hard spheres in tifidoond series were proper form, these methods can be applied to calculate the
numerically calculated by Ree and co-work&t®oth coef- configurational integrals arising in cluster expansion. Thus
ficients were also calculated by Attard and Paldgr hard-  we might expect that the rich array of methods developed for
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free-energy calculations should be adaptable to this probleniteely. Thus contributions to the averages 4dr) are binned
We consider here specifically applications to diagrams conaccording to the value af. Reported values of(r) are
taining two root points with no external fields, but the for-

mulas are easily generalized.

The most straightforward free-energy method is free- Ari) = VMkz_: Yiks (6)
energy perturbation, which is based upon this relation,
L(r) =Tol¥ () o)y, (4)  Wherem is the number of times the root particles were ob-

served to be separated by a distancg to r;+Ar, ¥ is the

wherel'(r) is the value of the desired cluster integral or sumkth contribution to the average in binM=3m is the total
of integrals at a specific, which is the relative distance number of contributions made to all bins, ah/qj: al (r;
between the root points(r) is the value of integrand or sum +Ar)3-r?] is the volume of the shell associated W|th bin
of integrands at, the subscriptd” indicates a quantity for a We choose the referencg, as a single ring cluster of
reference system, for whidh, is assumed known. The angle field (no rood particles and with a number of particles the
bracket indicates an average over an ensemble of configurgame as that appropriate to the bridge coefficient being cal-
tions. A key feature of free-energy methods is that they daulated (including the root points The bonds iny, are f
not attempt direct evaluation of the free energy or configubonds for a hard-sphere potential of unit diamétenich is
rational integral. Rather they deal with free-energy differ-the same diameter as the system of int¢régote that this
ences or integral ratios. Thus in E¢) we calculate only the cluster, and thus the denominator of Ef) and alsal’,, do
ratio of the target cluster integfal to a reference, and do not not depend om, so all configurations contribute to its aver-
attempt direct evaluation of the cluster integral as is done irage. Form we choose the absolute value of The biasw
standard quadrature approaches. also does not give any significance to the root points, and is

Equation(4) is in fact the basic working formula for the not considered a function of This choice forr is certain to
methods of Rastt al. and Labiket al. To apply this formula, include all relevant configurations of, also, it is clear that
it is necessary thay, be non-negative. This is easily accom- the configurations important tg, are a subset of those im-
plished by taking its absolute value, but one should recogportant toy and thus will be able to be sampled by this
nize then that the definition df, must be modified accord- choice of.
ingly. The application by Labilet al. uses a single cluster We also perform calculations in which the root points are
(frameworK for 7y,, and considers only the hard-sphere po-held at a fixed separation. For these calculatigynis chosen
tential, for which the cluster integrand has values 0 and +Xs a chain ofh| bonds(bonds defined as the absolute value
(or 0 and -1 only. Thus evaluation oF, is not complicated of h), and is chosen to be equal tg,. Thus we can calcu-
by taking the absolute value of,. Rastet al. do not restrict  late y(r) by averaging according to E¢4), with 'y a func-
the choice ofy, this way, and they use a more complicatedtion of r. For this systenT,(r) can be calculated fron(r)|
form that depends on the absolute valueh@f) between the  using Fourier transform methods. Results calculated this way
sample points. They then applied a separate method involfor several values of were consistent with the calculations
ing unbiased sampling in an appropriate hypervolume tahat permitted the root-point separations to fluctuate, and are

evaluate(the equivalent ofI',. not reported in detail here.
A more flexible free-energy method is umbrella sam-  Equations1) and(2) are solved in an incremental, itera-
pling, for which the working equation is as follows: tive manner. We begin by evaluating the HNC solution
()7 [b(r)=0] for h(r) using the Picard iteration algorithm pre-
L(r)y=C,———", (5)  sented by Duh and Haym&t The result is used to estimate
(v ) b(r) from its h-bond series expansion including only the

