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We report coefficients of theh-bond expansion of the bridge function of the hard-sphere system up
to orderr4 swherer is the density in units of the hard-sphere diameterd, which in the highest-order
term includes 88 cluster diagrams with bonds representing the total correlation functionhsrd.
Calculations are performed using the recently introduced Mayer-sampling method for evaluation of
cluster integrals, and an iterative scheme is applied in which thehsrd used in the cluster integrals is
determined by solution of the Ornstein–Zernike equation with a closure given by the calculated
clusters. Calculations are performed for reduced densities from 0.1 to 0.9 in increments of 0.1.
Comparison with molecular simulation data shows that the convergence is very slow for the density
expansion of the bridge function calculated this way. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1860559g

I. INTRODUCTION

Integral equation theory1,2 sIETd provides a means to
predict the behavior of condensed phases from the intermo-
lecular interactions. IET methods are useful because they are
computationally efficient, and in some cases can yield com-
pletely to analytic treatment. A primary aim in these ap-
proaches is the direct evaluation of the pair correlation func-
tion gsrd, where r is the relative distance of a pair of
moleculesswhich we take here as monatomicd. Theories can
be developed in terms of the direct correlation functioncsrd,
which is defined by the Ornstein–ZernikesOZd equation,

hsrd = csrd + rE csr8dhsur − r8uddr8, s1d

where hsrd=gsrd−1 and r is the number density of mol-
ecules. Application of Eq.s1d requires a closure, which also
introduces into the theory the pair potentialusrd that defines
the molecular interactions. The basic idea is to solve another
relation betweencsrd andhsrd with the OZ equation. A par-
ticularly suitable choice involves the cavity distribution func-
tion ysrd,

ysrd ; gsrdexpfbusrdg = expfhsrd − csrd + bsrdg, s2d

where b=1/kBT, kB is Boltzmann’s constant, andT is the
temperature. This relation does not yet provide a closure,
because it introduces another quantitybsrd, which is known
as the bridge function. From this point approximations are
introduced that yield a well defined set of integral equations
that can yieldgsrd from usrd. The hypernetted chainsHNCd
closure simply takesbsrd=0, while the Percus–YevicksPYd
closure goes one step further and takes alsoysrd=1+hsrd
−csrd; the PY approximation seems to benefit from a cancel-
lation of errors when applied to short-ranged potentials. The
approximate nature of both of these closures is evident in
several ways. When applied to the hard-spheresHSd model,
they yield pressuressvia the viriald that are too highsHNCd

and too low sPYd in comparison to molecular simulation.
They also can be shown to lead to certain thermodynamic
inconsistencies, and methods to improve these approaches
use similar approximations, but proceed in different ways
that remove the inconsistencies.3–10

Several of the approaches to improve IET closures focus
on the neglected bridge functionbsrd. There are two main
routes to constructbsrd. One general approach works within
the IET framework, derivingbsrd from measurements or ap-
proximations. The former then is an empirical approach: mo-
lecular simulation is used to obtain accurategsrd from which
bsrd is evaluated via its definition.11 The resulting form is
sometimes fitted to give an empirical expression through ad-
justable parameters.12–14The parametrization processes have
been shown to provide fast and reliable ways to construct
bsrd for some interesting model systems. However, this ap-
proach sometimes shows inaccuracy with respect to the signs
of bsrd9,15,16 and zero-separation theorems.17–21 Approaches
based more on first principles include a perturbation method,
which approximatesbsrd of the potential of interest using a
simpler short-ranged potential.22–25

Another route to obtainbsrd is a direct evaluation in
terms of the bridge-function coefficients defined by the den-
sity expansion of the function

bsrd = o
n=2

`

bnsrdrn. s3d

The coefficientsbnsrd are multidimensional integrals which
can be written in terms of cluster diagrams,1,26 which consist
of n field sblackd points, two referenceswhited points in rela-
tive distancer, and bonds that define the integrand. In one
treatment the bonds represent the Mayer functionfsrd
;expf−busrdg−1, while in another the bonds represent the
total correlation functionhsrd. An advantage of thef-bond
expansion is that the coefficientsbnsrd remain truly density
independent. In comparison, becausehsrd depends on den-
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sity, coefficients given in terms of it implicitly incorporate
higher-order components of the density expansion, and they
must be evaluated separately at each density. This is also the
advantage of theh-bond expansion. One might expect fewer
terms in the expansion to yield a better representation of
bsrd, because the higher-order terms are present implicitly.