where is a(non-negativeprobability distribution that gov- term, which is evaluated by the Mayer-sampling technique
erns the sampling of all configurations of molecules. Withusing the HNCh(r) interpolated from a table. This estimate
this formulation we separate the reference cluster from it©f b(r) is then used in another Duh—Haymet calculation of
role as a sampling or bias function. This permits more leeh(r) via Egs.(1) and(2), and this is used in a new Mayer-
way in its choice, so we can employ any cluégeiin its ~ sampling calculation fob,(r). This b, is observed to differ
definition, and it can be based on any intermolecular potenlittle from the previous iteration, and is taken as the con-
tial (not necessarily the one of interesRegardingm, there  verged value. It is used in a corresponding process to calcu-
is no specific restriction on its choice as long as it adequateljate bs(r), alternating between solving fé(r) and using the
samples all configurations important to both target and refersolution in Mayer-sampling calculations fdx. We again
ence systemsgtherefore it is helpful to select, so that its  perform a total of two Mayer-sampling calculations for this
important configurations are similar to those fgr process, and then do the same ligr but do only one itera-
tion so a single Mayer-sampling calculation is performed. In
this scheme we do not revisit calculation ofbg when
higher-order coefficients are addedhk@). All of these cal-

We definey(r) as the sum of the clusters defining a termculations are performed separately for densities from 0.1 to
b,(r) in the h-bond expansion of the bridge function. Values 0.9 in increments of 0.1where not otherwise specified, all
of I'(r) can be collected at different valuesroin one simu-  values are given in units such that the hard-sphere diameter
lation, by allowing the root points to sample separationso is unity).

IIl. COMPUTATIONAL DETAILS
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FIG. 2. Plot of bridge coefficiert,(r) with respect to the reduced distance. FIG. 3. Plot of bridge coefficiertt;(r) with respect to the reduced distance.
Different types of lines represent different densitieas shown in the leg-  The same notation as in Fig. 2 is applied in this plot.

end. Open circles are results from Rast, Fries, and KrigRlef. 16 and

bold line is the(density-independentesult of Labiket al. (Ref. 31).

Krienke'® report data. Those results agree qualitatively with

Tabulation of discretizeti(r) is performed up to separa- ©UrS; but differ in a quantitative comparison. This discrep-
tions of 10.24r using 1024 bins, which makes =0.01s. In  @ncy most likely originates from the use of differdtt) in
many cases the tabulation can be performed to shorter sepiie cluster-integral calculations. Rast al. use “exact”h
rationS, and so a cutoff distance is defined, beyond Whic[bonds based on simulation data, while we use the incremen-
h(r) is taken to be zero. This cutoff was determined prior totally self-consistent iterative approach detailed above. The
the calculations by examining HNC values of the correlationfailure to find complete agreement with a similar method
function. Cutoff values oh(r) are typically 3r at density 0.1 based on exadt bonds uncovers a weakness in the approach
and & at 0.9. The bin size for tabulation of the bridge co- we have employed.
efficients was much coarser, using a bin sige=0.1. In We also evaluaté,(r) by the Mayer-sampling method,
simulations of the diagram for the second coefficient, theand show the results in Fig. 4. This calculation involved the
root points are found to go no further tham @part; for the evaluation of 56 clusters in the iterative scheme. There are
third coefficient, the observed maximum separation is abouto h-bond results from the literature available for compari-
60, and for the fourth coefficient, abouts7is the largest son. At high densities, the confidence limits indicate large
separation. Note that the maximum separation for the distrifluctuations, and this behavior becomes more serious as the
bution of bridge diagrams is much shorter than chain typeelative distance of reference points gets smaller. We at-
cluster due to highly connected inner bonds of field-field andempted to improve the confidence limits by applying addi-
field-reference points. We apply Neville’s algoritﬁ4mo in-  tional sampling for this coefficient at these densities, using
terpolate between interval pointslofr) and to extrapolate to up to 80x 10° configurations. The results are still less than
outside of end points. This procedure is used to match up the
number of bins of the bridge function with the correlation
function for performing the next numerical iteration step. As
described above, we perform two consecutive iterations to
obtain final results, except evaluation lnf at densities 0.7,
0.8, and 0.9, where the MC Mayer-sampling simulations
must typically collect 40—88& 10° configurations to obtain
the smooth results. For the other densitieskigrwe employ
10x 10° configurations. For the coefficients, and b,
Mayer sampling yields good results with considerably less
sampling; we used 1-2 10° samples in our calculations.