Stell has given a prescription to construct bridge dia-
grams composed ofh bonds.26 For instance, the second,
third, and fourth coefficients,b2, b3, andb4 are shown in Fig.
1. It is worth noting that the number of diagrams inb3 could
be further reduced to 5 and those inb4 to 56 because some of
diagrams are symmetric with respect to exchange of the la-
bels of the white reference points, and thus have identical
values.

Evaluating the bridge-function coefficients is a difficult
task becauses1d their number expands rapidly with increas-
ing order of the expansion ands2d each cluster diagram rep-
resents a high-dimensional integral over the coordinates of
several particles. Nijboer and van Hove27 derived an analyti-
cal solution ofb2 with f bonds for the hard-sphere system,
and b3 diagrams for hard spheres in thef-bond series were
numerically calculated by Ree and co-workers.28 Both coef-
ficients were also calculated by Attard and Patey29 for hard-

sphere systems and their mixtures using a Legendre polyno-
mial expansion, and they used these results to form a Padé
approximant that represented the function well to higher den-
sities and for highly asymmetric mixtures. There have been
several recent attempts to perform these calculations to
higher orders and for other models. Perkyns, Dyer, and
Pettitt30 applied the Attard–Patey formalism to calculateb2

andb3 for the h-bond expansion for the Lennard–JonessLJd
system. They obtained a self-consistent solution through it-
eration, in which the calculated bridge-function coefficients
are used to estimatebsrd and thenhsrd, which is in turn used
to calculate the bridge-function coefficients. We apply this
iterative approach in the present work, but employ a different
method for calculating the relevant cluster integrals.

Rast, Fries, and Krienke16 first proposed a general biased
Monte CarlosMCd method for evaluation of cluster integrals,
and used it to calculateb2 andb3 for the h-bond expansion
for the HS and LJ systems; in their work they used accurate
data forhsrd from the literature to calculate the coefficients.
The form of the bias was obtained in part by a variance
minimization procedure, supplemented by application of
some judgment regarding the appropriate form to use for
large separations, including a finite volume to contain the
particles. The bias significantly improved the MC sampling.
Labík et al.31 built on the ideas of Rastet al. and evaluated
up to b5 for the f-bond expansion applied to the hard-sphere
model. Unlike the approach of Rastet al., Labíket al.evalu-
ated the cluster integrals separatelysor in small groupsd in
different MC samples, rather than together as their sum for
bn. For each cluster, they identified aframework cluster,
which was chosen for its analytic tractability and for its simi-
larity to the clusterssd of interest. The framework cluster pro-
vided the probability distribution for the biased MC sam-
pling. The quantity averaged in their method is the ratio of
the desired cluster to the framework cluster.

Recently, Singh and Kofke32 recognized that molecular
simulation methods developed for evaluation of the free en-
ergy could be applied toward the evaluation of cluster inte-
grals. They proposed the termMayer samplingto describe
this general approach and application. In the present work
we apply the Mayer-sampling method to evaluate up to the
fourth coefficient of theh-bond expansion ofbsrd, applied to
the hard-sphere fluid system.

In Sec. II, we describe the Mayer-sampling technique
and briefly explain the procedure used to solve Eqs.s1d and
s2d with respect tobsrd. In Sec. III, we describe computa-
tional details and in Sec. IV we present and discuss our re-
sults. In the last section, we summarize and conclude.

II. BACKGROUND

The thermodynamic free energy is known from statisti-
cal mechanics to be directly related to the partition function,
for classical fluids is a straightforward configurational inte-
gral. Thus methods to evaluate free energies are methods for
evaluation of configurational integrals, and if cast in the
proper form, these methods can be applied to calculate the
configurational integrals arising in cluster expansion. Thus
we might expect that the rich array of methods developed for

FIG. 1. Clusters in theh-bond density expansion of the bridge functionfEq.
s3dg. The first row shows the single diagram inb2. The numbers 1 and 2
label the root pointssfor clarity, these labels are omitted in the other dia-
gramsd. The second and third rows show diagrams inb3, which consists of
seven distinct clusters. The remainder of the rows show diagrams inb4,
which consists of 88 distinct clusters. Values of each coefficient can be
obtained from evaluating the sum of all diagrams, respectively. Numbers
below diagrams represent their symmetry numbers; the weight of each dia-
gram is the reciprocal of the given value.
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free-energy calculations should be adaptable to this problem.
We consider here specifically applications to diagrams con-
taining two root points with no external fields, but the for-
mulas are easily generalized.