b,(r)

IV. RESULTS AND DISCUSSION

Figures 2 and 3 show results fby(r) andbs(r), respec-
tively, computed using the methods described above. At low
densities, both functions appear smooth, but this behavior
changes at higher density, where severe oscillations about to
zero are observed. A partial comparison with literature datgg_ 4. piot of bridge coefficiert,(r) with respect to the reduced distance.
is possible for the density 0.8, at which Rast, Fries, andhe same notation as in Fig. 2 is applied in this plot.
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FIG. 5. Plot of bridge functiorb(r) as given by the density expansion FIG. 6. Plot of bridge functiorb(r) as given by the density expansion
including onlyby(r), with respect to the reduced distance. Different types of including b(r) and by(r), with respect to the reduced distance. Different
lines represent different densities as shown in the legend. types of lines represent different densities as shown in the legend.

satisfactory, and we speculate that a more effective approadions. We also compare to two empirical formulas that aim to
to improve the results would involve a different Mayer- describe the true bridge functidf® These equations are
sampling strategyother than Eq(5)]. constructed with the assumption that the hard spbéreis

We also compare all our results to tiieoond cluster nonpositive, and our results clearly disagree with them in
coefficients reported by Labiét al,*! who provided conve- this regard. Very careful studies performed recently to com-
nient empirical fits of their results. Thiebond clusters are puteb(r) from simulation data indicate now that the bridge
density independent, so a single curve is given for each cdunction may take positive values, albeit of small magnitude
efficient. It is clear from Fig. 2 that the Labét al.result for ~ (less than 0.01 fop=0.94."" Inclusion of the third term in
the f-expansiorb,(r) is a smooth extrapolation of our results our results move$(r) toward the empirical formulas, but
in the limit p— 0. Examination of Figs. 3 and 4 does not there remains a substantial difference between them.
show the same connection. This is because some of the clus- We consider now the improvement of estimates of the
ters in the f-bonded b; and b, are represented in the radial distribution functiorg(r) as higher-order terms in the
h-bondedb,. Instead we findnot shown that the sumb,  bridge function are introduced to the HNC approximation.
+bgp with the f-bond coefficients is the— 0 limiting form  Figures 9 and 10 show different partsgif) at density 0.8,
of the same sum with thie-bond coefficients; a similar com- compared with results of molecular dynamics simulation per-
parison applies using,+bzp+b,p?. The comparison also formed by us. Contact values ofr) (Fig. 9) decrease to-
shows that théa-bond expansion does succeed in incorporatward the simulation result as the bridge function includes
ing significantly more effects of density dn(r) than the more bridge coefficients, while the improvement around the

f-bond expansion is able. second peak is not so cledfig. 10. Regardless, the rate of
Next we examine the bridge function itself as given us-
ing increasing orders of the density expansion. Figure 5 L 1 L !

shows the bridge function composedtnfr), Fig. 6 shows

the bridge function containing,(r) and bs(r), and Fig. 7
shows the bridge function determined with all three bridge
coefficients measured here. We note that the present calcula-
tions show a non-negligible(r) to slightly larger separations
than seen in the study by Rast, Fries, and Kriettk®mall

b,(1)p"+ by(p” + by(r)p"

effects in the long-range behavior bfr) can impact the —? oolF
pressure as computed by the compressibility formula, for & [+ e 0.8
which offsetting oscillations im(r) make an accurate deter- c T oeE
mination difficult. We notice that the magnitude of bridge- < o g.i
function oscillations is not continuously increased as more - 03|
coefficients are added to the expansion. The magnitude is . 8:?