The most straightforward free-energy method is free-
energy perturbation, which is based upon this relation,

Gsrd = Gokgsrd/golgo
, s4d

whereGsrd is the value of the desired cluster integral or sum
of integrals at a specificr, which is the relative distance
between the root points.gsrd is the value of integrand or sum
of integrands atr, the subscript “o” indicates a quantity for a
reference system, for whichGo is assumed known. The angle
bracket indicates an average over an ensemble of configura-
tions. A key feature of free-energy methods is that they do
not attempt direct evaluation of the free energy or configu-
rational integral. Rather they deal with free-energy differ-
ences or integral ratios. Thus in Eq.s4d we calculate only the
ratio of the target cluster integralssd to a reference, and do not
attempt direct evaluation of the cluster integral as is done in
standard quadrature approaches.

Equations4d is in fact the basic working formula for the
methods of Rastet al.and Labíket al.To apply this formula,
it is necessary thatg0 be non-negative. This is easily accom-
plished by taking its absolute value, but one should recog-
nize then that the definition ofGo must be modified accord-
ingly. The application by Labíket al. uses a single cluster
sframeworkd for go, and considers only the hard-sphere po-
tential, for which the cluster integrand has values 0 and +1
sor 0 and −1d only. Thus evaluation ofGo is not complicated
by taking the absolute value ofgo. Rastet al. do not restrict
the choice ofgo this way, and they use a more complicated
form that depends on the absolute value ofhsrd between the
sample points. They then applied a separate method involv-
ing unbiased sampling in an appropriate hypervolume to
evaluatesthe equivalent ofd Go.

A more flexible free-energy method is umbrella sam-
pling, for which the working equation is as follows:

Gsrd = Go
kgsrd/plp

kgo/plp

, s5d

wherep is a snon-negatived probability distribution that gov-
erns the sampling of all configurations of molecules. With
this formulation we separate the reference cluster from its
role as a sampling or bias function. This permits more lee-
way in its choice, so we can employ any clusterssd in its
definition, and it can be based on any intermolecular poten-
tial snot necessarily the one of interestd. Regardingp, there
is no specific restriction on its choice as long as it adequately
samples all configurations important to both target and refer-
ence systemsstherefore it is helpful to selectgo so that its
important configurations are similar to those forgd.

III. COMPUTATIONAL DETAILS

We definegsrd as the sum of the clusters defining a term
bnsrd in the h-bond expansion of the bridge function. Values
of Gsrd can be collected at different values ofr in one simu-
lation, by allowing the root points to sample separations

freely. Thus contributions to the averages forgsrd are binned
according to the value ofr. Reported values ofgsrd are

gsr id =
1

ViM
o
k=1

mi

gi,k, s6d

wheremi is the number of times the root particles were ob-
served to be separated by a distance inr i to r i +Dr, gi,k is the
kth contribution to the average in bini, M =omi is the total
number of contributions made to all bins, andVi =

4
3pfsr i

+Drd3−r i
3g is the volume of the shell associated with bini.

We choose the referencego as a single ring cluster of
field sno rootd particles and with a number of particles the
same as that appropriate to the bridge coefficient being cal-
culated sincluding the root pointsd. The bonds ingo are f
bonds for a hard-sphere potential of unit diameterswhich is
the same diameter as the system of interestd. Note that this
cluster, and thus the denominator of Eq.s5d and alsoGo, do
not depend onr, so all configurations contribute to its aver-
age. Forp we choose the absolute value ofg. The biasp
also does not give any significance to the root points, and is
not considered a function ofr. This choice forp is certain to
include all relevant configurations ofg, also, it is clear that
the configurations important togo are a subset of those im-
portant to g and thus will be able to be sampled by this
choice ofp.

We also perform calculations in which the root points are
held at a fixed separation. For these calculationsgo is chosen
as a chain ofuhu bondssbonds defined as the absolute value
of hd, andp is chosen to be equal togo. Thus we can calcu-
late gsrd by averaging according to Eq.s4d, with Go a func-
tion of r. For this systemGosrd can be calculated fromuhsrdu
using Fourier transform methods. Results calculated this way
for several values ofr were consistent with the calculations
that permitted the root-point separations to fluctuate, and are
not reported in detail here.

Equationss1d ands2d are solved in an incremental, itera-
tive manner. We begin by evaluating the HNC solution
fbsrd=0g for hsrd using the Picard iteration algorithm pre-
sented by Duh and Haymet.33 The result is used to estimate
bsrd from its h-bond series expansion including only theb2

term, which is evaluated by the Mayer-sampling technique
using the HNChsrd interpolated from a table. This estimate
of bsrd is then used in another Duh–Haymet calculation of
hsrd via Eqs.s1d and s2d, and this is used in a new Mayer-
sampling calculation forb2srd. This b2 is observed to differ
little from the previous iteration, and is taken as the con-
verged value. It is used in a corresponding process to calcu-
lateb3srd, alternating between solving forhsrd and using the
solution in Mayer-sampling calculations forb3. We again
perform a total of two Mayer-sampling calculations for this
process, and then do the same forb4, but do only one itera-
tion so a single Mayer-sampling calculation is performed. In
this scheme we do not revisit calculation of abn when
higher-order coefficients are added tobsrd. All of these cal-
culations are performed separately for densities from 0.1 to
0.9 in increments of 0.1swhere not otherwise specified, all
values are given in units such that the hard-sphere diameter
s is unityd.

104508-3 Evaluation of bridge-function diagrams J. Chem. Phys. 122, 104508 ~2005!

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

114.70.7.203 On: Thu, 02 Oct 2014 02:21:17



Tabulation of discretizedhsrd is performed up to separa-
tions of 10.24s using 1024 bins, which makesDr =0.01s. In
many cases the tabulation can be performed to shorter sepa-
rations, and so a cutoff distance is defined, beyond which
hsrd is taken to be zero. This cutoff was determined prior to
the calculations by examining HNC values of the correlation
function. Cutoff values ofhsrd are typically 3s at density 0.1
and 8s at 0.9. The bin size for tabulation of the bridge co-
efficients was much coarser, using a bin sizeDr =0.1s. In
simulations of the diagram for the second coefficient, the
root points are found to go no further than 5s apart; for the
third coefficient, the observed maximum separation is about
6s, and for the fourth coefficient, about 7s is the largest
separation. Note that the maximum separation for the distri-
bution of bridge diagrams is much shorter than chain type
cluster due to highly connected inner bonds of field-field and
field-reference points. We apply Neville’s algorithm34 to in-
terpolate between interval points ofbsrd and to extrapolate to
outside of end points. This procedure is used to match up the
number of bins of the bridge function with the correlation
function for performing the next numerical iteration step. As
described above, we perform two consecutive iterations to
obtain final results, except evaluation ofb4 at densities 0.7,
0.8, and 0.9, where the MC Mayer-sampling simulations
must typically collect 40–803109 configurations to obtain
the smooth results. For the other densities forb4, we employ
103109 configurations. For the coefficientsb2 and b3,
Mayer sampling yields good results with considerably less
sampling; we used 1–23109 samples in our calculations.

IV. RESULTS AND DISCUSSION

Figures 2 and 3 show results forb2srd andb3srd, respec-
tively, computed using the methods described above. At low
densities, both functions appear smooth, but this behavior
changes at higher density, where severe oscillations about
zero are observed. A partial comparison with literature data
is possible for the density 0.8, at which Rast, Fries, and

Krienke16 report data. Those results agree qualitatively with
ours, but differ in a quantitative comparison. This discrep-
ancy most likely originates from the use of differenthsrd in
the cluster-integral calculations. Rastet al. use “exact” h
bonds based on simulation data, while we use the incremen-
tally self-consistent iterative approach detailed above. The
failure to find complete agreement with a similar method
based on exacth bonds uncovers a weakness in the approach
we have employed.

We also evaluateb4srd by the Mayer-sampling method,
and show the results in Fig. 4. This calculation involved the
evaluation of 56 clusters in the iterative scheme. There are
no h-bond results from the literature available for compari-
son. At high densities, the confidence limits indicate large
fluctuations, and this behavior becomes more serious as the
relative distance of reference points gets smaller. We at-
tempted to improve the confidence limits by applying addi-
tional sampling for this coefficient at these densities, using
up to 803109 configurations. The results are still less than

FIG. 2. Plot of bridge coefficientb2srd with respect to the reduced distance.
Different types of lines represent different densitiesr as shown in the leg-
end. Open circles are results from Rast, Fries, and KrienkesRef. 16d and
bold line is thesdensity-independentd result of Labíket al. sRef. 31d.