rather reduced with the inclusion of the third coefficient. Fig- T , ;
ure 8 shows a comparison of our results to the literature 20 25 30 35
determinations at density 0.8. Our results agree well with tlo

those by Rast, Fries, and KrleHﬁEBt (which includesb, FIG. 7. Plot of bridge functiorb(r) as given by the density expansion

only) bUt not W_ith Bs (Which indUd?sz andb;). This can be  inciuding by(r), bs(r), andb,(r), with respect to the reduced distance. Dif-
explained again by the use of differelnfr) in the calcula- ferent types of lines represent different densities as shown in the legend.
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FIG. 8. Plot of bridge functiom(r) with respect to the reduced distance at

reduced densitypo®=0.8. Bold dotted line represents the parametrized FIG. 10. Same as Fig. 9, but expanding on the region near the second peak
bridge function of Malijevsky and LabikRef. 14 Solid line without mark- in g(r).

ers describes the Verlet-modified bridge function, which is determined by

Labik, Malijevsky, and Smitt{Ref. 35. Lines with symbols are data from . .. . .
the h-bond cluster study of Rast, Fries, and Krier{ieef. 16 for which By “m_ates the true _pressure and the PY virial underes“m"’_‘tes It,
is by(r)p? and By is by(r)p?+hbs(r)p°. while the opposite holds for the pressure computed via the

compressibility equation. As higher-order terms in the

convergence is not very high, and it appears that to obtaiRridge-function expansion are added, results from this study

good contact values at the high density region at least severg{!oW gradual improvement over the entire range of density.

more coefficients would be needed in the bridge function.]N& improvement is more significant for the pressure as

This involves a very large number of clusters, and is likely to€@MpPuted via the virial, though even with the highest-order

be beyond the limits of what can be feasibly calculated evefréatment the modified HNC barely improves upon the PY
with Mayer-sampling methods. compressibility result. The modified HNC pressure com-

Finally, we examine the pressure as a function of densityPut€d via the compressibility has very large error bars at the
calculated using both the compressibility and virial routes,_h'gher densities, and does not provide useful results. Again,
using the total correlation functidn(r) determined with each It S€ems that several more coefficients would be needed to
level of truncation of the bridge-function series. Figure 11°0Ptain good contact values at even moderate densities.
shows our results compared to the accurate Carnahan—

. . . ) | ] [l | ] | |
Starling equation of staté. As is well known, for hard — Camahan Starling
spheres the virial pressure determined by pure HNC overes- [~ PY(P,) =+ HNC(P,)
10 |--- HNC(P,) with b(r)=b,p® i
. . | . A et HNC(P,) with b(r)=b,(r)p*+byt0)p°
5.0 el - HNC(P,) with b(r)=b,(r)p +by(r)p*+b 0"
. ~-- HNCwithb()=0 =0 PY(Pg) -0+ HNC(P,)
asd BT HNG with b(r):bz(ﬂpz . F -2 HNC(P,) with b(r}=b,{r)p"
YU R HNC w'mb(r)-bz(r»; ba(')f-’a . '} g [ 7 HNCPwitn b(r)=b,p*+byrp°
= HNC with b{r)=b,(1}p"+ by(r)p™+ by()p = T —o— HNC(P.) with bN=b.ep%+b.p+b,to’| B
4.0 R, | MD simuation - e (P vitn bOYD0p o0 0alle | 4
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po
15 FIG. 11. Plot of pressure with respect to the reduced density. Solid line is
1.00 1.05 1.10 1.15 1.20 the semiempirical equation of state of Carnahan and StatRef. 36.
o Lines marked PY are from the Percus—Yevick theory, and lines marked

“HNC with...” are from solution of the Ornstein—Zernike equation with a
FIG. 9. Plot ofg(r) at density 0.8 at separations near contact value. Boldbridge-function closure obtained from tiebond cluster expansion to the
line is our result of molecular dynamics simulatidiEased on simulating indicated order in density. Subscripts’“and “c” indicate the pressure ob-
1372 particles after discarding abouf tdllisions and collecting an average tained from the correlation function via the virial and compressibility equa-
g(r) for about 16 collisions]; other lines(marked “HNC with..”) are from tions, respectively. Error bars are included only when significant, and are
solution of the Ornstein—Zernike equation with a bridge-function closurevisible only on the HNC +fourth-order bridge function expansion, at densi-
obtained from thé-bond cluster expansion to the indicated order in density. ties greater than 0.7.
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