FIG. 3. Plot of bridge coefficientb3srd with respect to the reduced distance.
The same notation as in Fig. 2 is applied in this plot.

FIG. 4. Plot of bridge coefficientb4srd with respect to the reduced distance.
The same notation as in Fig. 2 is applied in this plot.
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satisfactory, and we speculate that a more effective approach
to improve the results would involve a different Mayer-
sampling strategyfother than Eq.s5dg.

We also compare all our results to thef-bond cluster
coefficients reported by Labíket al.,31 who provided conve-
nient empirical fits of their results. Thef-bond clusters are
density independent, so a single curve is given for each co-
efficient. It is clear from Fig. 2 that the Labíket al. result for
the f-expansionb2srd is a smooth extrapolation of our results
in the limit r→0. Examination of Figs. 3 and 4 does not
show the same connection. This is because some of the clus-
ters in the f-bonded b3 and b4 are represented in the
h-bondedb2. Instead we findsnot shownd that the sumb2

+b3r with the f-bond coefficients is ther→0 limiting form
of the same sum with theh-bond coefficients; a similar com-
parison applies usingb2+b3r+b4r2. The comparison also
shows that theh-bond expansion does succeed in incorporat-
ing significantly more effects of density onbsrd than the
f-bond expansion is able.

Next we examine the bridge function itself as given us-
ing increasing orders of the density expansion. Figure 5
shows the bridge function composed ofb2srd, Fig. 6 shows
the bridge function containingb2srd and b3srd, and Fig. 7
shows the bridge function determined with all three bridge
coefficients measured here. We note that the present calcula-
tions show a non-negligiblebsrd to slightly larger separations
than seen in the study by Rast, Fries, and Krienke.16 Small
effects in the long-range behavior ofbsrd can impact the
pressure as computed by the compressibility formula, for
which offsetting oscillations inhsrd make an accurate deter-
mination difficult. We notice that the magnitude of bridge-
function oscillations is not continuously increased as more
coefficients are added to the expansion. The magnitude is
rather reduced with the inclusion of the third coefficient. Fig-
ure 8 shows a comparison of our results to the literature
determinations at density 0.8. Our results agree well with
those by Rast, Fries, and Krienke16 Bt swhich includesb2

onlyd but not withBs swhich includesb2 andb3d. This can be
explained again by the use of differenthsrd in the calcula-

tions. We also compare to two empirical formulas that aim to
describe the true bridge function.14,35 These equations are
constructed with the assumption that the hard spherebsrd is
nonpositive, and our results clearly disagree with them in
this regard. Very careful studies performed recently to com-
putebsrd from simulation data indicate now that the bridge
function may take positive values, albeit of small magnitude
sless than 0.01 forr=0.94d.11 Inclusion of the third term in
our results movesbsrd toward the empirical formulas, but
there remains a substantial difference between them.

We consider now the improvement of estimates of the
radial distribution functiongsrd as higher-order terms in the
bridge function are introduced to the HNC approximation.
Figures 9 and 10 show different parts ofgsrd at density 0.8,
compared with results of molecular dynamics simulation per-
formed by us. Contact values ofgsrd sFig. 9d decrease to-
ward the simulation result as the bridge function includes
more bridge coefficients, while the improvement around the
second peak is not so clearsFig. 10d. Regardless, the rate of

FIG. 5. Plot of bridge functionbsrd as given by the density expansion
including onlyb2srd, with respect to the reduced distance. Different types of
lines represent different densities as shown in the legend.

FIG. 6. Plot of bridge functionbsrd as given by the density expansion
including b2srd and b3srd, with respect to the reduced distance. Different
types of lines represent different densities as shown in the legend.

FIG. 7. Plot of bridge functionbsrd as given by the density expansion
including b2srd, b3srd, andb4srd, with respect to the reduced distance. Dif-
ferent types of lines represent different densities as shown in the legend.
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convergence is not very high, and it appears that to obtain
good contact values at the high density region at least several
more coefficients would be needed in the bridge function.
This involves a very large number of clusters, and is likely to
be beyond the limits of what can be feasibly calculated even
with Mayer-sampling methods.

Finally, we examine the pressure as a function of density,
calculated using both the compressibility and virial routes,
using the total correlation functionhsrd determined with each
level of truncation of the bridge-function series. Figure 11
shows our results compared to the accurate Carnahan–
Starling equation of state.36 As is well known, for hard
spheres the virial pressure determined by pure HNC overes-

timates the true pressure and the PY virial underestimates it,
while the opposite holds for the pressure computed via the
compressibility equation. As higher-order terms in the
bridge-function expansion are added, results from this study
show gradual improvement over the entire range of density.
The improvement is more significant for the pressure as
computed via the virial, though even with the highest-order
treatment the modified HNC barely improves upon the PY
compressibility result. The modified HNC pressure com-
puted via the compressibility has very large error bars at the
higher densities, and does not provide useful results. Again,
it seems that several more coefficients would be needed to
obtain good contact values at even moderate densities.

FIG. 8. Plot of bridge functionbsrd with respect to the reduced distance at
reduced densityrs3=0.8. Bold dotted line represents the parametrized
bridge function of Malijevsky and LabíksRef. 14d Solid line without mark-
ers describes the Verlet-modified bridge function, which is determined by
Labík, Malijevsky, and SmithsRef. 35d. Lines with symbols are data from
the h-bond cluster study of Rast, Fries, and KrienkesRef. 16d for which Bt

is b2srdr2 andBs is b2srdr2+b3srdr3.

FIG. 9. Plot ofgsrd at density 0.8 at separations near contact value. Bold
line is our result of molecular dynamics simulationsfbased on simulating
1372 particles after discarding about 106 collisions and collecting an average
gsrd for about 108 collisionsg; other linessmarked “HNC with…” d are from
solution of the Ornstein–Zernike equation with a bridge-function closure
obtained from theh-bond cluster expansion to the indicated order in density.

FIG. 10. Same as Fig. 9, but expanding on the region near the second peak
in gsrd.

FIG. 11. Plot of pressure with respect to the reduced density. Solid line is
the semiempirical equation of state of Carnahan and StarlingsRef. 36d.
Lines marked PY are from the Percus–Yevick theory, and lines marked
“HNC with…” are from solution of the Ornstein–Zernike equation with a
bridge-function closure obtained from theh-bond cluster expansion to the
indicated order in density. Subscripts “v” and “c” indicate the pressure ob-
tained from the correlation function via the virial and compressibility equa-
tions, respectively. Error bars are included only when significant, and are
visible only on the HNC+fourth-order bridge function expansion, at densi-
ties greater than 0.7.
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V. CONCLUSION

In this study, we demonstrated the Mayer-sampling
method for evaluation of cluster integrals as applied to cal-
culation of clusters having two root pointssand thus a func-
tion of the separation of two particlesd. The method has been
applied previously only to clusters relevant to the virial co-
efficients, and which have just one root point, so this repre-
sents a useful extension of the method.

We performed calculations for the coefficients of the
h-bond series of the bridge function, applied to the hard-
sphere model system. The procedure requires some iteration,
as theh function itself is being determined in the procedure.
The h-bond clusters have been computed in previous work,
but they employed data forhsrd determined by independent
means. Also, the previous work treated only clusters to order
r3, while in the present work we computed clusters up to the
next higher order in density. The present work provides a
demonstration of how theh-bond clusters can be computed
iteratively with the determination ofhsrd itself. We find that
our results differ slightly from previously calculatedh-bond
clustersswhere comparison is possibled, and we attribute this
to the differenthsrd used in the calculations. We expect that
we could find improvement if we did not use an incremental
process, and instead used thehsrd determined considering
higher-order coefficients ofbsrd to feed back into the calcu-
lation of the lower-order coefficients. Alternatively we could
perform the iterative calculation ofhsrd considering all the
bridge coefficientssup to a specified orderd at once.

At low densities, the calculated hard-sphere bridge func-
tion is nonpositive, but at higher densities oscillations are
seen, with the approximate bridge function taking positive
values. So far, even with addition of the third coefficient,
comparison with simulation data for the structure and ther-
modynamic properties indicates that the accuracy of the ap-
proximate bridge function is not high. Calculation of the
fourth bridge coefficient involves 1731 distinct diagrams,
and the number of clusters in higher-order coefficients expo-
nentially increases. We think that evaluation of an additional
term or two is feasible using the methods described here, but
the slow rate of convergence seems to make the effort not
worthwhile, at least for this hard-sphere application. Our ap-
proach to obtainbsrd can be applied to any model systems
with relatively simple modifications. Extensions or other ap-
plications may wish to consider other Mayer-sampling ap-
proaches, which might yield results of better quality more
efficiently.
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